JPH01267973A - Battery - Google Patents

Battery

Info

Publication number
JPH01267973A
JPH01267973A JP9600488A JP9600488A JPH01267973A JP H01267973 A JPH01267973 A JP H01267973A JP 9600488 A JP9600488 A JP 9600488A JP 9600488 A JP9600488 A JP 9600488A JP H01267973 A JPH01267973 A JP H01267973A
Authority
JP
Japan
Prior art keywords
battery
composite membrane
membrane
gas diffusion
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9600488A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukuda
浩 福田
Nobuyuki Yanagihara
伸行 柳原
Kanji Takada
寛治 高田
Masaaki Yoshino
芳野 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9600488A priority Critical patent/JPH01267973A/en
Publication of JPH01267973A publication Critical patent/JPH01267973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Abstract

PURPOSE:To prevent the CO2 gas and water vapor in the atmosphere from intruding into a battery for a long period of time by interposing a complex film, which is formed from a film of bisu (3-isocyanopropyle) tetramethyldisiloxane-4,4-diaminofenylether copolymer and a fine porosity film, between the air intake side of a gas diffusion electrode and the inner surface of a battery jar. CONSTITUTION:A battery is equipped with a gas diffusion electrode 1 using oxygen as active substance and a battery jar having an air intake hole 3 leading to the outside air, and an oxygen selective permeative complex film 11 formed from a film 2 of bisu (3-isocyanopropyle) tetramethyldisiloxane-4,4- diaminofenylether copolymer and a fine porosity film 4 supporting it is interposed between the inner surface of the battery jar and the air intake side of the gas diffusion electrode 1 of this battery. This permits provision of excellent performance in practical application, fine anti-leak property, and a long-time storing characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、アルミ
ニウム等の金属、もしくはアルコール、ヒドラジン、水
素等の負極活物質とを備えた電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a battery equipped with a negative electrode active material such as.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性水溶液を電解質として使用する電池においては、ガ
ス拡散電極(酸素極)から内部の蒸気圧に応じて水蒸気
の出入シがあり、電池内電解液の濃度変化1体積変化が
起こり、これが電池緒特性に影響を与えていた。ボタン
型空気電池を例にとり、第3図を用いてその状況を説明
する。1は酸素極(空気極)、2はガス拡散性はあるが
液体は阻止するポリテトラフルオロエチレン(PTFE
)よりなる酸素極を支持する多孔膜である。3は外部か
らの空気取入れ孔、4は空気の拡散を行う多孔体、5.
6はセパレーター、7は水酸化カリウム水溶液と氷化亜
鉛粉末との混合体から成る負極である。一般にアルカリ
電解液は水酸化カリウム水溶液を使用し、その濃度は3
0〜36%である。このため相対湿度が47〜59%よ
り高いと外部の湿気を取り込み電解液濃度の低下と体積
膨張とが起こシ、放電性能の低下、電解液の漏液を生じ
ていた。一方、相対湿度が前記以下の場合には電解液の
蒸発が起こり、内部抵抗の増大や放電性能の低下をもた
らしていた。従って、環境雰囲気によって著しい影響を
受は易いため長期間保存後の特性に問題があり、空気電
池や燃料電池はある特定の分野用に設計されるにとどま
り、汎用化を図る上で大きな課題を有していた。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In a battery that uses a neutral aqueous solution as an electrolyte, water vapor enters and exits from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing a change in concentration and volume of the electrolyte in the battery, and this changes the battery life. affected the characteristics. Taking a button-type air battery as an example, the situation will be explained using FIG. 3. 1 is an oxygen electrode (air electrode), 2 is polytetrafluoroethylene (PTFE) that has gas diffusion properties but blocks liquids.
) is a porous membrane that supports an oxygen electrode. 3 is an air intake hole from the outside; 4 is a porous body that diffuses air; 5.
6 is a separator, and 7 is a negative electrode made of a mixture of potassium hydroxide aqueous solution and frozen zinc powder. Generally, an aqueous potassium hydroxide solution is used as an alkaline electrolyte, and its concentration is 3
It is 0-36%. For this reason, when the relative humidity is higher than 47% to 59%, external moisture is taken in, causing a decrease in the concentration of the electrolyte and volume expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and there are major challenges in making them more general-purpose. had.

なお、図中8は負極容器、9は絶縁ガスケット、10は
正衝容詣である。
In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive impact container.

これらの課題を改善するため、従来より種々の対策が検
討されてきた。例えば、空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部への電解液漏出を防止す
る。あるいは紙または高分子材料より成る不織布等の電
解液吸収材を設けて、電池外部への電解液漏出を防止す
る。さらには空気孔を極端に小さくして酸素の供給量を
制限してまでも、水蒸気や炭酸ガスの電池内部への侵入
を防止する等の提案がなされているが、いずれの方法も
漏液防止や放電性能、特に長期間放電での性能に大きな
課題を残していた。これらの主要原因は空気中の水蒸気
の電池内への侵入による電解液の希釈と体積膨張、及び
炭酸ガスの侵入による炭酸塩の生成に基づく放電反応の
阻害と空気流通経路の閉塞によるもので、外気が低湿の
場合には逆に電解液中の水分の逸散が性能低下の原因と
なっていた。この原因を取シ除くため、近年では、水蒸
気や炭酸ガスの透過を抑制し、選択的に酸素を優先して
透過する膜を介して空気を酸素極に供給する方法、例え
ばポリシロキサン系の無孔性の均一な薄膜や金属酸化物
、あるいは金属原子を含有する有機化合物の薄膜と適宜
な多孔性膜とを一体化させた膜を用いる方法が提案され
ていた。
In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery by making the air holes extremely small and limiting the amount of oxygen supplied, but neither method prevents leakage. However, there remained major issues regarding discharge performance, especially performance during long-term discharge. The main causes of these are the dilution and volumetric expansion of the electrolytic solution due to the intrusion of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the intrusion of carbon dioxide gas and the blockage of the air circulation path. Conversely, when the outside air is low-humidity, the loss of moisture in the electrolyte causes a decline in performance. In order to eliminate this cause, in recent years, methods have been developed to supply air to the oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively allows oxygen to permeate, for example, using polysiloxane-based membranes. A method has been proposed that uses a film in which a uniformly porous thin film, a thin film of a metal oxide, or a thin film of an organic compound containing metal atoms is integrated with a suitable porous film.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気。
Problems to be Solved by the Invention However, to date, it has not been possible to obtain sufficiently effective selective permeability for oxygen gas or water vapor.

炭酸ガスの透過阻止能が充分でないことからなど、満足
な放電性能が得られず、長期の使用や貯蔵に耐えないと
いう技術課題をもっていたので、実用化に至っていない
It has not been put into practical use because it has had technical issues such as insufficient ability to block carbon dioxide gas permeation, and therefore cannot obtain satisfactory discharge performance and cannot withstand long-term use or storage.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善するとともに軽負荷から重負荷に至る放電条
件で満足な放電性能を得るために、大気中の酸素ガスを
選択的に充分な速度で電池内に取り入れ、大気中の水蒸
気及び炭酸ガスの電池内への侵入を長期にわたり防止す
る有効な手段を提供することを目的とするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to obtain satisfactory discharge performance under discharge conditions ranging from light loads to heavy loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.

課題を解決するだめの手段 本発明は酸素を活物質とするガス拡散重臣と、外気に通
じる空気取入れ孔を有する電池容器を備えた電池のガス
拡散電極の空気取入れ側と電池容器の内面との間に、ビ
ス(3−イソシアノプロピル)テトラメチルジシロキサ
ン−4,4′−ジアミノフェニルエーテル共重合体の薄
膜とこの薄膜を支持する微多孔膜から形成される酸素選
択透過性複合膜を介在させるものである。
Means for Solving the Problems The present invention provides a method for connecting the air intake side of the gas diffusion electrode of a battery equipped with a gas diffusion agent using oxygen as an active material and a battery container having an air intake hole communicating with the outside air to the inner surface of the battery container. In between, an oxygen selectively permeable composite membrane formed from a thin film of bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer and a microporous membrane supporting this thin film is interposed. It is something that makes you

上記ビス(3−イソシアノプロピル)テトラメチルジシ
ロキサン−4,4′−ジアミノフェニルエーテル共重合
体の薄膜は無孔性の均質な薄膜で酸素の選択透過性を有
し、充分な酸素透過速度と水蒸気、炭酸ガスの透過阻止
能を得るには、通常、1.0μm以下、好ましくは0.
2〜0.6μmの厚さが適している。この薄膜を支持す
る微多孔膜は気体が容易に透過し、なおかつ、その表面
は上記の薄膜を均一に無孔状態で支持するに適した平滑
性と孔径を備えた微多孔膜が好ましく、前記微多孔膜表
面の平均孔径が3〜0.01μmであることが好ましい
The thin film of the above-mentioned bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer is a non-porous, homogeneous thin film with selective oxygen permeability and a sufficient oxygen permeation rate. In order to obtain permeation blocking ability for water vapor and carbon dioxide gas, the thickness is usually 1.0 μm or less, preferably 0.0 μm or less.
A thickness of 2 to 0.6 μm is suitable. The microporous membrane supporting this thin film is preferably a microporous membrane through which gas can easily permeate, and whose surface has smoothness and pore size suitable for supporting the above-mentioned thin film in a uniform and non-porous state. It is preferable that the average pore diameter on the surface of the microporous membrane is 3 to 0.01 μm.

本発明は、選択性酸素透過能の優れた薄膜としてビス(
3−イソシアノプロピル)テトラメチルジシロキサン−
4,4′−ジアミノフェニルエーテル共重合体の均質薄
膜の特性に着目し、さらに、この薄膜を支持する微多孔
膜には耐アルカリ性に優れたポリプロピレン、ポリエチ
レン等のポリオレフィン、フッ素樹脂、ポリスルフォン
等を選び検討を深めて完成した。なお、微多孔膜は単層
であっても良いが、取り扱いや製造時、或は使用時の強
度を確保するために、必要に応じて耐アルカリ性不織布
をさらに一体化した二層以上の構成としても良い。
The present invention is a thin film with excellent selective oxygen permeability.
3-isocyanopropyl)tetramethyldisiloxane-
Focusing on the characteristics of a homogeneous thin film of 4,4'-diaminophenyl ether copolymer, we also added materials such as polypropylene, polyolefin such as polyethylene, which has excellent alkali resistance, fluororesin, polysulfone, etc. to the microporous membrane that supports this thin film. After careful consideration, the project was completed. The microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use, it may have a two-layer or more structure with an alkali-resistant nonwoven fabric further integrated as necessary. Also good.

上記のビス(3−イソシアノプロピル)テトラメチルジ
シロキサン−4,4′−ジアミノフェニルエーテル共重
合体の薄膜を微多孔膜で支持した複合膜は、特開昭54
−56985号などに開示されているようなポリジメチ
ルシロキサン、ポリシロキサン誘導体などがあるが、高
炉送風用、燃焼補助用0石油蛋白プロセス用、廃液処理
曝気用。
A composite membrane in which a thin film of the above-mentioned bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer was supported by a microporous membrane was disclosed in Japanese Patent Application Laid-open No. 54
There are polydimethylsiloxane and polysiloxane derivatives as disclosed in No. 56985, etc., and they are used for blast furnace ventilation, combustion assistance, petroleum protein process, waste liquid treatment aeration.

医療における呼気用などの用途で実用化が検討されてい
るだけで、主として酸素富化を目的とし、酸素と窒素の
分離係数や酸素透過速度′のみを評価の対象にしている
。これらの膜を重負荷での放電条件でも満足な放電性能
を得られる電池用として適用するためには、酸素透過速
度が充分大きいことと水蒸気及び炭酸ガスの透過阻止能
が優れていることが重要な要件であるが、従来、これら
の特性は未知な点が多く、電池への適用を検討された例
は少なく、例えば特開昭59−75582号で開示され
ているように、ポリジメチルシロキサン。
Practical use is only being considered for use in exhalation in medicine, and the main purpose is oxygen enrichment, with only the oxygen and nitrogen separation coefficient and oxygen permeation rate being evaluated. In order to apply these membranes to batteries that can obtain satisfactory discharge performance even under heavy load discharge conditions, it is important that the oxygen permeation rate be sufficiently high and that the permeation blocking ability of water vapor and carbon dioxide gas be excellent. However, until now, many of these characteristics have been unknown, and there have been few cases where application to batteries has been considered. For example, as disclosed in JP-A-59-75582, polydimethylsiloxane.

ポリジメチルシロキサン−ポリヒドロキシスチレン架橋
型共重合体などの膜の適用が提案されているが、酸素透
過速度が充分でなく重負荷での放電において満足な性能
が得られない。本発明は、種種の酸素透過膜を電池用と
して鋭意検討の結果、ビス(3−イソシアノプロピル)
テトラメチルジシロキサン−4,4′−ジアミノフェニ
ルエーテル共重合体の薄膜を微多孔膜と一体化した複合
膜が電池用としての上述の諸特性を総合的に満たし、こ
れを適用した電池の性能がきわめて優れていることを見
出し完成したものである。
The use of membranes such as polydimethylsiloxane-polyhydroxystyrene crosslinked copolymers has been proposed, but the oxygen permeation rate is insufficient and satisfactory performance cannot be obtained in discharge under heavy loads. As a result of extensive research into various types of oxygen permeable membranes for batteries, the present invention has developed bis(3-isocyanopropyl)
A composite membrane in which a thin film of tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer is integrated with a microporous membrane comprehensively satisfies the above-mentioned characteristics for batteries, and the performance of batteries using this membrane is improved. It was completed after discovering that it was extremely superior.

本発明で用いる複合膜の製法は種々あるが、類型的には
特開昭54−146277号で開示されているように、
ビス(3−イソシアノプロピル)テトラメチルジシロキ
サン−4,4′−ジアミノフェニルエーテル共重合体を
溶解度の大きいトルエン等の溶媒に溶解した溶液をガラ
ス板などの平面に薄く塗布して乾燥し、薄膜をガラス面
から剥離し、多孔質膜上に重ね合わせる方法や、上記の
溶液を水面上に滴下し、水面上に延展させて形成された
薄膜を水面下の、支持体としての微多孔膜上にのせての
ち乾燥する水上延展法、さらには、支持体である前記微
多孔膜上に上記の溶液を直接塗布して乾燥する方法など
に分類され、いずれの方法をとっても良いが、ピンホー
ルのない薄膜が形成され、微多孔膜中にビス(3−イソ
シアノプロピル)テトラメチルジシロキサン−4,4’
 −ジアミノフェニルエーテル共重合体が浸透して孔が
閉塞されないことが必要である。
There are various methods for manufacturing the composite membrane used in the present invention, but typically, as disclosed in JP-A-54-146277,
A solution of bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer dissolved in a highly soluble solvent such as toluene is applied thinly to a flat surface such as a glass plate and dried. A method of peeling a thin film from a glass surface and superimposing it on a porous membrane, or a method of dropping the above solution onto the water surface and spreading it on the water surface to form a thin film and placing it under the water surface as a microporous membrane as a support. There are two types of methods: the water spreading method, in which the solution is applied directly onto the microporous membrane that is the support, and then dried. A thin film is formed, and bis(3-isocyanopropyl)tetramethyldisiloxane-4,4' is formed in the microporous film.
- It is necessary that the diaminophenyl ether copolymer penetrates and the pores are not blocked.

作用 この構成により上述の複合膜は後述の実施例における電
池試験の結果からも明らかなように、電池用としての酸
素透過速度と同時に、水蒸気や炭酸ガスを大気から遮断
する効果も共に満足すべき状態であることにより、実用
的な電池に要求される重負荷放電性能と、高温や低湿の
雰囲気下で長時間放電した場合の性能も共に満足するこ
ととなる。
Effect: With this configuration, the above-mentioned composite membrane should satisfy both the oxygen permeation rate for batteries and the effect of blocking water vapor and carbon dioxide from the atmosphere, as is clear from the results of the battery tests in the examples described later. This condition satisfies both the heavy load discharge performance required of a practical battery and the performance when discharged for a long time in a high temperature and low humidity atmosphere.

実施例 本発明の効果をビス(3−イソシアノプロピル)テトラ
メチルジシロキサン−4,4′−ジアミノフェニルエー
テル共重合体複合膜を使用した電池。
EXAMPLE The effects of the present invention were demonstrated in a battery using a bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer composite membrane.

ポリジメチルシロキサン単独膜を使用した電池、および
上記複合膜を使用しない電池を試作評価して検討した。
A battery using a single polydimethylsiloxane membrane and a battery not using the above-mentioned composite membrane were prototyped and evaluated.

まず、上記複合膜を使用してない比較例の場合は第3図
と全く同一に構成した。複合膜11を使用した実施例及
び比較例も第3図とほぼ同様であり、第1図に示すよう
にPTFKの多孔膜2と酸素の拡散を行う多孔体4との
間に実施例の複合膜11(第2図参照)あるいは比較例
の単独膜が介在し、複合膜11はビス(3−イソシアノ
プロピル)テトラメチルジシロキサン−4゜4′−ジア
ミノフェニルエーテル共重合体の薄膜の側が空気取入れ
孔3の側に対向するよう配設した点が、第3図と異なる
のみである。
First, in the case of a comparative example in which the above-mentioned composite membrane was not used, the structure was exactly the same as that shown in FIG. 3. Examples and comparative examples using the composite membrane 11 are almost the same as those shown in FIG. 3, and as shown in FIG. The membrane 11 (see Figure 2) or a single membrane of a comparative example is interposed, and the composite membrane 11 has a thin film side of bis(3-isocyanopropyl)tetramethyldisiloxane-4°4'-diaminophenyl ether copolymer. The only difference from FIG. 3 is that it is arranged so as to face the air intake hole 3 side.

供試したビス(3−イソシアノプロピル)テトラメチル
ジシロキサン−4,4′−ジアミノフェニルエーテル共
重合体複合膜はビス(3−イソシアノプロピル)テトラ
メチルジシロキサン−4゜4′−ジアミノフェニルエー
テル共重合体ヲトルエンに溶解したポリマー溶液を水面
上に滴下して得られた極薄膜を水中で多孔質の支持膜に
のせて後、乾燥して作製した。ビス(3−イソシアノプ
ロピル)テトラメチルジシロキサン−4,4’ −ジア
ミノフェニルエーテル共重合体の薄膜層の厚さはポリマ
ー溶液と、これを滴下する水の温度を変えることによシ
調節した。また、比較例として供試したポリジメチルシ
ロキサン薄膜はトルエンに溶解した溶液をガラス板に薄
く塗布して乾燥する方法で作製した。実施例の支持体膜
はいずれも微多孔膜(孔径;約0.1〜0.05μm、
厚さ;約30μm)の単層、またはこれと不織布(厚さ
;約150μm)を一体化した複合層を用い、微多孔膜
側に薄膜層を形成させた。
The tested bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer composite film was bis(3-isocyanopropyl)tetramethyldisiloxane-4°4'-diaminophenyl. An ultrathin film obtained by dropping a polymer solution of an ether copolymer dissolved in toluene onto the water surface was placed on a porous support film in water, and then dried. The thickness of the thin film layer of bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer was adjusted by changing the temperature of the polymer solution and the water into which it was dropped. . The polydimethylsiloxane thin film used as a comparative example was prepared by applying a thin layer of a solution dissolved in toluene onto a glass plate and drying it. All of the support membranes in Examples were microporous membranes (pore diameter: approximately 0.1 to 0.05 μm,
A thin film layer was formed on the microporous membrane side using a single layer (thickness: approximately 30 μm) or a composite layer in which this was integrated with a nonwoven fabric (thickness: approximately 150 μm).

試作した電池の形状は直径11.5ff、総高6.4n
であり、比較的重負荷(75Ω)で20’C,常湿(6
0%RH)での連続放電により電池内への空気中の酸素
の取シ込み速度の充足性を評価し、比較的軽負荷(3に
Ω)で20°C9高湿(90%RH)、及び低湿(20
%RH)での長期間連続放電によシ、長期の放電期間中
の、雰囲気中の水蒸気の取シ込みや電池内の水分の逸散
及び炭酸ガスの取り込みなど電池性能への影響度を評価
した。
The prototype battery has a diameter of 11.5ff and a total height of 6.4n.
20'C under relatively heavy load (75Ω), normal humidity (6
The sufficiency of the oxygen uptake rate from the air into the battery was evaluated by continuous discharging at 0% RH) at 20°C9 high humidity (90% RH) at a relatively light load (3Ω), and low humidity (20
%RH), and evaluate the influence on battery performance, such as the intake of water vapor in the atmosphere, the dissipation of moisture within the battery, and the intake of carbon dioxide during the long-term discharge period. did.

試作した電池の内訳は第1表に示す通シである。The details of the prototype battery are shown in Table 1.

また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype batteries.

(以 下金 白) 第2表において放電終止電圧はいずれもO,S Vであ
り、重量変化は放電試験前後の増減を示しており、主と
して放電中の水分の取り込み、あるいは逸散の多少を示
唆する数値である。
(Hereinafter referred to as Gold and White) In Table 2, the discharge end voltages are both O and SV, and the weight change shows the increase and decrease before and after the discharge test, mainly due to the amount of moisture taken in or dissipated during discharge. This is a suggestive number.

実施例の1〜6はピンホールがない均一性薄膜が得られ
る範囲の膜厚のうち、比較的薄い均一性の薄膜を形成し
たもので、実施例の6〜9は均一性の薄膜を若干厚く形
成しておシ、前者は酸素の透過速度を大きくすることを
第一義に考え、後者は水蒸気や炭酸ガスの透過を阻止す
ることを第一義に考え電池を構成している。これらの場
合、複合膜の支持体は耐アルカリ性の材料で構成されて
いる。これらの電池の特性を複合膜を使用していない比
較例3と対比すると最も端的に本発明の詳細な説明でき
る。まず20’C1常湿での重負荷試験では放電期間が
短く、水分の取シ込みや逸散の影響や炭酸ガスの影響が
少ないので、電池の性能は酸素の供給速度が充分であれ
ば水分や炭酸ガスの透過阻止はあまシ考慮する必要がな
い。従って、このような条件では比較例3でも優れた特
性が得られる。これに対し、前述の実施例のうち、1〜
6は比較例3と同等の放電特性が得られており、複合膜
を酸素が透過する速度が放電反応で酸素が消費される速
度に充分追従していることを示している。実施例6〜9
の場合は若干放電電圧、持続時間とも劣っているがあま
り遜色のない良好な特性を示し、はぼ酸素の供給が満足
な状態で行われている。一方、軽負荷放電の場合は放電
期間が長く、しかも外気が高湿あるいは低湿の場合には
酸素の供給速度よりも水分や炭酸ガス、特に水分の透過
防止が優れた性能を得るために重要となり、水分や炭酸
ガスの透過阻止機構をもたない比較例3の電池は水分の
枯渇、あるいは逆に水分の過剰取入れによる漏液による
空気孔の閉塞などによシ、放電の途中で電圧が低下し、
重負荷試験で得られた放電容量の一部分に相当する容量
が得られるにすぎない。また、放電途中での漏液は実用
面で致命的な問題であることはいうまでもない。これに
対し実施例はきわめて優れた性能を示し、これらは重負
荷試験の放電容量とほぼ等しい容量が得られ、中でも均
一薄膜層が比較的厚い実施例6〜9がより優れている。
In Examples 1 to 6, relatively thin uniform thin films were formed within the range in which a uniform thin film without pinholes could be obtained, and in Examples 6 to 9, uniform thin films were formed with a slightly higher uniformity. The former is designed to increase the permeation rate of oxygen, while the latter is designed to prevent the permeation of water vapor and carbon dioxide. In these cases, the support of the composite membrane is composed of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 3 in which no composite membrane was used. First, in the heavy load test at 20'C1 normal humidity, the discharge period is short and there is little effect of moisture uptake and dissipation, as well as the influence of carbon dioxide gas, so if the oxygen supply rate is sufficient, the battery performance There is no need to consider blocking the permeation of carbon dioxide or carbon dioxide gas. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 3. On the other hand, among the above-mentioned embodiments, 1 to 1
In Example 6, discharge characteristics equivalent to those of Comparative Example 3 were obtained, indicating that the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. Examples 6-9
In the case of , the discharge voltage and duration are slightly inferior, but the characteristics are comparable and good, and the supply of oxygen is being carried out satisfactorily. On the other hand, in the case of light load discharge, the discharge period is long, and when the outside air is high or low humidity, preventing the permeation of moisture and carbon dioxide gas, especially moisture, becomes more important than the oxygen supply rate in order to obtain excellent performance. The battery of Comparative Example 3, which does not have a mechanism to prevent the permeation of moisture and carbon dioxide gas, has a voltage drop during discharge due to depletion of moisture or, conversely, blockage of air holes due to leakage due to excessive intake of moisture. death,
A capacity equivalent to only a portion of the discharge capacity obtained in the heavy load test is obtained. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem from a practical standpoint. On the other hand, the Examples showed extremely excellent performance, with a capacity almost equal to the discharge capacity in the heavy load test being obtained, and among them, Examples 6 to 9, in which the uniform thin film layer was relatively thick, were more excellent.

これらの傾向は試験雰囲気が高湿、低湿、いずれの場合
とも同様である。このことは、実施例の場合、複合膜の
水分や炭酸ガスの透過阻止効果が充分に発揮されている
ことを示している。また、比較例1.2は膜厚が厚いた
めに均一薄膜の水蒸気及び炭酸ガス透過阻止能は充分で
あるが、酸素透過速度が充分ではないために軽負荷の場
合の放電特性は実施例と対比してあまり遜色ないが、重
負荷特性は実施例よシ著しく劣る。
These trends are the same whether the test atmosphere is high humidity or low humidity. This shows that, in the case of the example, the composite membrane sufficiently exhibits the permeation blocking effect of moisture and carbon dioxide gas. In addition, in Comparative Example 1.2, the film thickness is thick, so the water vapor and carbon dioxide permeation blocking ability of the uniform thin film is sufficient, but the oxygen permeation rate is not sufficient, so the discharge characteristics under light load are not as good as the examples. Although it is comparable in comparison, the heavy load characteristics are significantly inferior to the examples.

以上を総合して、ビス(3−イソシアノプロピル)テト
ラメチルジシロキサン−4,4′−ジアミノフェニルエ
ーテル共重合体の均一性薄膜と微多孔膜との複合膜を用
いた試作電池は重負荷特性。
Taking all the above into account, the prototype battery using a composite film of a homogeneous thin film of bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer and a microporous film can be used under heavy loads. Characteristic.

軽負荷特性ともに優れ、外部雰囲気の変化への対応性も
良好であり、特にビス(3−イソシアノプロピル)テト
ラメチルジシロキサン−4,4’ −ジアミノフェニル
エーテル共重合体の均一性薄膜の厚さを0.2〜1.0
μmとし耐アルカリ性の多孔質膜を支持体に用いた場合
に優れた電池を提供できることが結論できる。
It has excellent light load characteristics and good response to changes in the external atmosphere, especially the uniformity and thin film thickness of bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer. Sao 0.2~1.0
It can be concluded that an excellent battery can be provided when an alkali-resistant porous membrane with a micrometer diameter is used as a support.

また、上記の実施例ではビス(3−イソシアノプロピル
)テトラメチルジシロキサン−4,4′一ジアミノフエ
ニルエーテル共重合体の薄膜を微多孔性の支持膜あるい
は微多孔膜と不織布を一体化した支持膜の片面につけた
複合膜を用いた場合について説明したが、本発明は薄膜
を支持膜の両面に形成させた複合膜の場合でも、ビス(
3−イソシアノプロピル)テトラメチルジシロキサン−
4,4′−ジアミノフェニルエーテル共重合体の膜厚が
総計で0.2〜1.0μmであれば上記と同様に優れた
電池性能が得られる。さらに実施例に示したビス(3−
イソシアノプロピル)テトラメチルジシロキサン−4,
4′−ジアミノフェニルエーテル共重合体を支持する微
多孔膜は他の耐アルカリ性を有する微多孔膜(例えばナ
イロン製微多孔膜)でも同様の効果が得られる。また、
実施例では支持体が微多孔膜とポリプロピレン製の不織
布と一体化した複合層とした場合を説明したが、前記不
織布がポリエチレン、ナイロン等の他の耐アルカリ性の
あるものであれば同様の効果が得られる。
In addition, in the above example, a thin film of bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer is integrated with a microporous support film or a microporous film and a nonwoven fabric. Although the case in which a composite membrane is used in which a thin film is formed on one side of a supporting membrane has been described, the present invention also applies to a composite membrane in which a thin film is formed on both sides of a supporting membrane.
3-isocyanopropyl)tetramethyldisiloxane-
If the total film thickness of the 4,4'-diaminophenyl ether copolymer is 0.2 to 1.0 μm, excellent battery performance can be obtained as described above. Furthermore, the screws (3-
isocyanopropyl)tetramethyldisiloxane-4,
Similar effects can be obtained by using other alkali-resistant microporous membranes (for example, nylon microporous membranes) as the microporous membrane supporting the 4'-diaminophenyl ether copolymer. Also,
In the example, a case where the support is a composite layer in which a microporous membrane and a nonwoven fabric made of polypropylene are integrated is explained, but the same effect can be obtained if the nonwoven fabric is made of other alkali-resistant material such as polyethylene or nylon. can get.

なお、実施例では複合膜の薄膜側が空気取入れ孔側に当
接された場合について示したが、逆にガス拡散電極側に
当接させた場合でもほぼ同一の結果となることを確認し
ている。
In addition, although the example shows the case where the thin film side of the composite membrane is brought into contact with the air intake hole side, it has been confirmed that almost the same result will be obtained even if the thin film side of the composite membrane is brought into contact with the gas diffusion electrode side. .

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜は微多孔膜、場合によってはさらに不織布1体化し
た支持体より構成されており、前記空気拡散用の多孔体
を除いても電池特性の差異はない。但し、複合膜の強度
が充分でなく空気取入れ孔側に変形するような場合には
、多孔体を設置することによシ複合膜が安定形状を保つ
In addition, in the above examples, the composite membrane of the present invention was installed between the battery container and the porous material for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric integrated into the composite membrane. The battery is composed of a support body, and there is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the composite membrane does not have sufficient strength and deforms toward the air intake hole, the composite membrane can maintain a stable shape by installing a porous body.

さらに、上記実施例では本発明の複合膜を酸素極との間
に酸素極を支持する多孔膜を介して設置したが、酸素極
の強度が充分であれば前記多孔膜は不用であり、除いて
も電池特性は変わらない。また、塩化アンモニウム、塩
化亜鉛などの中性塩の水溶液を電解液に用いた空気電池
に対しても、実施例で示したアルカリ性の電解液に用い
た電池と同様の効果があることも確認しており、実施例
と同様の理由で本発明の詳細な説明できる。
Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane was unnecessary and could be removed. However, the battery characteristics remain unchanged. We also confirmed that an air battery using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as an electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. The present invention can be explained in detail for the same reason as the examples.

発明の効果 以上の説明で明らかなように、本発明による酸    
 ゛素ガス拡散電極によれば、中性もしくはアルカリ性
の水溶液を電解液とする電池の重負荷から軽負荷にわた
る優れた実用性能と、優れた耐漏液性。
Effects of the Invention As is clear from the above explanation, the acid according to the present invention
The elemental gas diffusion electrode has excellent practical performance under heavy to light loads for batteries that use a neutral or alkaline aqueous solution as the electrolyte, and excellent leakage resistance.

長期貯蔵性を具備させることができるという効果が得ら
れる。
The effect is that it can be stored for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の半断面図、第2図は第1図の部分拡
大図、第3図は複合膜を使用していない従来のボタン形
空気亜鉛電池の半断面図である。 1・・・・・・酸素極(空気極)、2・・す・・撥水膜
、3・−・・・・空気取入れ孔、4・・・・・・多孔膜
、6.6・・・・・・セパレーター、7・・・・・・負
極亜鉛、8・・・・・・負極容器、9・・・・・・絶縁
ガスケット、10・・・・・・正極容器、11・・・・
・・複合膜。
Figure 1 is a half-sectional view of a button-type zinc-air battery used to study examples and comparative examples of the present invention, Figure 2 is a partially enlarged view of Figure 1, and Figure 3 shows no composite membrane used. FIG. 1 is a half-sectional view of a conventional button-type zinc-air battery. 1...Oxygen electrode (air electrode), 2...Water repellent membrane, 3...Air intake hole, 4...Porous membrane, 6.6... Separator, 7... Negative electrode zinc, 8... Negative electrode container, 9... Insulating gasket, 10... Positive electrode container, 11...・
...Composite membrane.

Claims (8)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取り入れ側と前記電池容器の内面との間に、
ビス(3−イソシアノプロピル)テトラメチルジシロキ
サン−4,4′−ジアミノフェニルエーテル共重合体の
薄膜と前記薄膜を支持する一層または二層以上の微多孔
膜とから形成された複合膜を介在させたことを特徴とす
る電池。
(1) A gas diffusion electrode having oxygen as an active material and a battery container having an air intake hole communicating with the outside air, between the air intake side of the gas diffusion electrode and the inner surface of the battery container,
A composite membrane formed from a thin film of bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer and one or more microporous membranes supporting the thin film is interposed. A battery characterized by:
(2)前記複合膜のビス(3−イソシアノプロピル)テ
トラメチルジシロキサン−4,4′−ジアミノフェニル
エーテル共重合体の薄膜側が、空気取り入れ孔を有する
前記電池容器の内面に当接され、前記複合膜の微多孔膜
側に、直接ガス拡散電極が接していることを特徴とする
特許請求の範囲第1項記載の電池。
(2) the thin film side of the bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer of the composite membrane is brought into contact with the inner surface of the battery container having an air intake hole; 2. The battery according to claim 1, wherein a gas diffusion electrode is in direct contact with the microporous membrane side of the composite membrane.
(3)前記複合膜のビス(3−イソシアノプロピル)テ
トラメチルジシロキサン−4,4′−ジアミノフェニル
エーテル共重合体の微多孔膜側が、空気取り入れ孔を有
する前記電池容器の内面に当接され、前記複合膜の薄膜
側に、直接ガス拡散電極が接していることを特徴とする
特許請求の範囲第1項記載の電池。
(3) The microporous membrane side of the bis(3-isocyanopropyl)tetramethyldisiloxane-4,4'-diaminophenyl ether copolymer of the composite membrane contacts the inner surface of the battery container having air intake holes. 2. The battery according to claim 1, wherein a gas diffusion electrode is in direct contact with the thin film side of the composite membrane.
(4)前記複合膜と前記電池容器との間に、不織布等の
空気拡散多孔体を介在させたことを特徴とする特許請求
の範囲第2項又は第3項記載の電池。
(4) The battery according to claim 2 or 3, characterized in that an air diffusion porous material such as a nonwoven fabric is interposed between the composite membrane and the battery container.
(5)前記複合膜と前記ガス拡散電極との間に、ポリテ
トラフルオロエチレン(PTFE)等の多孔性フィルム
よりなる酸素極を支持する微多孔膜を介在させたことを
特徴とする特許請求の範囲第2項又は第3項記載の電池
(5) A microporous membrane that supports an oxygen electrode made of a porous film such as polytetrafluoroethylene (PTFE) is interposed between the composite membrane and the gas diffusion electrode. A battery according to scope 2 or 3.
(6)前記複合膜と前記電池容器との間に不織布等の空
気拡散多孔体を介在させ、かつ前記複合膜と前記ガス拡
散電極との間に、ポリテトラフルオロエチレン等の多孔
性フィルムよりなる酸素極を支持する微多孔膜を介在さ
せたことを特徴とする特許請求の範囲第2項又は第3項
記載の電池。
(6) A porous air diffusion material such as a nonwoven fabric is interposed between the composite membrane and the battery container, and a porous film such as polytetrafluoroethylene is interposed between the composite membrane and the gas diffusion electrode. The battery according to claim 2 or 3, characterized in that a microporous membrane supporting the oxygen electrode is interposed.
(7)前記複合膜を形成する微多孔膜がポリプロピレン
、ポリエチレン等のポリオレフィン、フッ素樹脂、ポリ
スルホン等を主成分とする耐アルカリ性微多孔膜である
ことを特徴とする特許請求の範囲第1項から第6項のい
ずれかに記載の電池。
(7) The microporous membrane forming the composite membrane is an alkali-resistant microporous membrane containing polyolefin such as polypropylene, polyethylene, fluororesin, polysulfone, etc. as a main component. The battery according to any of paragraph 6.
(8)前記複合膜を形成する微多孔膜をポリプロピレン
等を主成分とする耐アルカリ性不織布と一体化した複合
層としたものであることを特徴とする特許請求の範囲第
1項から第6項のいずれかに記載の電池。
(8) Claims 1 to 6 are characterized in that the microporous membrane forming the composite membrane is a composite layer integrated with an alkali-resistant nonwoven fabric mainly composed of polypropylene or the like. A battery described in any of the above.
JP9600488A 1988-04-19 1988-04-19 Battery Pending JPH01267973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9600488A JPH01267973A (en) 1988-04-19 1988-04-19 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9600488A JPH01267973A (en) 1988-04-19 1988-04-19 Battery

Publications (1)

Publication Number Publication Date
JPH01267973A true JPH01267973A (en) 1989-10-25

Family

ID=14152980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9600488A Pending JPH01267973A (en) 1988-04-19 1988-04-19 Battery

Country Status (1)

Country Link
JP (1) JPH01267973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JPH01267973A (en) Battery
JP2782837B2 (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JPH04312771A (en) Air battery
JPH01267974A (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JP2757383B2 (en) Battery
JPH01267971A (en) Battery
JPH0287459A (en) Battery
JPH01267972A (en) Battery
JPH01195678A (en) Cell
JP2817343B2 (en) Battery
JPH01267970A (en) Battery
JPH02109254A (en) Battery
JP2778078B2 (en) Battery
JP2743574B2 (en) Battery
JP2822485B2 (en) Battery
JP2782911B2 (en) Battery
JPH042067A (en) Battery
JPH0287458A (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH04162374A (en) Battery
JPS6051505A (en) Gas selective composite membrane
JPH03108254A (en) Battery