JP2734057B2 - Battery manufacturing method - Google Patents

Battery manufacturing method

Info

Publication number
JP2734057B2
JP2734057B2 JP1038551A JP3855189A JP2734057B2 JP 2734057 B2 JP2734057 B2 JP 2734057B2 JP 1038551 A JP1038551 A JP 1038551A JP 3855189 A JP3855189 A JP 3855189A JP 2734057 B2 JP2734057 B2 JP 2734057B2
Authority
JP
Japan
Prior art keywords
battery
oxygen
porous substrate
film
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1038551A
Other languages
Japanese (ja)
Other versions
JPH02216756A (en
Inventor
公明 芳野
重人 野矢
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1038551A priority Critical patent/JP2734057B2/en
Publication of JPH02216756A publication Critical patent/JPH02216756A/en
Application granted granted Critical
Publication of JP2734057B2 publication Critical patent/JP2734057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、ア
ルカリ水溶液等の電解液と、亜鉛、マグネシウム、アル
ミニウム等の金属、もしくはアルコール、ヒドラジン、
水素等の負極活物質とを備えた電池の製造法に関するも
のである。
The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolytic solution such as an alkaline aqueous solution, a metal such as zinc, magnesium, and aluminum, or an alcohol, hydrazine,
The present invention relates to a method for producing a battery including a negative electrode active material such as hydrogen.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池として
は、空気電池、燃料電池等がある。特にアルカリ水溶
液、中性水溶液を電解質として使用する電池において
は、電池内部の蒸気圧に応じてガス拡散電極(酸素極)
から水蒸気の出入りがあり、電池内電解液の濃度変化、
体積変化が起こり、これが電池諸特性に影響を与えてい
た。ボタン形空気亜鉛電池を例にとり、第2図を用いて
その状況を説明する。図中1は酸素極(空気極)、2は
ガス拡散性はあるが液体は阻止するポリテトラフルオロ
エチレン(PTFE)よりなる酸素極を支持する多孔膜であ
る。3は外部からの空気取り入れ孔、4は酸素極の支持
と空気の拡散を行なう多孔体、5,6はセパレータ、7は
水酸化カリウム水溶液と汞化亜鉛粉末との混合体から成
る負極である。一般にアルカリ電解液は水酸化カリウム
水溶液を使用し、その濃度は30〜35%で使用されてい
る。このため相対湿度が47〜59%より高いと外部の湿気
を取り込み電解液濃度の低下と体積膨張とが起こり、放
電性能の低下、電解液の漏液を生じていた。一方、相対
湿度が前記の範囲以下の場合には電解液の蒸発が起こ
り、内部抵抗の増大や放電性能の低下をもたらしてい
た。従って、環境雰囲気によって著しい影響を受け易い
ため長時間保存後の特性に問題があり、空気電池や燃料
電池はある特定の分野用に設計されるにとどまり、汎用
化を図る上で大きな課題を有していた。なお、図中8は
負極容器、9は絶縁ガスケット、10は正極容器である。
2. Description of the Related Art Examples of a battery including a gas diffusion electrode and using oxygen as an active material include an air battery and a fuel cell. In particular, in a battery using an alkaline aqueous solution or a neutral aqueous solution as an electrolyte, a gas diffusion electrode (oxygen electrode) according to the vapor pressure inside the battery.
Flow of steam from and out, changes in the concentration of electrolyte in the battery,
A volume change occurred, which affected battery characteristics. The situation will be described with reference to FIG. 2 taking a button-type zinc-air battery as an example. In the figure, 1 is an oxygen electrode (air electrode), and 2 is a porous membrane supporting an oxygen electrode made of polytetrafluoroethylene (PTFE) which has gas diffusibility but blocks liquid. Reference numeral 3 denotes a hole for taking in air from outside, 4 denotes a porous body for supporting an oxygen electrode and diffusing air, 5 and 6 denote separators, and 7 denotes a negative electrode composed of a mixture of an aqueous solution of potassium hydroxide and zinc aluminide. . Generally, an alkaline electrolyte uses an aqueous solution of potassium hydroxide at a concentration of 30 to 35%. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, the concentration of the electrolytic solution is reduced and the volume is expanded, so that the discharge performance is reduced and the electrolyte is leaked. On the other hand, when the relative humidity is lower than the above range, the electrolytic solution evaporates, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, there is a problem in the characteristics after long-term storage because they are remarkably affected by the environmental atmosphere, and air cells and fuel cells are designed only for a specific field, and there is a major problem in achieving versatility. Was. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

これらの課題を改善するため、従来より種々の対策が
検討されてきた。例えば、空気孔周辺の一部に電解液と
反応する物質を挿入し、電池外部への電解液漏出を防止
する。あるいは、紙または高分子材料より成る不織布等
と電解液吸収材を設けて、電池外部への電解液漏出を防
止する。さらに、空気孔を極端に小さくして酸素の供給
量を制限してまでも、水蒸気や炭酸ガスの電池内部への
侵入を防止する等の提案がなされているが、いずれの方
法も漏液防止や放電性能、特に長期間放電での性能に大
きな課題を残していた。これらの主要原因は空気中の水
蒸気の電池内への浸入による電解液の希釈と体積膨張、
および炭酸ガスの浸入による炭酸塩の生成に基づく放電
反応の阻害と空気流通経路の閉塞によるものであり、外
気が低湿の場合には、逆に電解液中の水分の蒸発が性能
低下の原因となっていた。この原因を取り除くため、近
年では、水蒸気や炭酸ガスの透過を制御し、選択的に酸
素を優先して透過する膜を介して空気を酸素極に供給す
る方法、例えばポリシロキサン系の無孔性の均一な薄膜
や、金属酸化物あるいは金属原子を含有する有機化合物
の薄膜と適宜な多孔性膜とを一体化させた膜を用いる方
法が提案されていた。
Various measures have conventionally been studied to improve these problems. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent leakage of the electrolyte to the outside of the battery. Alternatively, a nonwoven fabric or the like made of paper or a polymer material and an electrolyte absorbing material are provided to prevent leakage of the electrolyte to the outside of the battery. Further, there have been proposals to prevent water vapor or carbon dioxide gas from entering the inside of the battery, even if the supply of oxygen is restricted by making the air holes extremely small. And discharge performance, especially in long-term discharge. The main causes of these are electrolyte dilution and volume expansion due to the penetration of water vapor in the battery,
This is due to the inhibition of the discharge reaction based on the generation of carbonate due to the intrusion of carbon dioxide gas and the obstruction of the air flow path.When the outside air is low in humidity, the evaporation of water in the electrolyte causes the performance to deteriorate. Had become. In recent years, in order to eliminate this cause, a method of controlling the permeation of water vapor or carbon dioxide gas and selectively supplying air to the oxygen electrode through a membrane that preferentially transmits oxygen, for example, a polysiloxane-based nonporous A method using a uniform thin film or a film obtained by integrating a thin film of a metal oxide or an organic compound containing a metal atom with an appropriate porous film has been proposed.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素
ガス選択透過性が得られないことや水蒸気、炭酸ガスの
透過阻止能が充分でないことなどから、満足な放電性能
が得られず、長期の使用や貯蔵に耐えられないという技
術課題を持っていたので、実用化に至っていない。
Problems to be Solved by the Invention However, to date, satisfactory discharge performance has been obtained due to insufficient selective oxygen gas permeability and insufficient permeation inhibition of water vapor and carbon dioxide gas. However, it had a technical problem that it could not withstand long-term use and storage, so it had not been put to practical use.

そこで、本発明は上記の電池の貯蔵性、長期使用にお
ける性能を改善するとともに低負荷から高負荷に到る放
電条件で満足な放電性能を得るために、大気中の酸素ガ
スを選択的に充分な速度で電池内に取り入れ、大気中の
水蒸気及び炭酸ガスの電池内への侵入を長期にわたり防
止する有効な手段を提供することを目的とするものであ
る。
Therefore, the present invention selectively and sufficiently satisfies the oxygen gas in the atmosphere in order to improve the storability of the battery and the performance in long-term use and to obtain a satisfactory discharge performance under discharge conditions from low load to high load. It is an object of the present invention to provide an effective means for taking in the battery at a high speed and preventing the invasion of atmospheric water vapor and carbon dioxide gas into the battery for a long time.

課題を解決するための手段 本発明は酸素を活物質とするガス拡散電極と、外気に
通じる空気取り入れ孔を有する電池容器を備えた電池に
おいて、ガス拡散電極の空気取り入れ側と電池容器の内
面との間に、珪弗化水素酸のシリカ飽和水溶液に硼酸を
添加した処理液に多孔質基材を浸漬することによりシリ
カ膜を多孔質基材上に形成した複合膜を介在させるもの
である。
Means for Solving the Problems The present invention is a gas diffusion electrode using oxygen as an active material, and a battery provided with a battery container having an air intake hole communicating with the outside air, the air intake side of the gas diffusion electrode and the inner surface of the battery container. In the meantime, a composite film in which a silica film is formed on a porous substrate by immersing the porous substrate in a treatment liquid obtained by adding boric acid to a saturated aqueous solution of hydrosilicofluoric acid is interposed.

上記シリカ膜は無孔性の均質な薄膜である。酸素の選
択透過性を有し、充分な酸素透過速度と水蒸気、炭酸ガ
スの透過阻止能を得るには、通常3.0μm以下の厚さが
適している。この薄膜を支持する多孔質基材は気体が容
易に透過し、なおかつ、その表面は上記の薄膜を均一に
無孔状態で支持するに適した平滑性と孔径を備えた微多
孔膜が好ましく、前記微多孔膜表面の平均孔径が1.5μ
m以下であることが好ましい。
The silica film is a nonporous homogeneous thin film. In order to have a selective permeability for oxygen and to obtain a sufficient oxygen permeation rate and an ability to prevent permeation of water vapor and carbon dioxide, a thickness of usually 3.0 μm or less is suitable. The porous substrate supporting this thin film is easily permeated by gas, and the surface thereof is preferably a microporous film having smoothness and pore diameter suitable for supporting the above thin film uniformly in a non-porous state, The average pore size of the microporous membrane surface is 1.5μ
m or less.

本発明は、酸素選択透過性の優れた膜として珪弗化水
素酸のシリカ飽和水溶液に硼酸を添加した処理液に多孔
質基材を浸漬することにより形成されるシリカ膜の特性
に着目した。特に0.5〜3.0モル/の濃度のシリカ飽和
珪弗化水素酸水溶液に1.0×10-2〜4.0モル/の硼酸を
添加した溶液に、多孔質基材を浸漬することが望まし
く、より好ましくは1.0〜2.5モル/の濃度のシリカ飽
和珪弗化水素酸水溶液に1.5×10-2〜5.0×10-2モル/
の硼酸を添加した溶液に多孔質基材を浸漬することが望
ましい。この方法によって得られる薄膜はピンホールの
無い緻密なシリカ膜か得られる。
The present invention has focused on the characteristics of a silica film formed by immersing a porous substrate in a treatment solution obtained by adding boric acid to a saturated aqueous solution of hydrofluorofluoric acid as a film having excellent oxygen selective permeability. In particular, it is desirable to immerse the porous substrate in a solution obtained by adding 1.0 × 10 -2 to 4.0 mol / boric acid to a silica-saturated hydrofluoric acid aqueous solution having a concentration of 0.5 to 3.0 mol /, more preferably, 1.0 to 10 mol. 1.5 × 10 -2 to 5.0 × 10 -2 mol / in a silica-saturated hydrofluoric acid aqueous solution having a concentration of
It is desirable to immerse the porous substrate in a solution containing boric acid. The thin film obtained by this method is a dense silica film without pinholes.

さらに、このシリカ膜を支持する多孔質基材には耐ア
ルカリ性に優れたポリプロピレン、ポリエチレン等のポ
リオレフィン、フッ素樹脂、ポリスルフォン等を選び検
討を深めて完成した。なお、微多孔膜は単層であっても
良いが、取扱いや製造時あるいは使用時の強度を確保す
るために、必要に応じて耐アルカリ性不織布をさらに一
体化した二層以上の構成としても良い。
Further, the porous substrate supporting the silica film was selected from polyolefins such as polypropylene and polyethylene having excellent alkali resistance, fluororesins, polysulfone, and the like. The microporous membrane may be a single layer, but may have a configuration of two or more layers further integrated with an alkali-resistant nonwoven fabric, if necessary, in order to ensure strength during handling, production or use. .

従来、シリカ膜の形成法としてCVD法、ディッピィン
グ法、スパッタリング法などが試みられてきたが、シリ
カ膜の均一性、緻密性にかけることや不純物の混入、欠
陥の発生などの問題点が多かった。本発明では室温近く
の溶液中に多孔質基材を浸漬するだけで緻密なシリカ膜
が得られる。この複合膜を高負荷での放電条件でも満足
な放電性能を得られる電池用として適用するためには、
酸素透過速度が充分大きいことと水蒸気及び炭酸ガスの
透過阻止能が優れていることが重要な要件であるが、こ
れらの特性は未知な点が多く、電池への適用を検討され
た例は無い。
Conventionally, CVD method, dipping method, sputtering method, etc. have been tried as a method for forming a silica film, but there are many problems such as uniformity and denseness of the silica film, contamination of impurities, generation of defects, etc. . In the present invention, a dense silica film can be obtained only by immersing the porous substrate in a solution near room temperature. In order to apply this composite membrane for batteries that can obtain satisfactory discharge performance even under high load discharge conditions,
It is an important requirement that the oxygen permeation rate be sufficiently high and the ability to block water vapor and carbon dioxide gas permeation is important, but there are many unknowns about these characteristics, and there has been no example of application to batteries. .

本発明は、多孔質基材を珪弗化水素酸のシリカ飽和水
溶液に硼酸を添加した処理液に浸漬することにより基材
表面にシリカ膜を形成し、得られた複合膜を電池用とし
て鋭意検討の結果、上述の諸特性を総合的に満たし、こ
れを適用した電池の性能が極めて優れていることを見い
出し、完成したものである。
The present invention forms a silica film on the surface of a porous substrate by immersing the porous substrate in a treatment solution obtained by adding boric acid to a saturated aqueous solution of hydrofluoric acid in silica, and earnestly uses the obtained composite film for batteries. As a result of the study, the above-mentioned various characteristics were comprehensively satisfied, and it was found that the performance of a battery to which the characteristics were applied was extremely excellent, and the product was completed.

作 用 この構成により上述の複合膜は後述の実施例における
電池試験の結果からも明らかなように、電池用としての
酸素透過速度と同時に、水蒸気や炭酸ガスを大気から遮
断する効果も共に満足すべき状態であることにより、実
用的な電池に要求される高負荷放電性能と、高湿度や低
湿度の雰囲気下で長時間放電した場合の性能も共に満足
することとなる。
Operation With this configuration, the above-mentioned composite membrane satisfies not only the oxygen permeation rate for batteries but also the effect of shutting off water vapor and carbon dioxide from the atmosphere, as is clear from the results of battery tests in the examples described later. By being in the proper state, both the high load discharge performance required for a practical battery and the performance when discharged for a long time in an atmosphere of high humidity or low humidity are satisfied.

実施例 厚さ200μmのポリテトラフルオロエチレンの多孔性
フィルムを多孔質基材として用い、その表面の汚れを除
去するために0.5%弗化水素液に多孔質基材を10分間浸
漬し、水洗後、処理液1に対して2.5×10-2モルの硼
酸を添加した1.5モル/のシリカ飽和珪弗化水素酸水
溶液に35℃で24時間浸漬したところ、1600オングトロー
ム厚みのシリカ膜がその表面に析出し、多孔質基材とシ
リカ膜とにより形成された複合膜が得られた。
Example A polytetrafluoroethylene porous film having a thickness of 200 μm was used as a porous substrate, and the porous substrate was immersed in a 0.5% hydrogen fluoride solution for 10 minutes to remove dirt on the surface, and washed with water. When immersed in a 1.5 mol / l aqueous solution of silica-saturated hydrofluoric acid containing 2.5 × 10 -2 mol of boric acid added to the treatment liquid 1 at 35 ° C. for 24 hours, a 1600 angstrom thick silica film was formed on the surface A composite film formed by deposition and a porous substrate and a silica film was obtained.

この複合膜のガス透過率を差圧式ガス透過率測定装置
(柳本製作所(株)製、GTR−10XD)を用いて測定し
た。前記複合膜の水蒸気透過速度は8×10-4ml(stp)/
cm2・sec・cmHgであり、従来の既存の高分子膜よりもは
るかに水蒸気は透さず、なおかつ酸素を電池の放電特性
に必要な量を透過させる膜であることが明らかになっ
た。
The gas permeability of this composite membrane was measured using a differential pressure gas permeability measuring device (GTR-10XD, manufactured by Yanagimoto Seisakusho Co., Ltd.). The water vapor transmission rate of the composite membrane is 8 × 10 -4 ml (stp) /
cm is 2 · sec · cmHg, conventional much water vapor is not-tight than the existing polymer film, it was found to be a film for yet oxygen transmission of the amount required to discharge characteristics of the battery.

本発明の効果を確かめるために作製した複合膜を使用
した電池、比較例として複合膜を使用していない電池を
試作評価して検討した。まず、複合膜を使用していない
比較例の場合は第2図と全く同一に構成した。複合膜を
使用した電池も第2図とほぼ同様であり、第1図に示す
ようにPTFEの多孔膜2と酸素の拡散を行なう多孔体4と
の間に複合膜11が介在するよう配設した点が、第2図と
異なるのみである。
A battery using the composite membrane produced in order to confirm the effect of the present invention, and a battery not using the composite membrane as a comparative example were evaluated by trial production and examined. First, in the case of the comparative example in which no composite membrane was used, the configuration was exactly the same as that in FIG. The battery using the composite membrane is almost the same as that shown in FIG. 2, and as shown in FIG. 1, the composite membrane 11 is interposed between the porous PTFE membrane 2 and the porous body 4 for diffusing oxygen. This is the only difference from FIG.

試作した電池の形状は直径11.6mm,総高5.4mmであり、
比較的高負荷(75Ω)で20℃、常湿(60%RH)での連続
放電により電池内への空気中の酸素の取り込み速度の充
足性を評価し、比較的低負荷(3KΩ)で20℃、高湿度
(90%RH)及び低湿度(20%RH)での長期間連続放電に
より、長期の放電期間中の、雰範囲中の水蒸気の取り込
みや電池内の水分の蒸発及び炭酸ガスの取り込みなど電
池性能への影響度を評価した。
The shape of the prototype battery is 11.6 mm in diameter and 5.4 mm in total height.
Evaluate the sufficiency of oxygen uptake rate in the battery by continuous discharge at 20 ° C and normal humidity (60% RH) at relatively high load (75Ω). Long-term continuous discharge at ℃, high humidity (90% RH) and low humidity (20% RH), during the long-term discharge, take in water vapor in the atmosphere, evaporate water in the battery, and remove carbon dioxide. The degree of influence on battery performance, such as loading, was evaluated.

第1表に試作電池の性能試験結果を示す。 Table 1 shows the performance test results of the prototype battery.

第1表において放電終止電圧はいずれも0.9Vであり、
重量変化は放電試験前後の増減を示しており、主として
放電中の水分の取り込み、あるいは蒸発の多少を示唆す
る数値である。
In Table 1, the discharge end voltage is 0.9V,
The change in weight indicates an increase or decrease before and after the discharge test, and is a numerical value mainly indicating uptake of moisture during discharge or some degree of evaporation.

まず20℃、常湿での高負荷試験では放電期間が短く、
水分の取り込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば水分
や炭酸ガスの透過阻止はあまり考慮する必要が無い。従
って、このような条件では比較例でも優れた特性が得ら
れる。これに対し、前述の試作例は比較例と同等の放電
特性が得られており、この結果は複合膜を酸素が透過す
る速度が放電反応で消費される酸素の速度に充分追従し
ていることを示している。
First, in a high load test at 20 ° C and normal humidity, the discharge period is short,
Since the influence of moisture uptake and evaporation and the influence of carbon dioxide gas are small, it is not necessary to consider the performance of the battery as long as the supply rate of oxygen is sufficient to prevent the permeation of moisture and carbon dioxide gas. Therefore, under such conditions, excellent characteristics can be obtained even in the comparative example. On the other hand, in the above-mentioned prototype, the discharge characteristics equivalent to those of the comparative example were obtained, and this result indicates that the rate at which oxygen permeated the composite membrane sufficiently followed the rate of oxygen consumed in the discharge reaction. Is shown.

一方、低負荷放電の場合は放電期間が長いため、外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や炭酸ガス、特に水分の透過防止が優れた電池特
性を得るために重要となる。水分や炭酸ガスの透過阻止
機構を持たない比較例の電池は水分の枯渇、あるいは逆
に水分の過剰取り入れのために生ずる漏液による空気孔
の閉塞などにより、放電の途中で電圧が低下し、高負荷
試験で得られた放電容量の一部分に相当する容量が得ら
れるに過ぎない。また、放電途中での漏液は実用面で致
命的な問題であることは言うまでもない。これに対し、
実施例は極めて優れた性能を示し、これらは高負荷試験
の放電容量とほぼ等しい容量が得られている。これらの
傾向は試験雰囲気が高湿度、低湿度、いずれの場合とも
同様である。このことは、実施例の場合、複合膜の水分
の透過阻止効果が充分に発揮されていることを示してい
る。
On the other hand, in the case of low-load discharge, since the discharge period is long, in the case where the outside air is at high humidity or low humidity, moisture and carbon dioxide gas, especially at the time of high humidity or low humidity, are required to obtain excellent battery characteristics in preventing permeation of moisture. It becomes important. The battery of the comparative example having no moisture or carbon dioxide gas permeation prevention mechanism has a voltage drop during discharge due to depletion of moisture or congestion of air holes due to leakage due to excessive intake of moisture, Only a capacity corresponding to a part of the discharge capacity obtained in the high load test is obtained. Needless to say, leakage during discharge is a serious problem in practical use. In contrast,
The examples show extremely excellent performance, and these have capacities almost equal to the discharge capacity of the high load test. These tendencies are the same whether the test atmosphere is high humidity or low humidity. This indicates that, in the case of the example, the effect of preventing moisture permeation of the composite membrane is sufficiently exhibited.

以上を総合して、珪弗化水素酸のシリカ飽和水溶液に
硼酸を添加した処理液に多孔質基材を浸漬することによ
りシリカ膜を多孔質基材上に形成した複合膜を用いた試
作電池は、高負荷特性、低負荷特性ともに優れ、外部雰
囲気の変化も良好であり、特に耐アルカリ性の多孔質膜
を支持体に用いた場合に優れた電池を提供できることが
結論できる。さらに、実施例に示した多孔質基体は他の
アルカリ性を有する多孔質基材(例えばナイロン製微多
孔膜)でも同様の効果が得られる。
To summarize the above, a prototype battery using a composite membrane in which a silica film is formed on a porous substrate by immersing the porous substrate in a treatment solution obtained by adding boric acid to a saturated aqueous solution of hydrosilicofluoric acid. It can be concluded that the battery has excellent high-load characteristics and low-load characteristics, has a good change in the external atmosphere, and can provide an excellent battery particularly when an alkali-resistant porous film is used for the support. Furthermore, the same effect can be obtained by using the porous substrate shown in the examples with other porous substrates having alkalinity (for example, a nylon microporous film).

なお、本発明の複合膜を上記実施例では電池容器との
間に空気拡散用の多孔体を介して設置したが、本発明の
複合膜は微多孔膜、場合によってはさらに不織布を一体
化した支持体より構成されており、前記空気拡散用の多
孔体を除いても電池特性の差異はない。但し、複合膜の
強度が充分でなく空気取り入れ孔側に変形するような場
合には、多孔体を設置することにより複合膜が安定形状
を保つ。さらに、上記実施例では本発明の複合膜を酸素
極との間に酸素極を支持する多孔膜を介して設置した
が、酸素極の強度が充分であれば前記多孔膜は不用であ
り、除いても電池特性は変わらない。また塩化アンモニ
ウム、塩化亜鉛などの中性塩の水溶液を電解液に用いた
空気電池に対しても、実施例で示したアルカリ性の電解
液に用いた電池と同様の効果があることも確認してお
り、実施例と同様の理由で本発明の作用を説明できる。
In addition, the composite membrane of the present invention was installed via a porous body for air diffusion between the battery container and the battery container in the above embodiment, but the composite membrane of the present invention was a microporous membrane, and in some cases, further integrated with a nonwoven fabric. It is composed of a support, and there is no difference in battery characteristics even when the porous body for air diffusion is removed. However, if the strength of the composite membrane is not sufficient and the composite membrane is deformed toward the air intake hole, the porous membrane is provided to keep the composite membrane in a stable shape. Furthermore, in the above embodiment, the composite membrane of the present invention was installed via a porous membrane supporting the oxygen electrode between the oxygen membrane and the oxygen electrode. However, if the strength of the oxygen electrode is sufficient, the porous membrane is unnecessary and is excluded. However, the battery characteristics do not change. Also, it was confirmed that an air battery using an aqueous solution of a neutral salt such as ammonium chloride or zinc chloride as an electrolytic solution had the same effect as the battery using an alkaline electrolytic solution shown in Examples. Thus, the operation of the present invention can be explained for the same reason as in the embodiment.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス
拡散電極によれば、中性もしくはアルカリ性の水溶液を
電解液とする電池の高負荷から低負荷にわたる優れた実
用性能と、優れた耐漏液性,長期貯蔵性を具備させるこ
とができるという効果が得られる。
Effects of the Invention As is apparent from the above description, according to the oxygen gas diffusion electrode of the present invention, excellent practical performance from high load to low load of a battery using a neutral or alkaline aqueous solution as an electrolyte, and excellent The effect of being able to provide liquid leakage resistance and long-term storage properties is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の断面図、第2図は複合膜を使用して
いない従来のボタン形空気亜鉛電池の断面図である。 1……酸素極(空気極)、2……撥水膜、3……空気取
り入れ孔、4……多孔膜、5,6……セパレータ、7……
負極亜鉛、8……負極容器、9……絶縁ガスケット、10
……正極容器、11……複合膜。
FIG. 1 is a cross-sectional view of a button-type zinc-air battery used for studying the examples and comparative examples of the present invention, and FIG. 2 is a cross-sectional view of a conventional button-type zinc-air battery not using a composite membrane. 1 ... oxygen electrode (air electrode) 2 ... water repellent membrane 3 ... air intake hole 4 ... porous membrane 5, 6 ... separator 7
Negative electrode zinc, 8 negative electrode container, 9 insulating gasket, 10
...... Positive electrode container, 11 ... Composite membrane.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素を活物質とするガス拡散電極と、外気
に通じる空気取り入れ孔を有する電池容器を備え、前記
ガス拡散電極の空気取り入れ側と前記電池容器の内面と
の間に、珪弗化水素酸のシリカ飽和水溶液に硼酸を添加
した処理液に多孔質基材を浸漬することによりシリカ膜
を多孔質基材上に形成した複合膜を介在されたことを特
徴とする電池の製造法。
A gas diffusion electrode using oxygen as an active material; and a battery container having an air intake hole communicating with the outside air. A silicon fluoride is provided between an air intake side of the gas diffusion electrode and an inner surface of the battery container. A method for producing a battery, characterized in that a composite film having a silica film formed on a porous substrate is interposed by immersing the porous substrate in a treatment solution obtained by adding boric acid to a saturated aqueous solution of hydrofluoric acid in silica. .
【請求項2】複合膜を形成する多孔質基材が、ポリオレ
フィン,フッ素樹脂,ポリスルホンのいずれかを主成分
とする耐アルカリ性微多孔性膜であることを特徴とする
特許請求の範囲第1項記載の電池の製造法。
2. The method according to claim 1, wherein the porous substrate forming the composite film is an alkali-resistant microporous film containing any one of polyolefin, fluororesin and polysulfone as a main component. The method for producing the battery according to the above.
JP1038551A 1989-02-17 1989-02-17 Battery manufacturing method Expired - Fee Related JP2734057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038551A JP2734057B2 (en) 1989-02-17 1989-02-17 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038551A JP2734057B2 (en) 1989-02-17 1989-02-17 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JPH02216756A JPH02216756A (en) 1990-08-29
JP2734057B2 true JP2734057B2 (en) 1998-03-30

Family

ID=12528430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038551A Expired - Fee Related JP2734057B2 (en) 1989-02-17 1989-02-17 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP2734057B2 (en)

Also Published As

Publication number Publication date
JPH02216756A (en) 1990-08-29

Similar Documents

Publication Publication Date Title
JP4927071B2 (en) Air cell with improved leakage resistance
JP2734057B2 (en) Battery manufacturing method
JPH0417259A (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JP2782837B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JP2743574B2 (en) Battery
JP2778078B2 (en) Battery
JP2817343B2 (en) Battery
JP2822485B2 (en) Battery
JP2757383B2 (en) Battery
JP2782911B2 (en) Battery
JPH042067A (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH04312771A (en) Air battery
JP6799406B2 (en) Bento
JP2817341B2 (en) Battery
JPH05205786A (en) Oxygen permeable compound membrane and battery using said compound membrane
JPH01267974A (en) Battery
JPH04162374A (en) Battery
JPH01267971A (en) Battery
JPH01195678A (en) Cell
JPH0287459A (en) Battery
JPH05200928A (en) Oxygen-permeable composite membrane and battery using the same
JPH01267972A (en) Battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees