JPH0677019A - Formation of resistor - Google Patents

Formation of resistor

Info

Publication number
JPH0677019A
JPH0677019A JP4229038A JP22903892A JPH0677019A JP H0677019 A JPH0677019 A JP H0677019A JP 4229038 A JP4229038 A JP 4229038A JP 22903892 A JP22903892 A JP 22903892A JP H0677019 A JPH0677019 A JP H0677019A
Authority
JP
Japan
Prior art keywords
layer
impurity
doped layer
doped
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4229038A
Other languages
Japanese (ja)
Other versions
JP3283581B2 (en
Inventor
Yutaka Mimino
裕 耳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Fujitsu Quantum Devices Ltd
Original Assignee
Fujitsu Ltd
Fujitsu Quantum Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Fujitsu Quantum Devices Ltd filed Critical Fujitsu Ltd
Priority to JP22903892A priority Critical patent/JP3283581B2/en
Publication of JPH0677019A publication Critical patent/JPH0677019A/en
Application granted granted Critical
Publication of JP3283581B2 publication Critical patent/JP3283581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a resistor suitable for MMIC by the method for formation of a resistor to be used for a semiconductor active layer. CONSTITUTION:This resistor forming method is composed of a process in which a non-doped layer 1, the first impurity-doped layer 3 and the second impurity- doped layer 4 are grown sucessively on a compound semiconductor substrate 1, a process in which two electrodes 5a and 5b to be used to ohmic contact are formed leaving an interval on the second impurity-doped layer 4, and another process in which a resistance value is adjusted by selectively etching a part or the whole part of the second impurity-doped layer 4 located between the two electrodes 5a and 5b. Also, the growth of the non-doped layer 2, the first impurity-doped layer 3 and the second impurity-doped layer 4 is conducted simultaneously with the growth of the electron transit layer of a high electron mobility transistor, an electron feeding layer and a contact layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抵抗の形成方法に係り,
特に,半導体活性層を用いる抵抗の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance forming method,
In particular, it relates to a method of forming a resistor using a semiconductor active layer.

【0002】近年,携帯電話や衛星放送等,1GHz以上
のマイクロ波帯の利用が活発になってきている。マイク
ロ波帯で使用するデバイスのIC化は,デバイスの利得
が下がることやデバイスの構造が不均一になることから
困難であり,そのため,単体のデバイスをハイブリッド
化して回路を形成したHIC(Hybrid IC)が使用さ
れている。
In recent years, the use of microwave bands of 1 GHz or higher, such as mobile phones and satellite broadcasting, has become active. It is difficult to make a device used in the microwave band into an IC because the gain of the device is lowered and the structure of the device becomes non-uniform. Therefore, a HIC (Hybrid IC) is formed by hybridizing a single device to form a circuit. ) Is used.

【0003】HICは,回路設計及び組立てに種々のノ
ウハウが必要であり,回路面積が大きくなること,自動
化が困難なこと,コストが上昇することなどの理由によ
り,HICを使用する通信器のコスト上昇を招いてい
た。
The HIC requires various know-how in the circuit design and assembly, and the cost of the communication device using the HIC is increased because the circuit area becomes large, automation is difficult, and the cost increases. Was inviting a rise.

【0004】上記の問題を解決するために,GaAs等
の化合物半導体基板上に全てのマイクロ波回路を組み込
んだMMIC(Microwave Monolithic IC)が,携帯電
話等に使用され初めてきたが,利得や雑音特性で従来の
HICの性能を上回ることは困難である。
In order to solve the above problems, an MMIC (Microwave Monolithic IC) in which all microwave circuits are incorporated on a compound semiconductor substrate such as GaAs has been used for a mobile phone for the first time. Therefore, it is difficult to exceed the performance of the conventional HIC.

【0005】MMICの特性を向上させるために,HE
MT(高電子移動度トランジスタ)基板を使用してMM
ICを作製する必要にせまられている。MMICを作製
するためには,半導体基板上にトランジスタ,抵抗,キ
ャパシタ,インダクタを形成する必要がある。
In order to improve the characteristics of MMIC, HE
MM using MT (High Electron Mobility Transistor) substrate
It is necessary to make an IC. In order to manufacture the MMIC, it is necessary to form transistors, resistors, capacitors and inductors on the semiconductor substrate.

【0006】抵抗の形成方法は,比較的小さい抵抗に対
しては金属薄膜を使用する方法があり,比較的大きな抵
抗値を得るためには半導体活性層を利用する方法があ
る。本発明は化合物半導体基板上に形成される半導体活
性層を利用して,任意のシート抵抗値をもった抵抗を形
成することを目的とする。
As a method of forming a resistor, there is a method of using a metal thin film for a relatively small resistance, and a method of utilizing a semiconductor active layer for obtaining a relatively large resistance value. An object of the present invention is to form a resistor having an arbitrary sheet resistance value by using a semiconductor active layer formed on a compound semiconductor substrate.

【0007】[0007]

【従来の技術】図6はHEMTの構造例を示す断面図で
あり,1はGaAs基板,11はバッファ層,12は電子走
行層, 13は電子供給層, 14はコンタクト層, 15はゲート
電極,16はソース電極, 17はドレイン電極を表す。
2. Description of the Related Art FIG. 6 is a cross-sectional view showing an example of the structure of a HEMT. 1 is a GaAs substrate, 11 is a buffer layer, 12 is an electron transit layer, 13 is an electron supply layer, 14 is a contact layer, and 15 is a gate electrode. Reference numeral 16 indicates a source electrode, and 17 indicates a drain electrode.

【0008】図7(a) 〜(c) は半導体活性層を使用する
抵抗形成の従来例を示す工程順断面図である。半導体基
板1として例えばGaAs基板を使用し,そこに例えば
りん(P+ )をイオン注入する(図7(a) 参照) 。
FIGS. 7A to 7C are sectional views in order of steps showing a conventional example of resistance formation using a semiconductor active layer. For example, a GaAs substrate is used as the semiconductor substrate 1, and phosphorus (P + ) ions are implanted therein (see FIG. 7A).

【0009】その後,例えば 800℃でアニールして活性
化する(図7(b) 参照) 。ある間隔をおいて二つのオー
ミック電極5a, 5bを形成する(図7(c) 参照) 。抵抗値
はイオン注入のドーズ量,エネルギー条件及び二つのオ
ーミック電極5a, 5bの寸法と距離により調整することが
できる。
Thereafter, for example, annealing is performed at 800 ° C. for activation (see FIG. 7 (b)). Two ohmic electrodes 5a and 5b are formed at a certain interval (see FIG. 7 (c)). The resistance value can be adjusted by the dose amount of ion implantation, the energy condition, and the size and distance of the two ohmic electrodes 5a and 5b.

【0010】ところが,この方法はHEMTを形成した
基板には適用できない。何故なら,抵抗を形成するため
のイオン注入を行った後, 800℃のような高温でアニー
ルすると,HEMTのヘテロ接合が壊れるからである。
However, this method cannot be applied to the HEMT-formed substrate. This is because the HEMT heterojunction is broken by annealing at a high temperature such as 800 ° C. after ion implantation for forming the resistance.

【0011】[0011]

【発明が解決しようとする課題】HEMT基板を用いて
そこに抵抗を形成する場合,HEMT形成時に不純物を
ドープされた層が形成されるため,シート抵抗を変える
ことは不可能であり,シート抵抗をウエハープロセスの
段階で変化させることも不可能である。
When a HEMT substrate is used to form a resistance therein, it is impossible to change the sheet resistance because a layer doped with impurities is formed during the HEMT formation. It is also impossible to change the value at the stage of the wafer process.

【0012】また,積層構造はトランジスタを最優先し
て決定され,特に電子供給層は二次元電子ガス濃度を決
定する層なので,抵抗に合わせて作製することは不可能
である。したがって,抵抗値を変化させるためには抵抗
の面積を変化させねばならない。このことはMMICの
場合においては,小規模な設計変更を行った場合でも,
抵抗の設計パターンのレイアウトを変更しなければなら
ず,多大な工数を必要としていた。
The laminated structure is determined with the transistor as the highest priority, and in particular, the electron supply layer is a layer that determines the two-dimensional electron gas concentration, so that it cannot be manufactured according to the resistance. Therefore, the resistance area must be changed in order to change the resistance value. This means that in the case of MMIC, even if a small design change is made,
The layout of the resistor design pattern had to be changed, which required a great deal of man-hours.

【0013】本発明は上記の問題に鑑み,HEMT基板
上にHEMTと共存でき,しかも各種の抵抗値を持つ抵
抗を形成する方法を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a method for forming a resistor which can coexist with HEMT on a HEMT substrate and has various resistance values.

【0014】[0014]

【課題を解決するための手段】図1は構造A(第1の実
施例)を示す斜視図,図2は構造B(第2の実施例)を
示す斜視図,図3はオーミック電極間の距離と抵抗の関
係を示す図,図4(a)〜(c) は種々のエッチング形状を
示す斜視図である。
FIG. 1 is a perspective view showing a structure A (first embodiment), FIG. 2 is a perspective view showing a structure B (second embodiment), and FIG. 3 is between ohmic electrodes. FIGS. 4A to 4C are perspective views showing various etching shapes, showing the relationship between distance and resistance.

【0015】上記課題は,化合物半導体基板1にノンド
ープ層2,第1の不純物ドープ層3,第2の不純物ドー
プ層4を順に成長する工程と, 該第2の不純物ドープ層
4にオーミック接触する二つの電極5a, 5bを間隔をおい
て形成する工程と, 該二つの電極5a, 5b間の該第2の不
純物ドープ層4を一部又は全部選択的にエッチングして
抵抗値を調整する工程とを有する抵抗の形成方法によっ
て解決される。
[0015] The above-mentioned problem is to grow the non-doped layer 2, the first impurity-doped layer 3 and the second impurity-doped layer 4 in sequence on the compound semiconductor substrate 1, and to make ohmic contact with the second impurity-doped layer 4. A step of forming two electrodes 5a, 5b with a space between them, and a step of selectively or partially etching the second impurity-doped layer 4 between the two electrodes 5a, 5b to adjust the resistance value And a method of forming a resistor having

【0016】また,前記ノンドープ層2,第1の不純物
ドープ層3,第2の不純物ドープ層4の成長は,それぞ
れ,高電子移動度トランジスタの電子走行層,電子供給
層,コンタクト層の成長と同時に行う前記の抵抗の形成
方法によって解決される。
Further, the growth of the non-doped layer 2, the first impurity-doped layer 3 and the second impurity-doped layer 4 is carried out with respect to the growth of the electron transit layer, the electron supply layer and the contact layer of the high electron mobility transistor, respectively. This is solved by the above-mentioned method of forming the resistance which is performed at the same time.

【0017】[0017]

【作用】図1の構造Aは二つの電極5a, 5b間の第2の不
純物ドープ層4を全く除去しない状態,図2の構造Bは
二つの電極5a, 5b間の第2の不純物ドープ層4を全部選
択的に除去しない状態,図4(a) 〜(c) は二つの電極5
a, 5b間の第2の不純物ドープ層4を一部除去した状態
を示している。
The structure A of FIG. 1 is a state in which the second impurity-doped layer 4 between the two electrodes 5a and 5b is not removed at all, and the structure B of FIG. 2 is a second impurity-doped layer between the two electrodes 5a and 5b. 4 (a) to 4 (c) are the two electrodes
It shows a state in which the second impurity-doped layer 4 between a and 5b is partially removed.

【0018】これらの状態において,二つの電極5a, 5b
間の抵抗は,図3に示すように種々の値をとることがで
きる。即ち,構造A,構造B,及びその中間の値とな
る。第2の不純物ドープ層4をエッチングする時,第2
の不純物ドープ層3はエッチングストッパとして作用す
る。抵抗値はエッチングする領域の形状と面積及びエッ
チングの深さにより調整することができるから,二つの
電極5a, 5bのレイアウト変更をしなくても,広い範囲に
わたって抵抗を変えることができる。
In these states, the two electrodes 5a, 5b
The resistance between them can take various values as shown in FIG. That is, the values are Structure A, Structure B, and values in between. When etching the second impurity-doped layer 4, the second
The impurity doped layer 3 acts as an etching stopper. Since the resistance value can be adjusted by the shape and area of the etched region and the etching depth, the resistance can be changed over a wide range without changing the layout of the two electrodes 5a and 5b.

【0019】[0019]

【実施例】図1は構造A(第1の実施例)を示す斜視図
である。工程の概略は次の如くである。
1 is a perspective view showing a structure A (first embodiment). The outline of the process is as follows.

【0020】バッファ層の形成されたGaAs基板1
に,例えばMOVPE法により厚さが例えば 500Åのノ
ンドープGaAs層2,厚さが例えば 300ÅのSiドー
プ(2×1018cm-3)AlGaAs層3,厚さが例えば
500ÅのSiドープ(2×1018cm-3)GaAs層4を
順に成長する。その上に電極となるAuGe/Auを蒸
着してパターニングし,合金化処理を行ってオーミック
電極5a, 5bを形成する。パターニングはオーミック電極
5a, 5b間の距離を予め定めた値とし,対向する幅は例え
ば 100μmとする。
GaAs substrate 1 on which a buffer layer is formed
For example, by MOVPE method, a non-doped GaAs layer with a thickness of, for example, 500 Å, a Si-doped (2 × 10 18 cm -3 ) AlGaAs layer with a thickness of, for example, 300 Å 3, and a thickness of, for example,
A 500 Å Si-doped (2 × 10 18 cm −3 ) GaAs layer 4 is sequentially grown. AuGe / Au to be an electrode is vapor-deposited thereon, patterned, and alloyed to form ohmic electrodes 5a and 5b. Ohmic electrode for patterning
The distance between 5a and 5b is a predetermined value, and the opposing width is 100 μm, for example.

【0021】ノンドープGaAs層2,SiドープAl
GaAs層3,SiドープGaAs層4の成長は,それ
ぞれ,HEMTの電子走行層,電子供給層,コンタクト
層の成長と同時に行い,オーミック電極5a, 5bの形成は
HEMTのソース・ドレイン電極の形成と同時に行う。
Non-doped GaAs layer 2, Si-doped Al
The GaAs layer 3 and the Si-doped GaAs layer 4 are grown simultaneously with the growth of the electron transit layer, electron supply layer, and contact layer of the HEMT, and ohmic electrodes 5a and 5b are formed with the source / drain electrodes of the HEMT. Do at the same time.

【0022】図2は構造B(第2の実施例)を示す斜視
図である。この構造は,図1の構造を作った後,オーミ
ック電極5a, 5bをマスクにして,SiドープGaAs層
4を選択的にエッチングして全部除去した構造である。
SiドープAlGaAs層3はエッチングストッパとな
る。
FIG. 2 is a perspective view showing structure B (second embodiment). In this structure, after the structure shown in FIG. 1 is formed, the ohmic electrodes 5a and 5b are used as masks to selectively remove the Si-doped GaAs layer 4 by etching.
The Si-doped AlGaAs layer 3 serves as an etching stopper.

【0023】図3はオーミック電極間の距離と抵抗の関
係を示す図であり,構造Aと構造Bについての実測値で
ある。抵抗はオーミック電極間の距離と直線関係があ
り,オーミック電極間の距離をx (μm),抵抗値をy
(Ω)とすると,実験的に次の関係式が得られた。
FIG. 3 is a diagram showing the relationship between the distance between the ohmic electrodes and the resistance, which is the measured value for the structure A and the structure B. The resistance has a linear relationship with the distance between the ohmic electrodes, the distance between the ohmic electrodes is x (μm), and the resistance value is y.
(Ω), the following relational expression was obtained experimentally.

【0024】 構造A y=1.47+1.50x 構造B y=1.63+8.98x エッチング量を加減して,SiドープGaAs層4を途
中の深さまでエッチングすれば,構造Aと構造Bの中間
の抵抗値を得ることができる。即ち,オーミック電極間
の距離を,例えば20μmとすると,30〜180Ωの
間で抵抗値を調整することができる。
Structure A y = 1.47 + 1.50x Structure B y = 1.63 + 8.98x If the etching amount is adjusted and the Si-doped GaAs layer 4 is etched to an intermediate depth, a resistance value between the structures A and B is obtained. Can be obtained. That is, assuming that the distance between the ohmic electrodes is 20 μm, the resistance value can be adjusted within the range of 30 to 180Ω.

【0025】図4(a) 〜(c) は種々のエッチング形状を
示す斜視図で,種々の抵抗値を得る別法を示す。これら
の図は,オーミック電極5a, 5b間の一部の領域を露出す
るマスクを使用して,オーミック電極間の不純物ドープ
層4を選択的にエッチングするものでありる。
4 (a) to 4 (c) are perspective views showing various etching shapes and show another method of obtaining various resistance values. In these figures, the impurity-doped layer 4 between the ohmic electrodes is selectively etched using a mask exposing a part of the region between the ohmic electrodes 5a and 5b.

【0026】図4(a) のエッチング領域6aは, 両電極に
わたるエッチング領域の幅を制限したものであり,図4
(b) のエッチング領域6bは, 両電極に近い領域にエッチ
ング領域を制限したものであり,図4(c) のエッチング
領域6cは, 両電極間の中央部にエッチング領域を制限し
たものである。そして,これらのエッチング領域6a,6b,
6cの不純物ドープ層4は,不純物ドープ層3(エッチ
ングストッパ)が露出するまでエッチングされる。
The etching region 6a of FIG. 4 (a) limits the width of the etching region over both electrodes.
The etching area 6b in (b) is the etching area limited to the area close to both electrodes, and the etching area 6c in FIG. 4 (c) is the etching area limited to the central portion between both electrodes. . Then, these etching regions 6a, 6b,
The impurity-doped layer 4 of 6c is etched until the impurity-doped layer 3 (etching stopper) is exposed.

【0027】エッチング領域6a, 6b, 6cの形状や面積を
調整することにより,要求に応じて種々の抵抗値を実現
することができる。また,より精度の高い抵抗値が必要
とされる場合は,電子線描画装置あるいはFIB(Focu
sed Ion Beam)を用いることにより,エッチング領域6
a, 6b, 6cの細かい形状トリミングをするようにしても
よい。
By adjusting the shapes and areas of the etching regions 6a, 6b, 6c, various resistance values can be realized according to requirements. When a more accurate resistance value is required, an electron beam lithography system or FIB (Focu
sed Ion Beam)
Fine shape trimming of a, 6b, and 6c may be performed.

【0028】図5は本発明を適用したMMICの例を示
す回路図である。FETへの入力端に入力整合用抵抗R
1 として例えば50Ωの抵抗体,フィードバック抵抗R
2 として例えば200Ωの抵抗体,及び定電圧電源を得
るための抵抗R3 として例えば10Ωの抵抗体の合計3
個の抵抗体を使用した例を示している。これらの抵抗体
の積層構造は,FETの積層構造と同じで,FETの形
成と合わせて同一工程で形成することができる。
FIG. 5 is a circuit diagram showing an example of an MMIC to which the present invention is applied. Input matching resistor R at the input to the FET
As 1 , for example, a resistor of 50Ω, a feedback resistor R
2 as a resistance of 200 Ω, and resistance R 3 for obtaining a constant voltage power supply as a resistance of 3 Ω, for example, a total of 3
An example in which one resistor is used is shown. The laminated structure of these resistors is the same as the laminated structure of the FET, and can be formed in the same step together with the formation of the FET.

【0029】本発明によれば,抵抗値が異なるいくつか
の抵抗を使用するMMICの場合,回路設計による抵抗
値に変更が生じた場合,抵抗体のパターンレイアウトは
変更しなくてもエッチングパターンやエッチング条件の
変更により,それに対処することができる。
According to the present invention, in the case of an MMIC using several resistors having different resistance values, when the resistance value is changed by the circuit design, the etching pattern and the etching pattern can be changed without changing the pattern layout of the resistor. This can be dealt with by changing the etching conditions.

【0030】[0030]

【発明の効果】以上説明したように,本発明によれば,
MMICにおける回路設計の場合,抵抗値の変更に対し
て,抵抗体のパターンレイアウト変更をしなくてもエッ
チングプロセスで柔軟に対応することができる。
As described above, according to the present invention,
In the case of circuit design in MMIC, it is possible to flexibly deal with the change of the resistance value by the etching process without changing the pattern layout of the resistor.

【0031】本発明は,MMICの抵抗形成に適用する
時,工数の削減,抵抗値の精度向上に寄与する。特に,
新しいMMICの開発において大きな効果を奏する。
When the present invention is applied to the resistance formation of MMIC, it contributes to reduction of man-hours and improvement of accuracy of resistance value. In particular,
It has a great effect on the development of a new MMIC.

【図面の簡単な説明】[Brief description of drawings]

【図1】構造A(第1の実施例)を示す斜視図である。FIG. 1 is a perspective view showing a structure A (first embodiment).

【図2】構造B(第2の実施例)を示す斜視図である。FIG. 2 is a perspective view showing a structure B (second embodiment).

【図3】オーミック電極間の距離と抵抗の関係を示す図
である。
FIG. 3 is a diagram showing a relationship between a distance between ohmic electrodes and resistance.

【図4】(a) 〜(c) は種々のエッチング形状を示す斜視
図である。
4A to 4C are perspective views showing various etching shapes.

【図5】本発明を適用したMMICの例を示す回路図で
ある。
FIG. 5 is a circuit diagram showing an example of an MMIC to which the present invention is applied.

【図6】HEMTの構造例を示す断面図である。FIG. 6 is a cross-sectional view showing a structural example of a HEMT.

【図7】(a) 〜(c) は半導体活性層を使用する抵抗形成
の従来例を示す工程順断面図である。
7A to 7C are cross-sectional views in order of the processes, showing a conventional example of resistance formation using a semiconductor active layer.

【符号の説明】[Explanation of symbols]

1は化合物半導体基板であってGaAs基板 2はノンドープ層であってiーGaAs 3は第1の不純物ドープ層であってn−AlGaAs 4は第2の不純物ドープ層であってn−GaAs 5a, 5bはオーミック電極であってAuGe/Au 6a, 6b, 6cはエッチング領域 11はバッファ層 12は電子走行層 13は電子供給層 14はコンタクト層 15はゲート電極 16はソース電極 17はドレイン電極 1 is a compound semiconductor substrate, GaAs substrate 2 is a non-doped layer, i-GaAs 3 is a first impurity-doped layer, n-AlGaAs 4 is a second impurity-doped layer, and n-GaAs 5a, 5b is an ohmic electrode, and AuGe / Au 6a, 6b, 6c are etching regions 11 buffer layer 12 electron transit layer 13 electron supply layer 14 contact layer 15 gate electrode 16 source electrode 17 drain electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体基板(1) にノンドープ層
(2), 第1の不純物ドープ層(3), 第2の不純物ドープ
層(4) を順に成長する工程と, 該第2の不純物ドープ層(4) にオーミック接触する二つ
の電極(5a, 5b)を間隔をおいて形成する工程と, 該二つの電極(5a, 5b)間の該第2の不純物ドープ層(4)
を一部又は全部選択的にエッチングして抵抗値を調整す
る工程とを有することを特徴とする抵抗の形成方法。
1. A non-doped layer on a compound semiconductor substrate (1)
(2), a step of sequentially growing the first impurity-doped layer (3) and the second impurity-doped layer (4), and two electrodes (5a, 5a, which make ohmic contact with the second impurity-doped layer (4)). 5b) at intervals, and the second impurity-doped layer (4) between the two electrodes (5a, 5b)
And a step of adjusting the resistance value by selectively etching a part or all of the above.
【請求項2】 前記ノンドープ層(2), 第1の不純物ド
ープ層(3), 第2の不純物ドープ層(4) の成長は,それ
ぞれ,高電子移動度トランジスタの電子走行層,電子供
給層,コンタクト層の成長と同時に行うことを特徴とす
る請求項1記載の抵抗の形成方法。
2. The non-doped layer (2), the first impurity-doped layer (3), and the second impurity-doped layer (4) are grown in the electron transit layer and the electron supply layer of the high electron mobility transistor, respectively. 2. The method for forming a resistor according to claim 1, wherein the contact layer and the contact layer are grown at the same time.
JP22903892A 1992-08-28 1992-08-28 Method of forming resistor Expired - Lifetime JP3283581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22903892A JP3283581B2 (en) 1992-08-28 1992-08-28 Method of forming resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22903892A JP3283581B2 (en) 1992-08-28 1992-08-28 Method of forming resistor

Publications (2)

Publication Number Publication Date
JPH0677019A true JPH0677019A (en) 1994-03-18
JP3283581B2 JP3283581B2 (en) 2002-05-20

Family

ID=16885776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22903892A Expired - Lifetime JP3283581B2 (en) 1992-08-28 1992-08-28 Method of forming resistor

Country Status (1)

Country Link
JP (1) JP3283581B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418157B2 (en) 2015-10-30 2019-09-17 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418157B2 (en) 2015-10-30 2019-09-17 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation

Also Published As

Publication number Publication date
JP3283581B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
US5869364A (en) Single layer integrated metal process for metal semiconductor field effect transistor (MESFET)
US5399896A (en) FET with a T-shaped gate of a particular structure
JPH048943B2 (en)
KR20020089161A (en) ENHANCEMENT AND DEPLETION-MODE PHEMT DEVICE HAVING TWO InGaP ETCH-STOP LAYERS AND METHOD OF FORMING SAME
US4377899A (en) Method of manufacturing Schottky field-effect transistors utilizing shadow masking
US3950777A (en) Field-effect transistor
JP3283581B2 (en) Method of forming resistor
US6096587A (en) Manufacturing method of a junction field effect transistor
US5943577A (en) Method of making heterojunction bipolar structure having air and implanted isolations
EP0585942A1 (en) Dual gate MESFET
JPH0212927A (en) Manufacture of mesfet
JP2893776B2 (en) Method for manufacturing semiconductor device
JP2000195871A (en) Semiconductor device and manufacture thereof
JPH04291732A (en) Manufacture of field-effect transistor
KR100279250B1 (en) Compound Semiconductor Device and Manufacturing Method Thereof
KR100308919B1 (en) Manufacturing method of heterojunction dipole transistor
JP2000114277A (en) Field effect transistor, semiconductor wafer, and manufacture of the field effect transistor
JP2697677B2 (en) Current switch and method of manufacturing the same
JPS62204578A (en) Manufacture of field-effect transistor
JPH06132319A (en) Manufacture of semiconductor device
JPH05206456A (en) Field effect semiconductor device and its manufacture
JPS61265870A (en) Manufacture of field effect transistor
JPH06260510A (en) Field effect transistor and its manufacturing method
JP2000150540A (en) Field effect transistor
JPS6144472A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11