JP2817343B2 - Battery - Google Patents

Battery

Info

Publication number
JP2817343B2
JP2817343B2 JP2101988A JP10198890A JP2817343B2 JP 2817343 B2 JP2817343 B2 JP 2817343B2 JP 2101988 A JP2101988 A JP 2101988A JP 10198890 A JP10198890 A JP 10198890A JP 2817343 B2 JP2817343 B2 JP 2817343B2
Authority
JP
Japan
Prior art keywords
battery
membrane
oxygen
air
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2101988A
Other languages
Japanese (ja)
Other versions
JPH042046A (en
Inventor
公明 芳野
重人 野矢
彰 花房
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101988A priority Critical patent/JP2817343B2/en
Publication of JPH042046A publication Critical patent/JPH042046A/en
Application granted granted Critical
Publication of JP2817343B2 publication Critical patent/JP2817343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、ア
ルカリ水溶液等の電解液と、亜鉛,マグネシウム,アル
ミニウム等の金属、もしくはアルコール,ヒドラジン,
水素等の負極活物質とを備えた電池に関するものであ
る。
The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, a metal such as zinc, magnesium, and aluminum, or an alcohol, hydrazine, or the like.
The present invention relates to a battery including a negative electrode active material such as hydrogen.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池として
は、空気電池,燃料電池等がある。特にアルカリ水溶
液,中性水溶液を電解質として使用する電池において
は、ガス拡散電極(酸素極)から内部の蒸気圧に応じて
水蒸気の出入があり、電池内電解液の濃度変化,体積変
化が起こり、これが電池諸特性に影響を与えていた。ボ
タン形空気亜鉛電池を例にとり、第2図を用いてその状
況を説明する。図中1は酸素極(空気極)、2はガス拡
散性はあるが液体は阻止するポリテトラフルオロエチレ
ン(PTFE)よりなる酸素極を支持する多孔膜である。3
は外部からの空気取り入れ孔、4は酸素極の支持と空気
の拡散を行なう多孔体、5,6はセパレータ、7は水酸化
カリウム水溶液と汞化亜鉛粉末との混合体からなる負極
である。一般にアルカリ電解液には水酸化カリウム水溶
液を使用し、その濃度は30〜35%で用いられている。こ
のため相対湿度が47〜59%より高いと外部の湿気を取り
込んで電解液濃度の低下と体積膨張とが起こり、放電性
能の低下,電解液の漏液を生じていた。一方、相対湿度
が前記の範囲以下の場合には電解液の蒸発が起こり、内
部抵抗の増大や放電性能の低下をもたらしていた。
2. Description of the Related Art Examples of a battery including a gas diffusion electrode and using oxygen as an active material include an air battery and a fuel cell. In particular, in a battery using an alkaline aqueous solution or a neutral aqueous solution as an electrolyte, steam flows in and out of the gas diffusion electrode (oxygen electrode) according to the internal vapor pressure, and the concentration and volume of the electrolyte in the battery change, This affected battery characteristics. The situation will be described with reference to FIG. 2 taking a button-type zinc-air battery as an example. In the figure, 1 is an oxygen electrode (air electrode), and 2 is a porous membrane supporting an oxygen electrode made of polytetrafluoroethylene (PTFE) which has gas diffusibility but blocks liquid. 3
Is a hole for taking in air from outside, 4 is a porous body for supporting an oxygen electrode and diffusing air, 5 and 6 are separators, and 7 is a negative electrode composed of a mixture of an aqueous potassium hydroxide solution and zinc calomel powder. Generally, an aqueous solution of potassium hydroxide is used as the alkaline electrolyte, and its concentration is 30 to 35%. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, and the concentration of the electrolyte and the volume expansion occur, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is lower than the above range, the electrolytic solution evaporates, resulting in an increase in internal resistance and a decrease in discharge performance.

従って、環境雰囲気によって著しい影響を受け易いた
め長期間保存後の特性に問題があり、空気電池や燃料電
池はある特定の分野用に設計されるにとどまり、汎用化
を図る上で大きな課題を有していた。なお、図中8は負
極容器、9は絶縁ガスケット、10は正極容器である。
Therefore, there is a problem in the characteristics after long-term storage because they are easily affected by the environmental atmosphere, and air cells and fuel cells are designed only for a specific field, and there is a major problem in achieving versatility. Was. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

発明が解決しようとする課題 これらの課題を改善するため、従来より種々の対策が
検討されてきた。例えば空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部への電解液漏出を防止す
る。あるいは紙または高分子材料よりなる不織布等の電
解液吸収材を設けて、電池外部への電解液漏出を防止す
る。さらに、空気孔を極端に小さくして酸素の供給量を
制限してまでも、水蒸気や炭酸ガスの電池内部への侵入
を防止する等の提案がなされているが、いずれの方法も
漏液防止や放電性能、特に長期間放電での性能に大きな
課題を残していた。これらの主要原因は空気中の水蒸気
の電池内への侵入による電解液の希釈と体積膨張、およ
び炭酸ガスの侵入による炭酸塩の生成に基づく放電反応
の阻害と空気流通経路の閉塞によるもので、外気が低湿
の場合には、逆に電解液中の水分の蒸発が性能低下の原
因となったいた。この原因を取り除くため、近年では、
水蒸気や炭酸ガスの透過を制御し、選択的に酸素を優先
して透過する膜を介して空気を酸素極に供給する方法、
例えばポリシロキサン系の無孔性の均一な薄膜や金属酸
化物あるいは金属原子を含有する有機化合物の薄膜と適
宜な多孔性膜とを一体化させた膜を用いる方法が提案さ
れていた。
Problems to be Solved by the Invention In order to improve these problems, various measures have conventionally been studied. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking out of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymer material is provided to prevent the electrolyte from leaking out of the battery. Further, there have been proposals to prevent water vapor or carbon dioxide gas from entering the inside of the battery, even if the supply of oxygen is restricted by making the air holes extremely small. And discharge performance, especially in long-term discharge. These major causes are due to the dilution and volume expansion of the electrolyte due to the intrusion of water vapor in the air into the battery, and the inhibition of the discharge reaction based on the generation of carbonate due to the intrusion of carbon dioxide gas and the obstruction of the air flow path, On the other hand, when the outside air was low in humidity, the evaporation of water in the electrolytic solution caused a decrease in performance. To eliminate this cause, in recent years,
A method of controlling the permeation of water vapor or carbon dioxide gas and supplying air to the oxygen electrode through a membrane that selectively permeates oxygen preferentially,
For example, there has been proposed a method of using a polysiloxane-based nonporous uniform thin film or a film obtained by integrating a thin film of a metal oxide or an organic compound containing a metal atom with an appropriate porous film.

しかしながら、現在までのところ、充分に有効な酸素
ガス選択透過性が得られないことや水蒸気,炭酸ガスの
透過阻止能が充分でないことなどから、満足な放電性能
が得られず、長期の使用や貯蔵に耐えられないという技
術課題を持っていたので、実用化に至っていない。
However, to date, satisfactory discharge performance has not been obtained due to insufficient effective oxygen gas selective permeability and insufficient permeation of water vapor and carbon dioxide gas. Since it had a technical problem that it could not withstand storage, it had not been put to practical use.

そこで、本発明は上記の電池の貯蔵性,長期使用にお
ける性能を改善するとともに低負荷から高負荷に至る放
電条件で満足な放電性能を得るために、大気中の酸素ガ
スを選択的に充分な速度で電池内に取り入れ、大気中の
水蒸気及び炭酸ガスの電磁内への侵入を長期にわたり防
止する有効な手段を提供することを目的とするものであ
る。
Accordingly, the present invention selectively improves the storability and long-term performance of the above-described battery and selectively suffices oxygen gas in the atmosphere in order to obtain satisfactory discharge performance under discharge conditions from low load to high load. It is an object of the present invention to provide an effective means for preventing the invasion of atmospheric water vapor and carbon dioxide gas into the electromagnetic field for a long period of time by taking it into the battery at a high speed.

課題を解決するための手段 本発明は、酸素を活物質とするガス拡散電極と、外気
に通じる空気取り入れ孔を有する電池容器を備えた電池
のガス拡散電極の空気取り入れ側と電池容器の内面との
間に、コバルトポルフィリン錯体膜、あるいはコバルト
ポルフィリン錯体とポリトリメチルシリルプロピンの混
合膜を酸素選択性透過膜として介在させるものである。
Means for Solving the Problems The present invention provides a gas diffusion electrode using oxygen as an active material, an air intake side of a gas diffusion electrode of a battery including a battery container having an air intake hole communicating with the outside air, and an inner surface of the battery container. Between them, a cobalt porphyrin complex film or a mixed film of a cobalt porphyrin complex and polytrimethylsilylpropyne is interposed as an oxygen-selective permeable film.

さらにこの膜を支持する多孔質基材として耐アルカリ
性に優れたポリプロピレン,ポリエチレン等をポリオレ
フィン,フッ素樹脂,ポリスルフォン等を選び検討を深
めて完成した。なお微多孔膜は単層であっても良いが、
取扱いや製造時あるいは使用時の強度を確保するため
に、必要に応じて耐アルカリ性不織布をさらに一体化し
た二層以上の構成としても良い。
Furthermore, as a porous base material for supporting the membrane, polypropylene, polyethylene, etc. having excellent alkali resistance were selected from polyolefin, fluororesin, polysulfone, etc., and the study was completed. The microporous membrane may be a single layer,
In order to ensure the strength during handling, production, or use, a two-layer or more structure in which an alkali-resistant nonwoven fabric is further integrated as necessary may be used.

本発明は、前記のコバルトポルフィリン錯体膜等を電
池用として鋭意検討の結果、上述の諸特性を総合的に満
たし、これを適用した電池の性能が極めて優れているこ
とを見い出し完成したものである。
The present invention has been completed, as a result of earnestly studying the above-described cobalt porphyrin complex film and the like for a battery, to comprehensively satisfy the above-described various properties, and to find that the performance of a battery to which the same is applied is extremely excellent. .

作用 この構成により後述の実施例における電池試験の結果
からも明らかなように、電池用としての酸素透過速度と
同時に、水蒸気や炭酸ガスを大気から遮断する効果も共
に満足すべき状態にあり、実用的な電池に要求される高
負荷放電性能と、高湿度や低湿度の雰囲気下で長時間放
電した場合の性能も共に満足することとなる。
Operation As is clear from the results of the battery test in the examples described later with this configuration, simultaneously with the oxygen permeation rate for the battery, the effect of shutting off water vapor and carbon dioxide from the atmosphere is in a state to be satisfied. Both the high-load discharge performance required for a typical battery and the performance when discharged for a long time in an atmosphere of high humidity or low humidity are satisfied.

実施例 以下、本発明の一実施例を示す。Example Hereinafter, an example of the present invention will be described.

コバルトポルフィリン錯体膜を酸素選択性透過膜とし
て使用した電池およびさらにコバルトポルフィリン錯体
膜とポリトリメチルシリルプロピンの混合膜を酸素選択
性透過膜として使用した電池、比較例として上記膜を使
用しない電池を試作評価して検討した。
Prototype of a battery using a cobalt porphyrin complex membrane as an oxygen-selective permeable membrane, a battery using a mixed membrane of a cobalt porphyrin complex membrane and polytrimethylsilylpropine as an oxygen-selective permeable membrane, and a battery not using the above membrane as a comparative example It was evaluated and examined.

比較例の場合は第2図と全く同一に構成した。コバル
トポルフィリン錯体膜を酸素選択性透過膜として使用し
た電池およびさらにコバルトポルフィリン錯体とポリト
リメチルシリルプロピンの混合膜を酸素選択性透過膜と
して使用した電池である、実施例1,2も電池構成の上か
らは第2図とほぼ同様であり、第1図に示すようにPTFE
の多孔膜2と酸素の拡散を行なう多孔体4との間にそれ
ぞれの実施例の複合膜が介在し、複合膜は錯体を含む側
が空気取り入れ高3の側に対抗するよう配設した点が、
第2図と異なるのみである。
In the case of the comparative example, the configuration was exactly the same as in FIG. The batteries using the cobalt porphyrin complex membrane as an oxygen-selective permeable membrane and the battery further using a mixed membrane of a cobalt porphyrin complex and polytrimethylsilylpropyne as the oxygen-selective permeable membrane. Is almost the same as in FIG. 2, and as shown in FIG.
The composite membrane of each embodiment is interposed between the porous membrane 2 and the porous body 4 that diffuses oxygen, and the composite membrane is arranged such that the side containing the complex faces the side of the air intake height 3. ,
It is different only from FIG.

試作した電池の形状は直径11.6mm,総高5.4mmであり、
比較的高負荷(75Ω)で20℃,常湿(60%RH)での連続
放電により電池内への空気中の酸素の取り込み速度の充
足性を評価し、比較的低負荷(3KΩ)で20℃,高湿度
(90%RH)及び低湿度(20%RH)での長期間連続放電に
より、長期の放電期間中の、雰囲気中の水蒸気の取り込
みや電池内の水分の蒸発、及び炭酸ガスの取り込みなど
電池性能への影響度を評価した。
The shape of the prototype battery is 11.6 mm in diameter and 5.4 mm in total height.
The sufficiency of oxygen uptake rate in the battery was evaluated by continuous discharge at 20 ° C and normal humidity (60% RH) at relatively high load (75Ω). Long-term continuous discharge at ℃, high humidity (90% RH) and low humidity (20% RH), captures water vapor in the atmosphere, evaporates water in the battery, and removes carbon dioxide gas during the long-term discharge period. The degree of influence on battery performance, such as loading, was evaluated.

試作した電池の内訳は第1表に示すとおりである。ま
た第2表に試作電池の性能試験結果を示す。
The breakdown of the prototype battery is shown in Table 1. Table 2 shows the performance test results of the prototype battery.

第2表において放電終止電圧はいずれも0.9Vであり、
重量変化は放電試験前後の増減を示しており、主として
放電中の水分の取り込い、あるいは蒸発の多少を示唆す
る数値である。
In Table 2, the end-of-discharge voltage was 0.9V,
The change in weight indicates an increase and decrease before and after the discharge test, and is a numerical value mainly indicating uptake of water during discharge or some degree of evaporation.

本発明の複合膜の支持体は、耐アルカリ性の材料で構
成されている。これらの電池の特性を複合膜を使用して
いない比較例と対比すると、最も端的に本発明の効果が
説明できる。
The support of the composite membrane of the present invention is made of an alkali-resistant material. The effects of the present invention can be most clearly explained by comparing the characteristics of these batteries with those of a comparative example using no composite membrane.

まず20℃,常湿での高負荷試験では放電期間が短く、
水分の取り込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば水分
や炭酸ガスの透過阻止はあまり考慮する必要がない。従
って、このような条件では比較例でも優れた特性が得ら
れる。これに対し前述の実施例1,2は比較例と同等の放
電特性が得られており、複合膜を透過する酸素の速度が
放電反応により消費される酸素の速度に充分追従してい
ることを示している。
First, the discharge period is short in the high load test at 20 ° C and normal humidity.
Since the influence of moisture uptake and evaporation and the influence of carbon dioxide gas are small, it is not necessary to consider the performance of the battery so much as to prevent the permeation of moisture and carbon dioxide gas if the supply rate of oxygen is sufficient. Therefore, under such conditions, excellent characteristics can be obtained even in the comparative example. On the other hand, in Examples 1 and 2 described above, the same discharge characteristics as those in Comparative Example were obtained, and it was confirmed that the velocity of oxygen permeating the composite membrane sufficiently followed the velocity of oxygen consumed by the discharge reaction. Is shown.

一方、低負荷放電の場合は放電期間が長く、しかも外
気が高湿度あるいは低湿度の場合には酸素の供給速度よ
りも水分や炭酸ガス、特に水分の透過防止が優れた電池
特性を得るために重要となる。水分や炭酸ガスの透過阻
止機構を持たない比較例の電池は水分の枯渇、あるいは
逆に水分の過剰取り入れに起因した漏液による空気孔の
閉塞などにより、放電の途中で電圧が低下し、高負荷試
験で得られた放電容量の一部分に相当する容量が得られ
るに過ぎない。また放電途中での漏液は実用面で致命的
な問題であることは言うまでもない。これに対し実施例
はいずれも極めて優れた性能を示し、これらは高負荷試
験の放電容量とほぼ等しい容量が得られている。これら
の傾向は試験雰囲気が高湿度,低湿度、いずれの場合と
も同様である。このことは、実施例の場合、複合膜の水
分の透過阻止効果が充分に発揮されていることを示して
いる。
On the other hand, in the case of low load discharge, the discharge period is long, and in the case where the outside air is at high humidity or low humidity, the water and carbon dioxide gas, especially the prevention of permeation of water, are superior to the supply rate of oxygen. It becomes important. The battery of the comparative example, which does not have a moisture or carbon dioxide gas permeation prevention mechanism, has a low voltage in the middle of discharge due to depletion of moisture or congestion of air holes due to leakage of liquid due to excessive intake of moisture. Only a capacity corresponding to a part of the discharge capacity obtained in the load test is obtained. Needless to say, liquid leakage during discharge is a fatal problem in practical use. On the other hand, all the examples show extremely excellent performances, and these have obtained capacities almost equal to the discharge capacity in the high load test. These tendencies are the same whether the test atmosphere is high humidity or low humidity. This indicates that, in the case of the example, the effect of preventing moisture permeation of the composite membrane is sufficiently exhibited.

以上を統合して、微多孔質膜上の表面にコバルトポル
フィリン錯体膜を形成した複合膜およびさらにコバルト
ポルフィリン錯体とポリトリメチルシリルプロピンの混
合膜を用いた試作電池は、高負荷特性,低負荷特性とも
に優れ、外部雰囲気の変化も良好である。特に耐アルカ
リ性の微多孔質膜を支持体に用いた場合に優れた電池を
提供できることが結論である。さらに実施例に示した複
合膜を支持する微多孔質膜は、他のアルカリ性を有する
微多孔膜、例えばナイロン製微多孔膜でも同様の効果が
得られる。また、実施例では支持体が微多孔膜とポリプ
ロピレン製の不織布と一体化した複合層とした場合を説
明したが、前記不織布がポリエチレン,ナイロン等の他
の耐アルカリ性のある素材であれば同様の効果が得られ
る。
By integrating the above, a composite membrane with a cobalt porphyrin complex membrane formed on the surface of a microporous membrane and a prototype battery using a mixed membrane of a cobalt porphyrin complex and polytrimethylsilylpropyne have high load characteristics and low load characteristics. Both are excellent, and the change of the external atmosphere is also good. In particular, it is concluded that an excellent battery can be provided when an alkali-resistant microporous membrane is used for the support. Further, the same effect can be obtained by using a microporous membrane having another alkalinity, such as a nylon microporous membrane, as the microporous membrane supporting the composite membrane shown in the examples. Further, in the embodiment, the case where the support is a composite layer formed by integrating a microporous membrane and a nonwoven fabric made of polypropylene has been described, but the same applies if the nonwoven fabric is another alkali-resistant material such as polyethylene or nylon. The effect is obtained.

なお、いずれの実施例の場合でも複合膜の薄膜側を空
気取り入れ孔側に当接させた場合でもほぼ同一の結果と
なることを確認している。
In each of the examples, it was confirmed that almost the same result was obtained even when the thin film side of the composite membrane was brought into contact with the air intake hole side.

また、上記実施例では本発明の複合膜を電池容器との
間に空気拡散用の多孔体を介して設置したが、本発明の
複合膜は微多孔膜、場合によってはさらに不織布を一体
化した支持体より構成されており、前記空気拡散用の多
孔体を除いても電池特性の差異はない。但し、複合膜の
強度が充分でなく複合膜が空気取り入れ孔側に変形する
ような場合には、多孔体を設置することにより複合膜が
安定形状を保つ。さらに、上記実施例では本発明の複合
膜を酸素極と間に酸素極を支持する多孔膜を介して設置
したが、酸素極の強度が充分であれば前記多孔膜は不用
であり、除いても電池特性は変わらない。また塩化アン
モニウム,塩化亜鉛などの中性塩の水溶液を電解液に用
いた空気電池に対しても、実施例で示したアルカリ性の
電解液を用いた電池と同様の効果があることも確認して
おき、実施例と同様の理由で本発明の作用を説明でき
る。
Further, in the above-described example, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention was a microporous membrane, and in some cases, a nonwoven fabric was further integrated. It is composed of a support, and there is no difference in battery characteristics even when the porous body for air diffusion is removed. However, when the strength of the composite membrane is not sufficient and the composite membrane is deformed toward the air intake hole, the porous membrane is provided to maintain the composite membrane in a stable shape. Further, in the above embodiment, the composite membrane of the present invention was installed via a porous membrane supporting the oxygen electrode between the oxygen electrode, but if the strength of the oxygen electrode is sufficient, the porous membrane is unnecessary and is excluded. However, the battery characteristics do not change. It was also confirmed that an air battery using an aqueous solution of a neutral salt such as ammonium chloride or zinc chloride as an electrolyte had the same effect as the battery using an alkaline electrolyte shown in the examples. The operation of the present invention can be explained for the same reason as in the embodiment.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス
拡散電極によれば、中性もしくはアルカリ性の水溶液を
電解液とする電池の高負荷から低負荷にわたる優れた実
用性能と、優れた耐漏液性,長期貯蔵性を具備させるこ
とができるという効果が得られる。
Effects of the Invention As is apparent from the above description, according to the oxygen gas diffusion electrode of the present invention, excellent practical performance from high load to low load of a battery using a neutral or alkaline aqueous solution as an electrolyte, and excellent The effect of being able to provide liquid leakage resistance and long-term storage properties is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の半裁断面図、第2図は複合膜を使用
していない従来のボタン形空気亜鉛電池の半裁断面図で
ある。 1……酸素極(空気極)、2……溌水膜、3……空気取
り入れ孔、4……多孔膜、5,6……セパレータ、7……
負極亜鉛、8……負極容器、9……絶縁ガスケット、10
……正極容器、11……複合膜。
FIG. 1 is a half sectional view of a button-type zinc-air battery used in the study of the examples and comparative examples of the present invention, and FIG. 2 is a half sectional view of a conventional button-type zinc-air battery not using a composite membrane. is there. 1 ... oxygen electrode (air electrode) 2 ... water-repellent membrane 3 ... air intake hole 4 ... porous membrane 5, 6 ... separator 7
Negative electrode zinc, 8 negative electrode container, 9 insulating gasket, 10
...... Positive electrode container, 11 ... Composite membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳原 伸行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−267973(JP,A) 特開 平1−267974(JP,A) 特開 昭59−221971(JP,A) 特開 昭59−75582(JP,A) 特開 昭57−105969(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 12/06 H01M 4/86 H01M 2/16────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Yanagihara 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP 1-2677973 (JP, A) JP 1- 267974 (JP, A) JP-A-59-221971 (JP, A) JP-A-59-75582 (JP, A) JP-A-57-105969 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 12/06 H01M 4/86 H01M 2/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素を活物質とするガス拡散電極と、外気
に通じる空気取り入れ孔を有する電池容器を備え、前記
ガス拡散電極の空気取り入れ側と前記電池容器の内面と
の間にコバルトポルフィリン錯体膜を設けたことを特徴
とする電池。
1. A cobalt porphyrin complex comprising: a gas diffusion electrode using oxygen as an active material; and a battery container having an air intake hole communicating with the outside air, wherein a cobalt porphyrin complex is provided between an air intake side of the gas diffusion electrode and an inner surface of the battery container. A battery provided with a membrane.
【請求項2】酸素を活物質とするガス拡散電極と、外気
に通じる空気取り入れ孔を有する電池容器を備え、前記
ガス拡散電極の空気取り入れ側と前記電池容器の内面と
の間にコバルトポルフィリン錯体とポリトリメチルシリ
ルプロピンの混合膜を設けたことを特徴とする電池。
And a battery container having a gas diffusion electrode using oxygen as an active material and an air intake hole communicating with the outside air. A cobalt porphyrin complex is provided between an air intake side of the gas diffusion electrode and an inner surface of the battery container. And a mixed film of polytrimethylsilylpropyne and polytrimethylsilylpropyne.
JP2101988A 1990-04-18 1990-04-18 Battery Expired - Fee Related JP2817343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101988A JP2817343B2 (en) 1990-04-18 1990-04-18 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101988A JP2817343B2 (en) 1990-04-18 1990-04-18 Battery

Publications (2)

Publication Number Publication Date
JPH042046A JPH042046A (en) 1992-01-07
JP2817343B2 true JP2817343B2 (en) 1998-10-30

Family

ID=14315223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101988A Expired - Fee Related JP2817343B2 (en) 1990-04-18 1990-04-18 Battery

Country Status (1)

Country Link
JP (1) JP2817343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121106B2 (en) * 2011-07-06 2017-04-26 日本碍子株式会社 Selective oxygen permeable substrate, positive electrode for air battery, air battery, and selective oxygen permeable membrane

Also Published As

Publication number Publication date
JPH042046A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
US5432022A (en) Coated cathode for rechargeable metal battery
AU2005329103B2 (en) Air cell with improved leakage resistance
JP2782837B2 (en) Battery
JP2817343B2 (en) Battery
JPH0417259A (en) Battery
JP2822485B2 (en) Battery
JP2782911B2 (en) Battery
JP2743574B2 (en) Battery
JPH09274936A (en) Air cell
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JP2757383B2 (en) Battery
JPH042067A (en) Battery
JPH04312771A (en) Air battery
JP2778078B2 (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JP2817341B2 (en) Battery
JPH04162374A (en) Battery
JP2734057B2 (en) Battery manufacturing method
JPH01267974A (en) Battery
JPH03108258A (en) Battery
JPH01267972A (en) Battery
JPH05205786A (en) Oxygen permeable compound membrane and battery using said compound membrane
JPH01267971A (en) Battery
JPH01267973A (en) Battery
JPH0475253A (en) Manufacture of battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees