JPH04312771A - Air battery - Google Patents

Air battery

Info

Publication number
JPH04312771A
JPH04312771A JP3078857A JP7885791A JPH04312771A JP H04312771 A JPH04312771 A JP H04312771A JP 3078857 A JP3078857 A JP 3078857A JP 7885791 A JP7885791 A JP 7885791A JP H04312771 A JPH04312771 A JP H04312771A
Authority
JP
Japan
Prior art keywords
battery
air
oxygen
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3078857A
Other languages
Japanese (ja)
Inventor
Masatomo Oohashi
真智 大橋
Michio Watabe
渡部 道雄
Hitoshi Takagishi
高岸 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3078857A priority Critical patent/JPH04312771A/en
Publication of JPH04312771A publication Critical patent/JPH04312771A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/128
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the resistance to liquid leakage and liquid storing property by setting an oxygen selective permeable membrane, consisting of a thin film having a specified substitute group and a finely porous film supporting the former film. between an air taking-in side of a gas diffusion electrode and in the inner surface of a battery's container. CONSTITUTION:A fluoroalkyl group-containing polysiloxane composite membrane 11 is set between a PTFE porous film 2 and a porous film 4 to diffuse oxygen. The composite membrane is so set as to make the thin film side of the polysiloxane face to the air taking-in hole 3 of the finely porous film. Consequently. the oxygen transmitting speed is improved for the battery and also durable discharging properties under the high temperature and low humidity conditions together with over-discharging properties are improved while the steam and carbonic acid gas are shut from air.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は酸素を活物質とする電池
、特にアルカリ電解液を使用する水素/酸素燃料電池あ
るいは金属/空気電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery using oxygen as an active material, and more particularly to a hydrogen/oxygen fuel cell or a metal/air battery using an alkaline electrolyte.

【0002】0002

【従来の技術】ガス拡散電極を備え,酸素を活物質とす
る電池としては、燃料電池あるいは空気電池等(以下空
気電池という)がある。特にアルカリ水溶液,中性水溶
液を電解質として使用する空気電池においては、ガス拡
散電極(酸素極)から内部の蒸気圧に応じて水蒸気の出
入りがあり、これにより電池内電解液の濃度変化,体積
変化が起こり、電池諸特性に影響を与えていた。
BACKGROUND OF THE INVENTION Examples of batteries equipped with gas diffusion electrodes and using oxygen as an active material include fuel cells and air cells (hereinafter referred to as air cells). In particular, in air batteries that use alkaline aqueous solutions or neutral aqueous solutions as electrolytes, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, which causes changes in the concentration and volume of the electrolyte in the battery. occurred, which affected various battery characteristics.

【0003】以下、図3のボタン型空気電池を例にとり
、その状況を説明する。図3において、1は酸素極(空
気極)、2は酸素極を支持する多孔膜で,その材質はガ
ス拡散性はあるが液体は阻止するポリテトラフルオロエ
チレン(PTFE)が用いられる。3は外部からの空気
取り入れ孔、4は空気の拡散を行う多孔膜、5,6はセ
パレータ、7は水酸化カリウム水溶液と汞化亜鉛粉末と
の混合体から成る負極、8は負極容器、9は絶縁ガスケ
ット、10は正極容器である。
[0003] The situation will be explained below by taking the button type air cell shown in FIG. 3 as an example. In FIG. 3, 1 is an oxygen electrode (air electrode), 2 is a porous membrane that supports the oxygen electrode, and its material is polytetrafluoroethylene (PTFE), which has gas diffusivity but blocks liquid. 3 is an air intake hole from the outside, 4 is a porous membrane for air diffusion, 5 and 6 are separators, 7 is a negative electrode made of a mixture of potassium hydroxide aqueous solution and zinc chloride powder, 8 is a negative electrode container, 9 1 is an insulating gasket, and 10 is a positive electrode container.

【0004】一般に、アルカリ電解液は水酸化カリウム
水溶液を使用し、その濃度は30〜35%である。この
ため相対湿度が47〜59%より高いと外部の湿気を取
り込み電解液濃度の低下と体積膨張とが起こり、放電性
能の低下,電解液の漏液を生じていた。一方、相対湿度
が前記47%以下の場合には電解液の蒸発が起こり、内
部抵抗の増大や放電性能の低下をもたらしていた。従っ
て、空気電池は環境雰囲気によって著しい影響を受け易
いため長期間保存後の特性に問題があり、ある特定の分
野用に設計されるにとどまり、汎用化を図る上で大きな
課題を有していた。
[0004] Generally, an aqueous potassium hydroxide solution is used as the alkaline electrolyte, and its concentration is 30 to 35%. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, causing a decrease in the concentration of the electrolyte and volume expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below 47%, evaporation of the electrolyte occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, air batteries have problems with their characteristics after long-term storage because they are easily affected by the environmental atmosphere, and they are only designed for use in a specific field, which poses a major problem in making them more general-purpose. .

【0005】これらの課題を改善するため、従来より種
々の対策が検討されてきた。例えば、空気孔周辺の一部
に電解液と反応する物質を挿入し、電池外部へ電解液漏
出を防止する。あるいは紙または高分子材料より成る不
織布等の電解液吸収材を設けて、電池外部への電解液漏
出を防止する。さらには空気孔を極端に小さくして酸素
の供給量を制限して、水蒸気や炭酸ガスの電池内部への
侵入を防止する等の提案がなされているが、いずれの方
法も漏液防止や放電性能、特に長期間放電での性能に大
きな課題を残していた。これらの主要原因は空気中の水
蒸気の電池内への侵入による電解液の希釈と体積膨張、
及び炭酸ガスによる炭酸塩の生成に基づく放電反応の阻
害と空気流通経路の閉塞によるもので、外気が低湿の場
合には逆に電解液中の水分の逸散が性能低下の原因とな
っていた。このような原因を取り除くため、近年では、
水蒸気や炭酸ガスの透過を抑制し、選択的に酸素を優先
して透過する膜を介して空気を酸素極に供給する方法、
例えばポリシロキサン系の無孔性の均一な薄膜やポリオ
ルガノシロキサンと耐アルカリ性の微多孔性膜の複合膜
、金属酸化物あるいは金属原子を含有する有機化合物の
薄膜と適宜な多孔性膜とを一体化させた膜を用いる方法
が提案されていた。
[0005] In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to limit the amount of oxygen supplied by making the air holes extremely small to prevent water vapor and carbon dioxide from entering the battery, but none of these methods can prevent liquid leakage or discharge. There remained major issues with performance, especially performance during long-term discharge. The main causes of these problems are dilution and volumetric expansion of the electrolyte due to the intrusion of water vapor from the air into the battery.
This is due to the inhibition of the discharge reaction due to the formation of carbonate by carbon dioxide gas and the blockage of the air circulation path.In contrast, when the outside air is low humidity, the loss of water in the electrolyte is the cause of the performance decline. . In order to eliminate these causes, in recent years,
A method of supplying air to an oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively permeates oxygen with priority;
For example, a uniform nonporous thin film of polysiloxane, a composite film of polyorganosiloxane and an alkali-resistant microporous film, a thin film of a metal oxide or an organic compound containing metal atoms, and an appropriate porous film are integrated. A method using a film that has been modified has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、現在ま
でのところ充分に有効な酸素ガス選択透過性が得られて
いないことや水蒸気,炭酸ガスの透過阻止能が充分でな
いことなどから満足な放電性能が得られていない。また
、電解液にアルカリ電解液を用いているため前記種々の
化合物や高分子膜の親水性により、電池容器の内側に添
って電解液を引き込み、空気取り入れ孔より漏液を引き
起していたため実用化に至っていない。
[Problems to be Solved by the Invention] However, to date, satisfactory discharge performance has not been achieved due to the fact that sufficiently effective oxygen gas selective permeability has not been obtained and the permeation blocking ability for water vapor and carbon dioxide gas is not sufficient. Not obtained. In addition, since an alkaline electrolyte was used as the electrolyte, the hydrophilic properties of the various compounds and polymer membranes caused the electrolyte to be drawn along the inside of the battery container, causing leakage from the air intake holes. It has not yet been put into practical use.

【0007】本発明は上記課題を解決するためになされ
たもので、電池の貯蔵性,長期間使用における性能を改
善するとともに軽負荷から重負荷に至る放電条件で満足
な放電性能を得るために大気中の酸素ガスを選択的に充
分な速度で電池内に取り入れるが、大気中の水蒸気およ
び炭酸ガスの電池内への侵入を長期にわたり防止すると
ともに空気取り入れ孔より電解液の漏液を防止するよう
に構成した空気電池を提供することを目的とするもので
ある。
The present invention has been made to solve the above-mentioned problems, and is intended to improve the storability and long-term use performance of batteries, and to obtain satisfactory discharge performance under discharge conditions ranging from light loads to heavy loads. Oxygen gas from the atmosphere is selectively introduced into the battery at a sufficient rate, but it also prevents water vapor and carbon dioxide from the atmosphere from entering the battery over a long period of time, and prevents electrolyte from leaking from the air intake hole. The object of the present invention is to provide an air battery configured as described above.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の空気電池は、酸素を活物質とするガス拡散
電極と、外気に通じる空気取り入れ孔を有する電池容器
を備え、前記ガス拡散電極の空気取り入れ側と前記電池
容器の内面との間に置換基にフルオロアルキル基を有す
るポリシロキサンの薄膜と、前記薄膜を支持する微多孔
膜とから形成される酸素選択透過性の複合膜を介在させ
たことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the air battery of the present invention is provided with a gas diffusion electrode having oxygen as an active material and a battery container having an air intake hole communicating with the outside air. An oxygen selectively permeable composite membrane formed from a thin film of polysiloxane having a fluoroalkyl group as a substituent between the air intake side of the diffusion electrode and the inner surface of the battery container, and a microporous membrane supporting the thin film. It is characterized by intervening.

【0009】上記のポリシロキサンはThe above polysiloxane is

【0010】0010

【化1】[Chemical formula 1]

【0011】のような構造式で示される。そして、その
薄膜はピンホールが無い均質な薄膜で酸素の選択透過性
を有し、充分な酸素透過速度と水蒸気,炭酸ガスの透過
阻止能を得るには、通常1.0μm以下、好ましくは0
.2〜0.5μmの厚さが適している。この薄膜を支持
する微多孔膜は気体が容易に透過し、しかもその表面は
上記の薄膜を均一に支持するに適した平滑性と孔径を備
えた微多孔膜が好ましく、この微多孔膜表面の平均孔径
が3〜0.01μmであることが好ましい。
It is represented by the structural formula: The thin film is a homogeneous thin film with no pinholes and has selective permeability for oxygen, and in order to obtain a sufficient oxygen permeation rate and water vapor and carbon dioxide permeation blocking ability, it is usually 1.0 μm or less, preferably 0.0 μm or less.
.. A thickness of 2 to 0.5 μm is suitable. The microporous membrane supporting this thin film is preferably a microporous membrane through which gas can easily permeate, and whose surface has a smoothness and pore size suitable for uniformly supporting the above-mentioned thin film. It is preferable that the average pore diameter is 3 to 0.01 μm.

【0012】本発明は酸素選択透過能に優れた薄膜とし
てポリシロキサンの均質薄膜の特性に着目し、さらに、
この薄膜を支持する微多孔膜には耐アルカリ性に優れた
ポリプロピレン,ポリエチレン等のポリオレフィン,弗
素樹脂,ポリスルフォン等を選び検討を深めて完成した
。なお、微多孔膜は単層であっても良いが、取り扱いや
製造時、或は使用時の強度を確保するために、必要に応
じて耐アルカリ性不織布をさらに一体化した二層以上の
構成としても良い。
The present invention focuses on the characteristics of a homogeneous thin film of polysiloxane as a thin film with excellent oxygen selective permeability, and furthermore,
For the microporous membrane that supports this thin membrane, we selected polyolefins such as polypropylene and polyethylene, which have excellent alkali resistance, fluororesin, polysulfone, etc., and completed the research after careful consideration. The microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use, it may have a two-layer or more structure with an alkali-resistant nonwoven fabric further integrated as necessary. Also good.

【0013】上記のポリシロキサンの薄膜を微多孔膜で
支持した複合膜は、特開昭54−56985号公報など
に開示されているようなポリジメチルシロキサン,ポリ
シロキサン誘導体などがあるが、高炉送風用,燃焼補助
用,石油蛋白プロセス用,廃液処理曝気用,医療におけ
る呼気用などの用途で実用化が検討されているだけで、
主として酸素富化を目的とし、酸素と窒素の分離係数や
酸素透過速度のみを評価の対象にしている。これらの膜
を重負荷での放電条件でも満足な放電性能を得られる電
池用として適用するためには、酸素透過速度が充分大き
いことと水蒸気及び炭酸ガスの透過阻止能が優れている
ことが重要な要件であるが、従来、これらの特性は未知
な点が多く、電池への適用を検討された例は少なく、例
えば特開昭59−75582号公報で開示されているよ
うに、ポリジメチルシロキサン,ポリジメチルシロキサ
ン−ポリヒドロキシスチレン架橋型共重合体などの膜の
適用が提案されているが、酸素透過速度が充分でなく重
負荷での放電において満足な性能が得られなかった。
Composite membranes in which the above-mentioned polysiloxane thin film is supported by a microporous membrane include polydimethylsiloxane and polysiloxane derivatives as disclosed in JP-A-54-56985, etc.; Practical applications are being considered for use, combustion aid, petroleum protein processing, waste liquid treatment aeration, medical exhalation, etc.
The main purpose is oxygen enrichment, and only the oxygen and nitrogen separation coefficient and oxygen permeation rate are evaluated. In order to apply these membranes to batteries that can obtain satisfactory discharge performance even under heavy load discharge conditions, it is important that the oxygen permeation rate be sufficiently high and that the permeation blocking ability of water vapor and carbon dioxide gas be excellent. However, until now, many of these characteristics have been unknown, and there have been few cases where their application to batteries has been considered. , polydimethylsiloxane-polyhydroxystyrene crosslinked copolymers have been proposed, but the oxygen permeation rate was insufficient and satisfactory performance could not be obtained in discharge under heavy loads.

【0014】本発明は、種々の酸素透過膜を電池用とし
て鋭意検討の結果、ポリシロキサンの薄膜を微多孔膜と
一体化した複合膜が電池用としての上述の諸特性を総合
的に満たし、これを適用した電池の性能がきわめて優れ
ていることを見出し完成したものである。
As a result of intensive studies on various oxygen permeable membranes for use in batteries, the present invention has found that a composite membrane in which a polysiloxane thin film is integrated with a microporous membrane comprehensively satisfies the above-mentioned characteristics for use in batteries. They found that the performance of batteries to which this technology was applied was extremely excellent.

【0015】[0015]

【作用】本発明の空気電池は上記の如く構成されている
ので、電池用としての酸素透過速度と同時に、水蒸気や
炭酸ガスを大気から遮断し、さらに耐漏液性,過放電特
性も非常にすぐれているので、重負荷放電特性及び高温
や低湿雰囲気下での長時間放電性能も共にすぐれている
[Function] Since the air battery of the present invention is constructed as described above, it has a high oxygen permeation rate for batteries, blocks water vapor and carbon dioxide from the atmosphere, and also has excellent leakage resistance and overdischarge characteristics. Therefore, it has excellent heavy load discharge characteristics and long-time discharge performance under high temperature and low humidity atmospheres.

【0016】[0016]

【実施例】本発明の一実施例としてポリシロキサン[Example] As an example of the present invention, polysiloxane

【0
017】
0
017]

【化2】[Case 2]

【0018】においてR1 =CF2 H,R2 =C
FH2 のものを用いた複合膜を使用した電池、ポリジ
メチルシロキサン単独膜を使用した電池、および上記複
合膜を使用しない電池を試作評価して検討した。なお、
複合膜を使用していない比較例の場合は図3と全く同一
構成であり、また、複合膜を使用した実施例及び比較例
は図1の縦断面図に示すように複合膜を設けた点のみが
図3の電池と異なり、その他の構成は図3と全く同一構
成である。
In [0018], R1 = CF2 H, R2 = C
A battery using a composite membrane using FH2, a battery using a single polydimethylsiloxane membrane, and a battery not using the above composite membrane were prototyped and evaluated. In addition,
In the case of a comparative example that does not use a composite membrane, the configuration is exactly the same as in Figure 3, and in the example and comparative example that uses a composite membrane, the composite membrane is provided as shown in the longitudinal cross-sectional view of Figure 1. The only difference from the battery in FIG. 3 is that the other configurations are exactly the same as those in FIG. 3.

【0019】図1の縦断面図に示すように、本実施例で
はPTFEの多孔膜2と酸素の拡散を行う多孔膜4との
間に本発明にかかる上記複合膜11(図2の部分拡大図
を参照)が介在されている点のみが図3の電池とは異な
る。比較例の場合はその単独膜の径の大きさを多孔膜2
より小さく,かつ多孔膜4より大きくして介在し、複合
膜11はポリシロキサンの薄膜12の側が微多孔膜13
の空気取り入れ孔3の側に対向するよう配設した点のみ
が図3の電池とは異なる。実施例の支持体はいずれも微
多孔膜(孔径;約0.1〜0.05μm,厚さ;約30
μm)の単層、またはこれと不織布14(厚さ;約15
0μm)を一体化した複合層を用い、微多孔膜13側に
薄膜12を形成させた。
As shown in the longitudinal cross-sectional view of FIG. 1, in this embodiment, the composite membrane 11 according to the present invention (partially enlarged in FIG. The only difference from the battery shown in FIG. 3 is that a battery (see figure) is provided. In the case of the comparative example, the diameter of the single membrane is set to porous membrane 2.
The composite membrane 11 is smaller and larger than the porous membrane 4, and the side of the polysiloxane thin film 12 is the microporous membrane 13.
The only difference from the battery shown in FIG. 3 is that the battery is disposed so as to face the air intake hole 3 of the battery. The supports in Examples were all microporous membranes (pore diameter: approximately 0.1 to 0.05 μm, thickness: approximately 30 μm).
15 μm), or a single layer of nonwoven fabric 14 (thickness: approximately 15
A thin film 12 was formed on the microporous membrane 13 side by using a composite layer in which 0 μm) was integrated.

【0020】試作した電池の形状は直型11.6mm,
総高5.4mmであり、比較的重負荷(75Ω)で20
℃,常湿(60%RH)での連続放電により電池内への
空気中の酸素の取り込み速度の充足性を評価し、さらに
100時間同負荷をかけ続け過放電耐漏液性を評価した
。また比較的軽負荷(3KΩ)で20℃、高湿(90%
RH),及び低湿(20%RH)での長時間連続放電に
より、長期の放電期間中の雰囲気中の水蒸気の取り込み
や電池内の水分の逸散、及び炭酸ガスの取り込みなど電
池性能への影響度を評価した。
[0020] The shape of the prototype battery was 11.6 mm straight.
The total height is 5.4mm, and the resistance is 20mm under relatively heavy load (75Ω).
℃ and normal humidity (60% RH) to evaluate the sufficiency of the rate of oxygen uptake from the air into the battery, and the same load was continued for 100 hours to evaluate overdischarge leakage resistance. Also, under relatively light load (3KΩ) at 20℃ and high humidity (90%)
RH) and low humidity (20% RH), the effects on battery performance include the intake of water vapor in the atmosphere, the dissipation of moisture within the battery, and the intake of carbon dioxide gas during the long-term discharge period. The degree was evaluated.

【0021】試作した電池の内訳は表1に示す通りであ
る。
The details of the prototype battery are shown in Table 1.

【0022】[0022]

【表1】[Table 1]

【0023】また表2に試作電池の性能試験結果を示す
Table 2 also shows the performance test results of the prototype batteries.

【0024】[0024]

【表2】[Table 2]

【0025】表2において放電終止電圧はいずれも0.
9Vであり、重量変化は放電試験前後の増減を示してお
り、主として放電中の水分の取り込み、あるいは逸散の
多少を示唆する数値である。
In Table 2, the discharge end voltages are all 0.
9V, and the weight change indicates an increase or decrease before and after the discharge test, and is a numerical value that mainly suggests the amount of moisture taken in or dissipated during discharge.

【0026】実施例1〜5はピンホールがない均一性薄
膜が得られる範囲の膜厚のうち、比較的薄い均一性の薄
膜を形成したもので、実施例6〜9は均一性の薄膜を若
干厚く形成しており、前者は酸素の透過速度を大きくす
ることを第一義に考え、後者は水蒸気や炭酸ガスの透過
を阻止することを第一義に考え電池を構成している。こ
れらの場合、複合膜の支持体は耐アルカリ性の材料で構
成されている。これらの電池の特性を複合膜を使用して
いない比較例3と対比すると最も端的に本発明の効果が
説明できる。
In Examples 1 to 5, relatively thin uniform thin films were formed within the range in which a uniform thin film without pinholes could be obtained, and in Examples 6 to 9, uniform thin films were formed. It is formed to be somewhat thick, and the former is designed primarily to increase the permeation rate of oxygen, while the latter is constructed with the primary purpose of blocking the permeation of water vapor and carbon dioxide gas. In these cases, the support of the composite membrane is composed of an alkali-resistant material. The effects of the present invention can be most clearly explained by comparing the characteristics of these batteries with Comparative Example 3 in which no composite membrane was used.

【0027】まず、20℃常湿での重負荷試験では放電
期間が短く、水分の取り込みや逸散の影響や炭酸ガスの
影響が少ないので、電池の性能は酸素の供給速度が充分
であれば水分や炭酸ガスの透過阻止はあまり考慮する必
要がない。従って、このような条件では比較例3でも優
れた特性が得られる。これに対し、前述の実施例のうち
、1〜5は比較例3と同等の放電特性が得られており、
複合膜を酸素が透過する速度が放電反応で酸素が消費さ
れる速度に充分追従していることを示している。実施例
6〜9の場合は若干放電電圧、持続時間とも劣っている
があまり遜色のない良好な特性を示し、ほぼ酸素の供給
が満足な状態で行われている。
First, in a heavy load test at 20° C. and normal humidity, the discharge period is short and the effects of moisture uptake and dissipation and carbon dioxide gas are small, so the battery performance can be improved as long as the oxygen supply rate is sufficient. There is no need to give much consideration to preventing moisture and carbon dioxide from permeating. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 3. On the other hand, among the aforementioned Examples 1 to 5, discharge characteristics equivalent to Comparative Example 3 were obtained;
This shows that the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. In Examples 6 to 9, although the discharge voltage and duration were slightly inferior, they exhibited comparable good characteristics, and the supply of oxygen was carried out almost satisfactorily.

【0028】一方、軽負荷放電の場合は放電期間が長く
,しかも外気が高湿あるいは低湿の場合は酸素の供給速
度よりも水分や炭酸ガス、特に水分の透過防止が優れた
性能を得るために重要となり、水分や炭酸ガスの透過阻
止機構をもたない比較例3の電池は水分の枯渇、あるい
は逆に水分の過剰取入れによる漏液による空気孔の閉塞
などにより、放電の途中で電圧が低下し、重負荷試験で
得られた放電容量の一部分に相当する容量が得られるに
すぎない。また、放電途中での漏液は実用面で致命的な
問題であることはいうまでもない。これに対し実施例は
きわめて優れた性能を示し、これらは重負荷容量とほぼ
等しい容量が得られ、中でも均一薄膜層が比較的厚い実
施例6〜9がより優れている。これらの傾向は試験雰囲
気が高湿,低湿いずれの場合とも同様である。このこと
は、実施例の場合、複合膜の水分や炭酸ガスの透過阻止
効果が充分に発揮されていることを示している。また、
比較例1,2は膜厚が厚いために均一薄膜の水蒸気及び
炭酸ガス透過阻止能は充分であるが、酸素透過速度が充
分ではないために軽負荷の場合の放電特性は実施例と対
比してあまり遜色ないが、重負荷特性は実施例より著し
く劣っている。
On the other hand, in the case of light load discharge, the discharge period is long, and when the outside air is high or low humidity, moisture and carbon dioxide gas, especially moisture permeation prevention, is more important than the oxygen supply rate in order to obtain superior performance. The battery of Comparative Example 3, which does not have a mechanism to prevent water and carbon dioxide permeation, has a voltage drop during discharge due to depletion of water or, conversely, blockage of air holes due to leakage due to excessive water intake. However, the capacity obtained is only a portion of the discharge capacity obtained in the heavy load test. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem from a practical standpoint. On the other hand, the Examples showed extremely excellent performance, and a capacity almost equal to the heavy load capacity was obtained, and among them, Examples 6 to 9, in which the uniform thin film layer was relatively thick, were more excellent. These trends are the same whether the test atmosphere is high humidity or low humidity. This shows that, in the case of the example, the composite membrane sufficiently exhibits the permeation blocking effect of moisture and carbon dioxide gas. Also,
In Comparative Examples 1 and 2, the film thickness is thick, so the water vapor and carbon dioxide permeation blocking ability of the uniform thin film is sufficient, but the oxygen permeation rate is not sufficient, so the discharge characteristics under light load are different from those of the examples. However, the heavy load characteristics are significantly inferior to those of the example.

【0029】以上を総合して、ポリシロキサンの均一性
薄膜と微多孔膜との複合膜を用いた試作電池は重負荷特
性,軽負荷特性ともに優れ、外部雰囲気の変化への対応
性も良好であり、特にポリシロキサンの均一性薄膜の厚
さを0.2〜1.0μmとし耐アルカリ性の多孔質膜を
支持体に用いた場合に優れた電池を提供できることが結
論できる。
[0029] In summary, the prototype battery using a composite film of a uniform thin film of polysiloxane and a microporous film has excellent both heavy load characteristics and light load characteristics, and has good response to changes in the external atmosphere. In particular, it can be concluded that an excellent battery can be provided when the uniform polysiloxane thin film has a thickness of 0.2 to 1.0 μm and an alkali-resistant porous film is used as the support.

【0030】なお、上記の実施例ではポリシロキサンと
して、R1 =C(F2 )H,R2 =C(F)H2
 のものを用いた複合膜について説明したが、R1 ,
R2 の一部または全部がCF3 ,C2 F3 H2
 ,C2 F4 H,C2 F5 のポリシロキサンを
用いた複合膜でもほぼ同様の効果が得られることを確認
している。
[0030] In the above example, R1 = C(F2)H, R2 = C(F)H2 as the polysiloxane.
We have explained a composite membrane using R1,
Part or all of R2 is CF3, C2 F3 H2
It has been confirmed that almost the same effect can be obtained with a composite membrane using polysiloxanes of , C2 F4 H, and C2 F5.

【0031】また、上記の実施例ではポリシロキサンの
薄膜を微多孔性の支持膜あるいは微多孔膜と不織布を一
体化した支持膜の片面に塗布または張り合わせた複合膜
を用いた場合について説明したが、本発明は薄膜を支持
膜の両面に形成させた複合膜の場合でも、ポリシロキサ
ンの膜厚が総計で0.2〜1.0μmであれば上記と同
様に優れた電池性能が得られる。さらに、実施例に示し
たポリシロキサンを支持する微多孔膜は他の耐アルカリ
性を有する微多孔膜(例えばナイロン製微多孔膜)でも
同様の効果が得られる。さらに、実施例では支持体が微
多孔膜とポリプロピレン製の不織布と一体化した複合層
とした場合を説明したが、この不織布がポリエチレン,
ナイロン等の他の耐アルカリ性のあるものであれば同様
の効果が得られる。
[0031]Also, in the above embodiments, a composite membrane was used in which a thin film of polysiloxane was coated or laminated on one side of a microporous support film or a support film in which a microporous film and a nonwoven fabric were integrated. According to the present invention, even in the case of a composite membrane in which thin films are formed on both sides of a support membrane, excellent battery performance can be obtained in the same way as described above if the total film thickness of polysiloxane is 0.2 to 1.0 μm. Furthermore, similar effects can be obtained by using other alkali-resistant microporous membranes (for example, nylon microporous membranes) as opposed to the microporous membrane supporting polysiloxane shown in the examples. Furthermore, in the examples, a case where the support was a composite layer in which a microporous membrane and a nonwoven fabric made of polypropylene were integrated was explained, but this nonwoven fabric was
Similar effects can be obtained with other alkali-resistant materials such as nylon.

【0032】また、本発明の複合膜を上記実施例では電
池容器との間に空気拡散用の多孔体を介して設置したが
、本発明の複合膜は微多孔膜、場合によってはさらに不
織布を一体化した支持体より構成されており、前記空気
拡散用の多孔体の代わりに複合膜を用ても差異ない。
Furthermore, in the above embodiments, the composite membrane of the present invention was installed between the battery container and the porous material for air diffusion, but the composite membrane of the present invention may be a microporous membrane, and in some cases, a nonwoven fabric may be further provided. It is composed of an integrated support body, and there is no difference even if a composite membrane is used instead of the porous body for air diffusion.

【0033】[0033]

【発明の効果】以上説明したように、本発明の空気電池
によれば、重負荷から軽負荷に至るまで放電性能が優れ
ており、また耐漏液性および長期貯蔵性も非常に優れて
いるので、実用上非常に効果がある。
[Effects of the Invention] As explained above, the air battery of the present invention has excellent discharge performance from heavy loads to light loads, and also has excellent leakage resistance and long-term storage. , is very effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の縦断面図。
FIG. 1 is a longitudinal cross-sectional view of a button-type zinc-air battery used to study examples and comparative examples of the present invention.

【図2】図1の複合膜部分拡大図。FIG. 2 is a partially enlarged view of the composite membrane in FIG. 1.

【図3】従来のボタン形空気亜鉛電池の縦断面図。FIG. 3 is a vertical cross-sectional view of a conventional button-type zinc-air battery.

【符号の説明】[Explanation of symbols]

1…酸素極(空気極)、2…撥水膜、3…空気取り入れ
孔、4…多孔膜、5,6…セパレータ、7…負極亜鉛、
8…負極容器、9…絶縁ガスケット、10…正極容器、
11…複合膜。
1... Oxygen electrode (air electrode), 2... Water-repellent membrane, 3... Air intake hole, 4... Porous membrane, 5, 6... Separator, 7... Negative electrode zinc,
8... Negative electrode container, 9... Insulating gasket, 10... Positive electrode container,
11...Composite membrane.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸素を活物質とするガス拡散電極と外
気に通じる空気取り入れ孔を有する電池容器を備えた空
気電池において、前記ガス拡散電極の空気取り入れ側と
前記電池容器の内面との間に不織布等の空気拡散多孔質
とポリテトラフルオロエチレンなどの多孔質フィルムよ
りなる酸素極を支持する微多孔膜を介在させ、前記微多
孔膜の片面に置換基にフルオロアルキル基を用いたポリ
シロキサン薄膜を設けたことを特徴とする空気電池。
Claim 1: In an air battery comprising a gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air, there is a space between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A thin polysiloxane film using a fluoroalkyl group as a substituent on one side of the microporous membrane, with a microporous membrane supporting an oxygen electrode made of a porous air-diffusing material such as a nonwoven fabric and a porous film such as polytetrafluoroethylene interposed therebetween. An air battery characterized by being provided with.
JP3078857A 1991-04-11 1991-04-11 Air battery Pending JPH04312771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3078857A JPH04312771A (en) 1991-04-11 1991-04-11 Air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078857A JPH04312771A (en) 1991-04-11 1991-04-11 Air battery

Publications (1)

Publication Number Publication Date
JPH04312771A true JPH04312771A (en) 1992-11-04

Family

ID=13673500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078857A Pending JPH04312771A (en) 1991-04-11 1991-04-11 Air battery

Country Status (1)

Country Link
JP (1) JPH04312771A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844681A2 (en) * 1996-11-22 1998-05-27 Iskra Industry Co., Ltd. Porous membrane with low steam permeability
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
US6197445B1 (en) 1998-03-06 2001-03-06 Rayovac Corporation Air depolarized electrochemical cells
WO2006043363A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Oxygen-permeable film, oxygen-permeable sheet and electric cell comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844681A2 (en) * 1996-11-22 1998-05-27 Iskra Industry Co., Ltd. Porous membrane with low steam permeability
EP0844681A3 (en) * 1996-11-22 1998-11-18 Iskra Industry Co., Ltd. Porous membrane with low steam permeability
US6010628A (en) * 1996-11-22 2000-01-04 Iskra Industry Co., Ltd. Porous membrane with low steam permeability
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
US5985475A (en) * 1997-06-17 1999-11-16 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
JP2002503151A (en) * 1997-06-17 2002-01-29 エア エナジー リソースィズ インコーポレイテッド A membrane for selectively transporting oxygen in preference to water vapor and a metal-air electrochemical cell provided with the membrane
US6197445B1 (en) 1998-03-06 2001-03-06 Rayovac Corporation Air depolarized electrochemical cells
US6436571B1 (en) 1998-03-06 2002-08-20 Rayovac Corporation Bottom seals in air depolarized electrochemical cells
WO2006043363A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Oxygen-permeable film, oxygen-permeable sheet and electric cell comprising the same
JP2006142275A (en) * 2004-10-21 2006-06-08 Matsushita Electric Ind Co Ltd Oxygen-permeable membrane, oxygen-permeable sheet and battery comprising the same
US9184449B2 (en) 2004-10-21 2015-11-10 Panasonic Intellectual Property Management Co., Ltd. Oxygen permeable film, oxygen permeable sheet, and cell including these

Similar Documents

Publication Publication Date Title
JPH04312771A (en) Air battery
JPH0417259A (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JP2782837B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JP2757383B2 (en) Battery
JPH09274936A (en) Air cell
JPH01267974A (en) Battery
JP2778078B2 (en) Battery
JP2817343B2 (en) Battery
JPH01267970A (en) Battery
JP2743574B2 (en) Battery
JPH01267971A (en) Battery
JPH042067A (en) Battery
JPH04162374A (en) Battery
JPH01195678A (en) Cell
JPH01267973A (en) Battery
JPH01267972A (en) Battery
JP2782911B2 (en) Battery
JP2822485B2 (en) Battery
JPH03108258A (en) Battery
JPH0287459A (en) Battery
JPH03108254A (en) Battery
JPH03108257A (en) Battery
JPH0475253A (en) Manufacture of battery