JP2822485B2 - Battery - Google Patents
BatteryInfo
- Publication number
- JP2822485B2 JP2822485B2 JP1246810A JP24681089A JP2822485B2 JP 2822485 B2 JP2822485 B2 JP 2822485B2 JP 1246810 A JP1246810 A JP 1246810A JP 24681089 A JP24681089 A JP 24681089A JP 2822485 B2 JP2822485 B2 JP 2822485B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- oxygen
- membrane
- air
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y02E60/128—
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Cell Separators (AREA)
- Primary Cells (AREA)
- Hybrid Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、ア
ルカリ水溶液等の電解液と、亜鉛,マグネシウム,アル
ミニウム等の金属、もしくはアルコール,ヒドラジン,
水素等の負極活物質とを備えた電池に関するものであ
る。The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, a metal such as zinc, magnesium, and aluminum, or an alcohol, hydrazine, or the like.
The present invention relates to a battery including a negative electrode active material such as hydrogen.
従来の技術 ガス拡散電極を備え、酸素を活物質とする電池として
は、空気電池,燃料電池等がある。特にアルカリ水溶
液,中性水溶液を電解質として使用する電池において
は、ガス拡散電極(酸素極)から内部の蒸気圧に応じて
水蒸気の出入りがあり、電池内電解液の濃度変化,体積
変化が起こり、これが電池諸特性に影響を与えていた。
ボタン形空気亜鉛電池を例にとり、第2図を用いてその
状況を説明する。図中1は酸素極(空気極)、2はガス
拡散性はあるが、溶体は阻止するポリテトラフルオロエ
チレン(PTFE)よりなる酸素極を支持する撥水膜であ
る。3は外部からの空気取り入れ孔、4は酸素極の支持
と空気の拡散を行なう多孔体、5,6はセパレータ、7は
水酸化カリウム水溶液と汞化亜鉛粉末との混合体から成
る負極である。一般にアルカリ電解液は水酸化カリウム
水溶液を使用し、その濃度は30〜35%で使用されてい
る。このため相対湿度が47〜59%より高いと外部の湿気
を取り込み電解液濃度の低下と体積膨張とが起こり、放
電性能の低下,電解液の漏液を生じていた。一方、相対
湿度が前記の範囲以下の場合には電解液の蒸発が起こ
り、内部抵抗の増大や放電性能の低下をもたらしてい
た。従って、環境雰囲気によって著しい影響を受け易い
ため長期間保存後の特性に問題があり、空気電池や燃料
電池はある特定の分野用に設計されるにとどまり、汎用
化を図る上で大きな課題を有していた。なお、図中8は
負極容器、9は絶縁ガスケット、10は正極容器である。2. Description of the Related Art Examples of a battery including a gas diffusion electrode and using oxygen as an active material include an air battery and a fuel cell. In particular, in a battery using an alkaline aqueous solution or a neutral aqueous solution as an electrolyte, steam flows in and out of the gas diffusion electrode (oxygen electrode) according to the internal vapor pressure, and the concentration and volume of the electrolyte in the battery change, This affected battery characteristics.
The situation will be described with reference to FIG. 2 taking a button-type zinc-air battery as an example. In the figure, reference numeral 1 denotes an oxygen electrode (air electrode), and 2 denotes a water-repellent film supporting an oxygen electrode made of polytetrafluoroethylene (PTFE) which has gas diffusibility but prevents a solution. Reference numeral 3 denotes a hole for taking in air from outside, 4 denotes a porous body for supporting an oxygen electrode and diffusing air, 5 and 6 denote separators, and 7 denotes a negative electrode composed of a mixture of an aqueous solution of potassium hydroxide and zinc aluminide. . Generally, an alkaline electrolyte uses an aqueous solution of potassium hydroxide at a concentration of 30 to 35%. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, the concentration of the electrolyte decreases and the volume expands, and the discharge performance decreases and the electrolyte leaks. On the other hand, when the relative humidity is lower than the above range, the electrolytic solution evaporates, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, there is a problem in the characteristics after long-term storage because they are easily affected by the environmental atmosphere, and air cells and fuel cells are designed only for a specific field, and there is a major problem in achieving versatility. Was. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.
発明が解決しようとする課題 これらの課題を改善するため、従来より種々の対策が
検討されてきた。例えば空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部への電解液漏出を防止す
る。あるいは紙または高分子材料よりなる不織布等の電
解液吸収材を設けて、電気外部への電解液漏出を防止す
る。さらに、空気孔を極端に小さくして酸素の供給量を
制限してまでも、水蒸気や炭酸ガスの電池内部への浸入
を防止する等の提案がなされているが、いずれの方法も
漏液防止や放電性能、特に長期間放電での性能に大きな
課題を残していた。これらの主要原因は空気中の水蒸気
の電池内への浸入による電解液の希釈と体積膨張、およ
び炭酸ガスの浸入による炭酸塩の生成に基づく放電反応
の阻害と空気流通経路の閉塞によるもので、外気が低湿
の場合には、逆に電解液中の水分の蒸発が性能低下の原
因となっていた。この原因を取り除くため、近年では、
水蒸気や炭酸ガスの透過を制御し、選択的に酸素を優先
して透過する膜を介して空気を酸素極に供給する方法、
例えばポリシロキサン系の無孔性の均一な薄膜や金属酸
化物あるいは金属原子を含有する有機化合物の薄膜と適
宜な多孔性膜とを一体化させた膜を用いる方法が提案さ
れていた。Problems to be Solved by the Invention In order to improve these problems, various measures have conventionally been studied. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking out of the battery. Alternatively, an electrolyte absorbing material such as a non-woven fabric made of paper or a polymer material is provided to prevent leakage of the electrolyte to the outside of the electricity. Furthermore, there have been proposals to prevent water vapor or carbon dioxide gas from entering the inside of the battery, even if the supply of oxygen is limited by making the air holes extremely small. And discharge performance, especially in long-term discharge. The main causes of these are the dilution and volume expansion of the electrolyte due to the penetration of water vapor into the battery, and the inhibition of the discharge reaction based on the generation of carbonate due to the penetration of carbon dioxide gas and the obstruction of the air flow path. On the other hand, when the outside air is low in humidity, the evaporation of water in the electrolytic solution causes a decrease in performance. To eliminate this cause, in recent years,
A method of controlling the permeation of water vapor or carbon dioxide gas and supplying air to the oxygen electrode through a membrane that selectively permeates oxygen preferentially,
For example, there has been proposed a method of using a polysiloxane-based nonporous uniform thin film or a film obtained by integrating a thin film of a metal oxide or an organic compound containing a metal atom with an appropriate porous film.
しかしながら、現在までのところ、充分に有効な酸素
ガス選択透過性が得られないことや水蒸気,炭酸ガスの
透過阻止能が充分でないことなどから、満足な放電性能
が得られず、長期の使用や貯蔵に耐えられないという技
術課題を持っていたので、実用化に至っていない。However, to date, satisfactory discharge performance has not been obtained due to insufficient effective oxygen gas selective permeability and insufficient permeation of water vapor and carbon dioxide gas. Since it had a technical problem that it could not withstand storage, it had not been put to practical use.
そこで、本発明は上記の電池の貯蔵性,長期使用にお
ける性能を改善するとともに低負荷から高負荷に至る放
電条件で満足な放電性能を得るために、大気中の酸素ガ
スを選択的に充分な速度で電池内に取り入れ、大気中の
水蒸気及び炭酸ガスの電池内への浸入を長期にわたり防
止する有効な手段を提供することを目的とするものであ
る。Accordingly, the present invention selectively improves the storability and long-term performance of the above-described battery and selectively suffices oxygen gas in the atmosphere in order to obtain satisfactory discharge performance under discharge conditions from low load to high load. It is an object of the present invention to provide an effective means for taking in the battery at a high speed and preventing water vapor and carbon dioxide gas in the atmosphere from entering the battery for a long time.
課題を解決するための手段 本発明は酸素を活物質とするガス拡散電極と、外気に
通じる空気取り入れ孔を有する電池容器を備えた電池の
ガス拡散電極の空気取り入れ側と電池容器の内面との間
に、ポリオルガノフォスファゼン膜を酸素選択性透過膜
として介在させるものである。Means for Solving the Problems The present invention relates to a gas diffusion electrode using oxygen as an active material, and an air intake side of a gas diffusion electrode of a battery including a battery container having an air intake hole communicating with the outside air, and an inner surface of the battery container. In between, a polyorganophosphazene membrane is interposed as an oxygen-selective permeable membrane.
さらにこの膜の支持体として耐アルカリ性に優れたポ
リプロピレン、ポリエチレン等のポリオレフィン,フッ
素樹脂,ポリスルフォン等の微多孔膜を選び検討を深め
て完成した。なお支持体は単層であっても良いが、取扱
いや製造時あるいは使用時の強度を確保するために、必
要に応じて耐アルカリ性不織布をさらに一体化した二層
以上の複合膜構成としても良い。Further, a microporous film made of polyolefin such as polypropylene or polyethylene, a fluororesin, polysulfone or the like having excellent alkali resistance was selected as a support for this film, and the study was completed. The support may be a single layer, but in order to ensure strength during handling, production or use, it may have a composite film structure of two or more layers further integrated with an alkali-resistant nonwoven fabric as necessary. .
本発明は、ポリオルガノフォスファゼン膜が電池用と
して鋭意検討の結果、上述の諸特性を総合的に満たし、
これを適用した電池の性能が極めて優れていることを見
い出し完成したものである。The present invention is a polyorganophosphazene film, as a result of intensive studies for batteries, as a whole, satisfying the above characteristics,
It was found that the performance of the battery to which this was applied was extremely excellent and completed.
作 用 この構成により後述の実施例における電池試験の結果
からも明らかなように、電池用としての酸素透過速度と
同時に、水蒸気や炭酸ガスを大気から遮断する効果も共
に満足すべき状態であることにより、実用的な電池に要
求される高負荷放電性能と、高湿度や低湿度の雰囲気下
で長時間放電した場合の性能も共に満足することとな
る。Operation As is clear from the results of the battery test in the examples described later, this configuration must satisfy both the oxygen transmission rate for batteries and the effect of shutting off water vapor and carbon dioxide from the atmosphere. Accordingly, both the high load discharge performance required for a practical battery and the performance when discharged for a long time in an atmosphere of high humidity or low humidity are satisfied.
実施例 本発明の一実施例を示す。Example An example of the present invention will be described.
Allcockらの方法(Inorg,Chem.,5,1709(1966)に記
載された方法に従い(ジイソアミルオキシフォスファゼ
ン)を合成し、テトラハイドロフラン(THF)溶液から
ガラス板にキャストし、100μmの膜を得た。この膜を
使用した電池、さらにこのフォスファゼン膜の支持体と
してポリプロピレンを使用した電池、比較例として上記
膜を使用しない電池を試作評価して検討した。According to the method described by Allcock et al. (Inorg, Chem., 5 , 1709 (1966)), (diisoamyloxyphosphazene) was synthesized, cast from a tetrahydrofuran (THF) solution onto a glass plate, and then 100 μm in diameter. A battery using this membrane, a battery using polypropylene as a support of the phosphazene membrane, and a battery not using the above membrane as a comparative example were evaluated by trial production and examined.
比較例の場合は第2図と全く同一に構成した。ポリオ
ルガノフォスファゼン膜を使用した実施例も第2図とほ
ぼ同様であり、第1図に示すようにPTFEからなる撥水膜
2と酸素の拡散を行なう多孔体4の間に、ポリオルガノ
フォスファゼン膜およびこれの支持体として耐アルカリ
性微多孔膜を介した点が、第2図に示した電池と異なる
点である。In the case of the comparative example, the configuration was exactly the same as in FIG. The embodiment using a polyorganophosphazene film is almost the same as that shown in FIG. 2. As shown in FIG. 1, a polyorganophosphazene film is provided between a water-repellent film 2 made of PTFE and a porous material 4 for diffusing oxygen. The difference from the battery shown in FIG. 2 lies in that a phosphazene membrane and an alkali-resistant microporous membrane are used as a support for the phosphazene membrane.
試作した電池の形状は直径11.6mm,総高5.4mmであり、
比較的高負荷(75Ω)で20℃,常湿(60%RH)での連続
放電により電池内への空気中の酸素の取り込み速度の充
足性を評価し、比較的低負荷(3KΩ)で20℃,高湿度
(90%RH)及び低湿度(20%RH)での長期間連続放電に
より、長期の放電期間中の、雰囲気中の水蒸気の取り込
みや電池内の水分の蒸発、及び炭酸ガスの取り込みなど
電池性能への影響度を評価した。The shape of the prototype battery is 11.6 mm in diameter and 5.4 mm in total height.
The sufficiency of oxygen uptake rate in the battery was evaluated by continuous discharge at 20 ° C and normal humidity (60% RH) at relatively high load (75Ω). Long-term continuous discharge at ℃, high humidity (90% RH) and low humidity (20% RH), captures water vapor in the atmosphere, evaporates water in the battery, and removes carbon dioxide gas during the long-term discharge period. The degree of influence on battery performance, such as loading, was evaluated.
試作した電池の内訳は第1表に示すとうりである。ま
た第2表に試作電池の性能試験結果を示す。The breakdown of the prototype battery is shown in Table 1. Table 2 shows the performance test results of the prototype battery.
第2表において放電終止電圧はいずれも0.9Vであり、
重量変化は放電試験前後の増減を示しており、主として
放電中の水分の取り込み、あるいは蒸発の多少を示唆す
る数値である。 In Table 2, the end-of-discharge voltage was 0.9V,
The change in weight indicates an increase or decrease before and after the discharge test, and is a numerical value mainly indicating uptake of moisture during discharge or some degree of evaporation.
複合膜の支持体は、耐アルカリ性の材料で構成されて
いる。これらの電池の特性を複合膜を使用していない比
較例と対比すると最も端的に本発明の効果が説明でき
る。まず20℃、常湿での高負荷試験では放電期間が短
く、水分の取り込みや蒸発の影響や炭酸ガスの影響が少
ないので、電池の性能は酸素の供給速度が充分であれば
水分や炭酸ガスの透過阻止はあまり考慮する必要が無
い。従って、このような条件では比較例でも優れた特性
が得られる。これに対し前述の実施例1、2は比較例と
同等の放電特性が得られており、複合膜を透過する酸素
の速度が放電反応により消費される酸素の速度に充分追
従していることを示している。The support of the composite membrane is made of an alkali-resistant material. The effects of the present invention can be most clearly explained by comparing the characteristics of these batteries with those of a comparative example using no composite membrane. First, in a high-load test at 20 ° C and normal humidity, the discharge period is short, and the influence of water uptake and evaporation and the influence of carbon dioxide gas are small. It is not necessary to consider so much the transmission blocking. Therefore, under such conditions, excellent characteristics can be obtained even in the comparative example. On the other hand, in Examples 1 and 2 described above, the same discharge characteristics as those of Comparative Example were obtained, and it was confirmed that the speed of oxygen permeating the composite membrane sufficiently followed the speed of oxygen consumed by the discharge reaction. Is shown.
一方、低負荷放電の場合は放電期間が長く、しかも外
気が高湿度あるいは低湿度の場合には酸素の供給速度よ
りも水分や炭酸ガス、特に水分の透過防止が優れた電池
特性を得るために重要となる。水分や炭酸ガスの透過阻
止機構を持たない比較例の電池の水分の枯渇、あるいは
逆に水分の透剰取り入れによる漏液による空気孔の閉塞
などにより、放電の途中で電圧が低下し、高負荷試験で
得られた放電容量の一部分に相当する容量が得られるに
過ぎない。また放電途中での漏液は実用面で致命的な問
題であることは言うまでもない。これに対し実施例はい
ずれも極めて優れた性能を示し、これらは高負荷試験の
放電容量とほぼ等しい容量が得られている。これらの傾
向は試験雰囲気が高湿度,低湿度、いずれの場合とも同
様である。このことは、実施例の場合、複合膜の水分の
透過阻止効果が充分に発揮されていることを示してい
る。On the other hand, in the case of low load discharge, the discharge period is long, and in the case where the outside air is at high humidity or low humidity, the water and carbon dioxide gas, especially the prevention of permeation of water, are superior to the supply rate of oxygen. It becomes important. The voltage of the battery in the comparative example, which does not have a mechanism to prevent the permeation of moisture or carbon dioxide, is depleted of water, or conversely, the air hole is blocked due to leakage due to the excessive intake of moisture, and the voltage drops during discharge, resulting in high load. Only a capacity corresponding to a part of the discharge capacity obtained in the test is obtained. Needless to say, liquid leakage during discharge is a fatal problem in practical use. On the other hand, all the examples show extremely excellent performances, and these have obtained capacities almost equal to the discharge capacity in the high load test. These tendencies are the same whether the test atmosphere is high humidity or low humidity. This indicates that, in the case of the example, the effect of preventing moisture permeation of the composite membrane is sufficiently exhibited.
以上を総合して、微多孔膜の支持体上にポリオルガノ
フォスファゼン複合膜を用いた試作電池は、高負荷特
性,低負荷特性ともに優れ、外部雰囲気の変化も良好で
あり、特に耐アルカリ性の微多孔膜を支持体に用いた場
合に優れた電池を提供できることが結論できる。さらに
実施例に示したポリオルガノフォスファゼン膜を支持す
る微多孔膜は、他のアルカリ性を有する微多孔膜(例え
ばナイロン製微多孔膜)でも同様の効果が得られる。ま
た、実施例2では支持体が微多孔膜とポリプロピレン製
の不織布と一体化した複合層とした場合を説明したが、
前記不織布がポリエチレン,ナイロン等の他のアルカリ
性である素材であれば同様の効果が得られる。Taken together, the prototype battery using the polyorganophosphazene composite membrane on the support of the microporous membrane has excellent high load characteristics and low load characteristics, good change in the external atmosphere, and especially alkali resistance. It can be concluded that an excellent battery can be provided when the microporous membrane is used as a support. Further, the same effect can be obtained with the microporous membrane supporting the polyorganophosphazene membrane shown in the examples even with other microporous membranes having alkalinity (for example, nylon microporous membrane). Further, in Example 2, a case was described in which the support was a composite layer formed by integrating a microporous membrane and a nonwoven fabric made of polypropylene.
Similar effects can be obtained if the nonwoven fabric is another alkaline material such as polyethylene or nylon.
なお、実施例では酸素選択性膜側を空気取り入れ孔側
に当接させた場合でもほぼ同一の結果となることを確認
している。In the examples, it was confirmed that substantially the same result was obtained even when the oxygen-selective membrane side was brought into contact with the air intake hole side.
また、上記実施例では本発明の複合膜を電池容器との
間に空気拡散用の多孔体を介して設置したが、本発明の
複合膜は微多孔膜、場合によってはさらに不織布を一体
化した支持体より構成されており、前記空気拡散用の多
孔体を除いても電池特性の差異はない。また塩化アンモ
ニウム,塩化亜鉛などの中性塩の水溶液を電解液に用い
た空気電池に対しても、実施例で示したアルカリ性の電
解液に用いた電池と同様の効果があることも確認してお
り、実施例と同様の理由で本発明の作用を説明できる。Further, in the above-described example, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention was a microporous membrane, and in some cases, a nonwoven fabric was further integrated. It is composed of a support, and there is no difference in battery characteristics even when the porous body for air diffusion is removed. It was also confirmed that an air battery using an aqueous solution of a neutral salt such as ammonium chloride or zinc chloride as an electrolyte had the same effect as the battery using an alkaline electrolyte shown in Examples. Thus, the operation of the present invention can be explained for the same reason as in the embodiment.
発明の効果 以上の説明で明らかなように、本発明による酸素ガス
拡散電極によれば、中性もしくはアルカリ性の水溶液を
電解液とする電池の高負荷から低負荷にわたる優れた実
用性能と、優れた耐漏液性,長期貯蔵性を具備させるこ
とができるという効果が得られる。Effects of the Invention As is apparent from the above description, according to the oxygen gas diffusion electrode of the present invention, excellent practical performance from high load to low load of a battery using a neutral or alkaline aqueous solution as an electrolyte, and excellent The effect of being able to provide liquid leakage resistance and long-term storage properties is obtained.
第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の断面図、第2図は複合膜を使用して
いない従来のボタン形空気亜鉛電池の断面図である。 1……酸素極(空気極)、2……撥水膜、3……空気取
り入れ孔、4……多孔膜、5,6……セパレータ、7……
負極亜鉛、8……負極容器、9……絶縁ガスケット、10
……正極容器、11……複合膜。FIG. 1 is a cross-sectional view of a button-type zinc-air battery used for studying the examples and comparative examples of the present invention, and FIG. 2 is a cross-sectional view of a conventional button-type zinc-air battery not using a composite membrane. 1 ... oxygen electrode (air electrode) 2 ... water repellent membrane 3 ... air intake hole 4 ... porous membrane 5, 6 ... separator 7
Negative electrode zinc, 8 negative electrode container, 9 insulating gasket, 10
...... Positive electrode container, 11 ... Composite membrane.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 12/06 H01M 12/06 F (72)発明者 柳原 伸行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−38564(JP,A) 特開 平1−38551(JP,A) 特開 平1−246811(JP,A) 特開 昭63−211023(JP,A) 特開 昭63−256118(JP,A) 特開 昭56−57828(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/16 H01M 12/06 H01M 4/06 H01M 6/02 H01M 2/02──────────────────────────────────────────────────の Continuing on the front page (51) Int.Cl. 6 Identification symbol FI H01M 12/06 H01M 12/06 F (72) Inventor Nobuyuki Yanagihara 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 56) References JP-A-1-38564 (JP, A) JP-A-1-38551 (JP, A) JP-A-1-246811 (JP, A) JP-A-63-121023 (JP, A) JP-A-63-256118 (JP, A) JP-A-56-57828 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 2/16 H01M 12/06 H01M 4/06 H01M 6 / 02 H01M 2/02
Claims (2)
に通じる空気取り入れ孔を有する電池容器を備え、前記
ガス拡散電極の空気取り入れ側と前記電池容器の内面と
の間に、ポリオルガノフォスファゼン膜およびこのポリ
オルガノフォスファゼン膜を支持する耐アルカリ性微多
孔膜を配したことを特徴とする電池。A gas diffusion electrode using oxygen as an active material; and a battery container having an air intake hole communicating with the outside air, wherein a polyorganoorganizer is provided between an air intake side of the gas diffusion electrode and an inner surface of the battery container. A battery comprising a phosphazene film and an alkali-resistant microporous film that supports the polyorganophosphazene film.
フッ素樹脂,ポリスルホンのいずれかを主成分とする特
許請求の範囲第1項記載の電池。2. An alkali-resistant microporous membrane comprising a polyolefin,
2. The battery according to claim 1, wherein the main component is one of a fluororesin and polysulfone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1246810A JP2822485B2 (en) | 1989-09-22 | 1989-09-22 | Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1246810A JP2822485B2 (en) | 1989-09-22 | 1989-09-22 | Battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03108255A JPH03108255A (en) | 1991-05-08 |
JP2822485B2 true JP2822485B2 (en) | 1998-11-11 |
Family
ID=17154023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1246810A Expired - Fee Related JP2822485B2 (en) | 1989-09-22 | 1989-09-22 | Battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2822485B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63256118A (en) * | 1987-04-10 | 1988-10-24 | Mitsubishi Rayon Co Ltd | Oxygen enriching membrane and its production |
-
1989
- 1989-09-22 JP JP1246810A patent/JP2822485B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03108255A (en) | 1991-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2782837B2 (en) | Battery | |
JPH0417259A (en) | Battery | |
JP2822485B2 (en) | Battery | |
JP2817343B2 (en) | Battery | |
JP2743574B2 (en) | Battery | |
JP2782911B2 (en) | Battery | |
JPH0562687A (en) | Oxygen transmitting composite film and cell provided with the composite film | |
JPH09274936A (en) | Air cell | |
JP2757383B2 (en) | Battery | |
JP2778078B2 (en) | Battery | |
JPH042067A (en) | Battery | |
JPH04312771A (en) | Air battery | |
JP2817341B2 (en) | Battery | |
JP2734057B2 (en) | Battery manufacturing method | |
JPH04162374A (en) | Battery | |
JPH05205784A (en) | Oxygen permeable composite film and battery employing said composite film | |
JPH01267974A (en) | Battery | |
JPH03108258A (en) | Battery | |
JPH01267972A (en) | Battery | |
JPH01195678A (en) | Cell | |
JPH01267971A (en) | Battery | |
JPH0475253A (en) | Manufacture of battery | |
JPH01267973A (en) | Battery | |
JPH0547421A (en) | Oxygen permeable complex film and cell having the same | |
JPH03108254A (en) | Battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |