JPH01267971A - Battery - Google Patents

Battery

Info

Publication number
JPH01267971A
JPH01267971A JP9600288A JP9600288A JPH01267971A JP H01267971 A JPH01267971 A JP H01267971A JP 9600288 A JP9600288 A JP 9600288A JP 9600288 A JP9600288 A JP 9600288A JP H01267971 A JPH01267971 A JP H01267971A
Authority
JP
Japan
Prior art keywords
battery
composite membrane
membrane
film
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9600288A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Nobuyuki Yanagihara
伸行 柳原
Masaaki Yoshino
芳野 公明
Hiroshi Fukuda
浩 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9600288A priority Critical patent/JPH01267971A/en
Publication of JPH01267971A publication Critical patent/JPH01267971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Abstract

PURPOSE:To prevent the CO2 gas and water vapor in the atmosphere from intruding into a battery for a long period of time by interposing a complex film, which is formed from a film of polyvinyltriorganosilane and a fine porosity film supporting it, between the air intake side of a gas diffusion electrode and the inner surface of a battery jar. CONSTITUTION:A battery is equipped with a gas diffusion electrode 1 using oxygen as active substance and a battery jar having an air intake hole 3 leading to the outside air, and an oxygen selective permeative complex film 11 formed from a film 2 of polyvinyltriorganosilane and a fine porosity film 4 supporting it is interposed between the inner surface of the battery jar and the air intake side of the gas diffusion electrode 1. This film of polyvinyltriorganosilane is non-porous, homogeneous, and having oxygen selective permeability, and is suitably of 1.0mum thick or less in order to provide sufficient oxygen permeating speed and the permeation hindering ability for water vapor and CO2 gas. This permits provision of excellent performance in practical application, fine anti-leak property, and a long-time storing characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、アルミ
ニウム等の金属、もしくはアルコール、ヒドラジン、水
素等の負極活物質とを備えた電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a battery equipped with a negative electrode active material such as.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性水溶液を電解質として使用する電池においては、ガ
ス拡散電極(酸素極)から内部の蒸気圧に応じて水蒸気
の出入りがあり、電池内電解液の濃度変化2体積変化が
起こり、これが電池緒特性に影響を与えていた。ボタン
型空気電池を例にとり、第1図を用いてその状況を説明
する。1は酸素極(空気極)、2はガス拡散性はあるが
液体は阻止するポリテトラフルオロエチレン(PTFE
 )よりなる酸素極を支持する多孔膜である。3は外部
からの空気取入れ孔、4は空気の拡散を行う多孔体、5
,6はセパレーター、7は水酸化カリウム水溶液と氷化
亜鉛粉末との混合体から成る負極である。一般にアルカ
リ電解液は水酸化カリウム溶液を使用し、その濃度は3
0〜36チである。このため相対湿度が47〜69チよ
り高いと外部の湿気を取り込み電解液濃度の低下と体積
膨張とが起こり、放電性能の低下、電解液の漏液を生じ
ていた。一方、相対湿度が前記以下の場合には電解液の
蒸発が起こり、内部抵抗の増大や放電性能の低下をもた
らしていた。従って、環境雰囲気によって著しい影響を
受は易いため長期間保存後の特性に問題があり、空気電
池や燃料電池はある特定の分野用に設計されるにとどま
り、汎用化を図る上で大きな課題を有していた。なお、
図中8は負極容器、9は絶縁ガスケット、1oは正極容
器である。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In a battery that uses a neutral aqueous solution as an electrolyte, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in the concentration and volume of the electrolyte in the battery, and this changes the battery characteristics. was influencing. Taking a button-type air battery as an example, the situation will be explained using FIG. 1 is an oxygen electrode (air electrode), 2 is polytetrafluoroethylene (PTFE) that has gas diffusion properties but blocks liquids.
) is a porous membrane that supports an oxygen electrode. 3 is an air intake hole from the outside, 4 is a porous body that diffuses air, and 5 is a porous body that diffuses air.
, 6 is a separator, and 7 is a negative electrode made of a mixture of an aqueous potassium hydroxide solution and frozen zinc powder. Generally, potassium hydroxide solution is used as alkaline electrolyte, and its concentration is 3
It is 0 to 36chi. For this reason, when the relative humidity is higher than 47 to 69 degrees, external moisture is taken in, causing a decrease in the concentration of the electrolyte and volume expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and there are major challenges in making them more general-purpose. had. In addition,
In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 1o is a positive electrode container.

これらの課題を改善するため、従来より種々の対策が検
討されてきた。例えば、空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部への電解液漏出を防止す
る。あるいは紙または高分子材料より成る不織布等の電
解液吸収材を設けて、電池外部への電解液漏出を防止す
る。さらには空気孔を極端に小さくして酸素の供給量を
制限してまでも、水蒸気や炭酸ガスの電池内部への侵入
を防止する等の提案がなされているが、いずれの方法も
漏液防止や放電性能、特に長期間放電での性能に大きな
課題を残していた。これらの主要原因は空気中の水蒸気
の電池内への侵入による電解液の希釈と体積膨張、及び
炭酸ガスの侵入による炭酸塩の生成に基づく放電反応の
阻害と空気流通経路の閉塞によるもので、外気が低湿の
場合には逆に電解液中の水分の逸散が性能低下の原因と
なっていた。この原因を取り除くため、近年では、水蒸
気や炭酸ガスの透過を抑制し、選択的に酸素を優先して
透過する膜を介して空気を酸素極に供給する方法、例え
ばポリシロキサン系の無孔性の均一な薄膜や金属酸化物
、あるいは金属原子を含有する有機化合物の薄膜と適宜
な多孔性膜とを一体化させた膜を用いる方法が提案され
ていた。
In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery by making the air holes extremely small and limiting the amount of oxygen supplied, but neither method prevents leakage. However, there remained major issues regarding discharge performance, especially performance during long-term discharge. The main causes of these are the dilution and volumetric expansion of the electrolytic solution due to the intrusion of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the intrusion of carbon dioxide gas and the blockage of the air circulation path. Conversely, when the outside air is low-humidity, the loss of moisture in the electrolyte causes a decline in performance. In order to eliminate this cause, in recent years, methods have been developed to supply air to the oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively allows oxygen to permeate. A method using a film that integrates a uniform thin film of , a thin film of a metal oxide, or a thin film of an organic compound containing metal atoms with a suitable porous film has been proposed.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気。
Problems to be Solved by the Invention However, to date, it has not been possible to obtain sufficiently effective selective permeability for oxygen gas or water vapor.

炭酸ガスの透過防止能が充分でないことなどから、満足
な放電性能が得られず、長期の使用や貯蔵に耐えないと
いう技術課題をもっていたので、実用化に至っていない
It has not been put into practical use because it has had technical issues such as insufficient ability to prevent carbon dioxide gas permeation, and therefore cannot obtain satisfactory discharge performance and cannot withstand long-term use or storage.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善するとともに軽負荷から重負荷に至る放電条
件で満足な放電性能を得るために、大気中の酸素ガスを
選択的に充分な速度で電池内に取り入れ、大気中の水蒸
気及び炭酸ガスの電池内への侵入を長期にわたシ防止す
る有効な手段を提供することを目的とするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to obtain satisfactory discharge performance under discharge conditions ranging from light loads to heavy loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.

課題を解決するための手段 本発明は酸素を活物質とするガス拡散電極と、外気に通
じる空気取入れ孔を有する電池容量を備えた電池のガス
拡散電極の空気取入れ側と電池容器の内面との間に、ポ
リビニルト1)オルガノシランの薄膜とこの薄膜を支持
する微多孔膜から形成される酸素選択透過性複合膜を介
在させるものである。
Means for Solving the Problems The present invention provides a method for connecting the air intake side of the gas diffusion electrode and the inner surface of the battery container of a battery having a gas diffusion electrode using oxygen as an active material and a battery capacity having an air intake hole communicating with the outside air. In between, an oxygen selectively permeable composite membrane formed from a thin film of polyvinyl 1) organosilane and a microporous membrane supporting this thin film is interposed.

上記ポリビニルトリオルガノシランは、の構造式で示さ
れる高分子でその薄膜は無孔性の均質な薄膜で酸素の選
択透過性を有し、充分な酸素透過速度と水蒸気、炭酸ガ
スの透過阻止能を得るには、通常1.0μm以下、好ま
しくは0.2〜0.571mの厚さが適している。この
薄膜を支持する微多孔膜は気体が容易に透過し、なおか
つ、その表面は上記の薄膜を均一に無孔状態で支持する
に適した平滑性と孔径を備えた微多孔膜が好ましく、前
記微多孔膜表面の平均孔径が3〜0.01μmであるこ
とが好ましい。
The above-mentioned polyvinyltriorganosilane is a polymer represented by the structural formula, and its thin film is a non-porous, homogeneous thin film that has selective permeability for oxygen, and has sufficient oxygen permeation rate and ability to block the permeation of water vapor and carbon dioxide gas. To obtain this, a thickness of usually 1.0 μm or less, preferably 0.2 to 0.571 m is suitable. The microporous membrane supporting this thin film is preferably a microporous membrane through which gas can easily permeate, and whose surface has smoothness and pore size suitable for supporting the above-mentioned thin film in a uniform and non-porous state. It is preferable that the average pore diameter on the surface of the microporous membrane is 3 to 0.01 μm.

本発明は、選択性酸素透過能の優れた薄膜としてポリビ
ニルトリオルガノシランの均質薄膜の特性に着目し、さ
らに、この薄膜を支持する微多孔膜には耐アルカリ性に
優れたポリプロピレン、ポリエチレン等のポリオレフィ
ン、フッ素st脂、ポリスルフォン等を選び検討を深め
て完成した。なお、微多孔膜は単層であっても良いが、
取シ扱いや製造時、或は使用時の強度を確保するために
、必要に応じて耐アルカリ性不織布をさらに一体化した
二層以上の構成としても良い。
The present invention focuses on the characteristics of a homogeneous thin film of polyvinyltriorganosilane as a thin film with excellent selective oxygen permeability, and furthermore, the microporous membrane supporting this thin film is made of polyolefin such as polypropylene, polyethylene, etc. with excellent alkali resistance. , fluorinated ST fat, polysulfone, etc., were selected and completed after careful consideration. Note that the microporous membrane may be a single layer, but
In order to ensure strength during handling, manufacturing, or use, a two-layer or more structure may be provided in which an alkali-resistant nonwoven fabric is further integrated, if necessary.

上記アボリビニルトリオルガノシランの薄膜を多孔膜で
支持した複合膜は、特開昭54−56985号などに開
示されているようなポリジメチルシロキサン、ポリシロ
キサン透導体などがあるが、高炉送風用、燃焼補助用9
石油蛋白プロセス用、廃液処理曝気用、医療における呼
気用などの用途で実用化が検討されているだけで、主と
して酸素富化を目的とし、酸素と窒素の分離係数や酸素
透過速度のみを評価の対象にしている。これらの膜を重
負荷での放電条件でも満足な放電性能を得られる電池用
として適用するためには、酸素透過速度が充分大きいこ
とと水蒸気及び炭酸ガスの透過阻止能が優れていること
が重要な要件であるが、従来、これらの特性は未知な点
が多く、電池への適用を検討された例は少なく、例えば
特開昭69−76582号で開示されているように、ポ
リジメチルシロキサン、ポリジメチルシロキサン−ポリ
ヒドロキシスチレン架橋共重合体などの膜の適用が提案
されているが、酸素透過速度が充分でなく重負荷での放
電において満足な性能が得られない。
Composite membranes in which a thin film of abolyvinyltriorganosilane is supported by a porous membrane include polydimethylsiloxane and polysiloxane transparent conductors as disclosed in JP-A No. 54-56985, etc.; Combustion aid 9
Practical use is only being considered for applications such as petroleum protein processing, waste liquid treatment aeration, and exhalation in medical care. It is targeted. In order to apply these membranes to batteries that can obtain satisfactory discharge performance even under heavy load discharge conditions, it is important that the oxygen permeation rate be sufficiently high and that the permeation blocking ability of water vapor and carbon dioxide gas be excellent. However, until now, many of these characteristics have been unknown, and there have been few cases where their application to batteries has been considered.For example, as disclosed in JP-A-69-76582, polydimethylsiloxane, Application of membranes such as polydimethylsiloxane-polyhydroxystyrene crosslinked copolymers has been proposed, but the oxygen permeation rate is insufficient and satisfactory performance cannot be obtained in discharge under heavy loads.

本発明は、種々の酸素透過膜を電池用として鋭意検討の
結果、ポリビニルトリオルガノシランの薄膜を微多孔膜
と一体化した複合膜が電池用としての上述の緒特性を総
合的に満たし、これを適用した電池の性能がきわめて優
れていることを見出し完成したものである。
As a result of intensive studies on various oxygen permeable membranes for use in batteries, the present invention has developed a composite membrane in which a polyvinyltriorganosilane thin film is integrated with a microporous membrane, which comprehensively satisfies the above-mentioned characteristics for use in batteries. It was discovered and completed that the performance of the battery to which this was applied was extremely superior.

本発明で用いる複合膜の製法は種々あるが、類型的には
特開昭54−146277号で開示されているように、
ポリビニルトリオルガノシランを溶解度の大きいトルエ
ン等の接媒に溶解した溶液をガラス板などの平面に薄く
塗布して乾燥し、薄膜をガラス面から剥離し、多孔質膜
上に重ね合わせる方法や、上記の溶液を水面上に滴下し
、水面上に延展させて形成された薄膜を水面下の、支持
体としての微多孔膜上にのせてのち乾燥する水上延展法
、さらには、支持体である前記微多孔膜上に上記の溶液
を直接塗布して乾燥する方法などに分類され、いずれの
方法をとっても良いが、ピンホールのない薄膜が形成さ
れ、微多孔膜中にポリビニルトリオルガノシランが浸透
して孔が閉塞されないことが必要である。
There are various methods for manufacturing the composite membrane used in the present invention, but typically, as disclosed in JP-A-54-146277,
A method in which a solution of polyvinyltriorganosilane dissolved in a solvent such as toluene with high solubility is applied thinly to a flat surface such as a glass plate, dried, the thin film is peeled off from the glass surface, and superimposed on a porous film, or the method described above The above-mentioned solution is dropped onto the water surface, and the formed thin film is placed on a microporous membrane as a support below the water surface and then dried. It is classified into methods such as applying the above solution directly onto the microporous membrane and drying it. Either method can be used, but a thin film without pinholes is formed and the polyvinyltriorganosilane penetrates into the microporous membrane. It is necessary that the pores are not occluded.

作  用 この構成により上述の複合膜は後述の実施例における電
池試験の結果からも明らかなように、電池用としての酸
素透過速度と同時に、水蒸気や炭酸ガスを大気から遮断
する効果も共に満足すべき状態であることにより、実用
的な電池に要求される重負荷放電性能と、高温や低湿の
雰囲気下で長時間放電した場合の性能も共に満足するこ
ととなる。
Function: With this configuration, the above-mentioned composite membrane satisfies both the oxygen permeation rate for batteries and the effect of blocking water vapor and carbon dioxide from the atmosphere, as is clear from the results of battery tests in Examples described later. Due to this condition, both the heavy load discharge performance required for a practical battery and the performance when discharged for a long time in a high temperature and low humidity atmosphere are satisfied.

実施例 本発明の効果をポリビニルトリオルガノシランにおいて
R1=R2=R3=CH3のものを用いた複合膜を使用
した電池、ポリジメチルシロキサン単独膜を使用した電
池、お上び上記複合膜を使用しない電池を試作評価して
検討した。まず1.上記複合膜を使用してない比較例の
場合は第3図と全く同一に構成した。複合膜を使用した
実施例及び比較例も第3図とほぼ同様であり、第1図に
示すようにPTFHの多孔膜2と酸素の拡散を行う多孔
体4との間に実施例の複合膜11(第2図参照)あるい
は比較例の単独膜が介在し、複合膜11はポリビニルト
リオルガノシランの薄膜の側が空気取入れ孔3の側に対
向するよう配設した点が第3図と異なるのみである。
Examples The effects of the present invention were demonstrated in a battery using a composite membrane using polyvinyltriorganosilane with R1=R2=R3=CH3, a battery using a polydimethylsiloxane single membrane, and a battery not using the above composite membrane. The battery was prototyped and evaluated. First 1. In the case of a comparative example in which the above composite membrane was not used, the structure was exactly the same as that shown in FIG. 3. Examples and comparative examples using composite membranes are almost the same as those shown in FIG. 3, and as shown in FIG. 11 (see FIG. 2) or a single membrane of the comparative example, and the only difference from FIG. 3 is that the composite membrane 11 is arranged so that the polyvinyltriorganosilane thin film side faces the air intake hole 3 side It is.

供試したポリビニルトリオルガノシラン複合膜はポリビ
ニルトリオルガノシランをトルエンに溶解したポリマー
溶解を水面上に滴下して得られた極薄膜を水中で多孔質
の支持膜にのせて後、乾燥して作製した。ポリビニルト
リオルガノシランの薄膜層の厚さはポリマー溶液と、こ
れを滴下する水の温度を変えることによシ調節した。ま
た、比較例として供試したポリジメチルシロキサン薄膜
はトルエンに溶解した溶液をガラス板に薄く塗布して乾
燥する方法で作製した。実施例の支持体膜はいずれも微
多孔膜(孔径;約0.1〜0.05μm。
The polyvinyltriorganosilane composite membrane tested was prepared by dropping a polymer solution of polyvinyltriorganosilane in toluene onto the water surface, placing the obtained ultrathin membrane on a porous support membrane in water, and then drying it. did. The thickness of the polyvinyltriorganosilane thin film layer was adjusted by varying the temperature of the polymer solution and the water into which it was added. The polydimethylsiloxane thin film used as a comparative example was prepared by applying a thin layer of a solution dissolved in toluene onto a glass plate and drying it. All of the support membranes in Examples were microporous membranes (pore diameter: approximately 0.1 to 0.05 μm).

厚さ;約30μm)の単層、またはこれと不織布(厚さ
:約150μm)を一体化した複合層を用い、微多孔膜
側に薄膜層を形成させた。
A thin film layer was formed on the microporous membrane side using a single layer (thickness: about 30 μm) or a composite layer made by integrating this with a nonwoven fabric (thickness: about 150 μm).

試作した電池の形状は直径11.6m、総高5.4鱈で
あり、比較的重負荷(76Ω)で20℃、常温(60%
RH)での連続放電により電池内への空気中の酸素の取
り込み速度の充足性を評価し、比較的軽負荷(3にΩ)
で20℃、高湿(90%RH)。
The prototype battery has a diameter of 11.6 m and a total height of 5.4 m, and is rated at 20°C and room temperature (60%) under a relatively heavy load (76Ω).
The sufficiency of the rate of oxygen uptake from the air into the battery was evaluated by continuous discharge at a relatively light load (3Ω).
at 20°C and high humidity (90% RH).

及び低湿(20%RH)での長期間連続放電により、長
期の放電期間中の、雰囲気中の水蒸気の取シ込みや電池
内の水分の逸散、及び炭酸ガスの取り込みなど電池性能
への影響度を評価した。
Continuous discharge for a long period of time at low humidity (20% RH) will affect battery performance, such as the intake of water vapor in the atmosphere, the dissipation of moisture within the battery, and the intake of carbon dioxide gas during the long-term discharge period. The degree was evaluated.

試作した電池の内訳は第1表に示す通シである。The details of the prototype battery are shown in Table 1.

また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype batteries.

第2表において放電終止電圧はいずれも0.9vであり
、重量変化は放電試験前後の増減を示しており、主とし
て放電中の水分の取り込み、あるいは逸散の多少を示唆
する数値である。
In Table 2, the end-of-discharge voltage is 0.9 V in all cases, and the change in weight indicates the increase or decrease before and after the discharge test, and is a numerical value that mainly indicates the amount of moisture taken in or dissipated during discharge.

実施例の1〜6はピンホールがない均一性薄膜が得られ
る範囲の膜厚のうち、比較的薄い均一性の薄膜を形成し
たもので、実施例の6〜9は均一性の薄膜を若干厚く形
成しておシ、前者は酸素の透過速度を大きくすることを
第一義に考え、後者は水蒸気や炭酸ガスの透過を阻止す
ることを第一義に考え電池を構成している。これらの場
合、複合膜の支持体は耐アルカリ性の材料で構成されて
いる。これらの電池の特性を複合膜を使用していない比
較例3と対比すると最も端的に本発明の詳細な説明でき
る。まず20℃、常湿での重負荷試験では放電期間が短
く、水分の取り込みや逸散の影響や炭酸ガスの影響が少
ないので、電池の性能は酸素の供給速度が充分であれば
水分や炭酸ガスの透過阻止はあまり考慮する必要がない
。従って、このような条件では比較例でも優れた特性が
得られる。これに対し、前述の実施例のうち、1〜6は
比較例3と同等の放電特性が得られており、複合膜を酸
素が透過する速度が放電反応で酸素が消費される速度に
充分追従していることを示している。実施例6〜9の場
合は若干放電電圧、持続時間とも劣っているがあまシ遜
色のない良好な特性を示し、はぼ酸素の供給が満足な状
態で行われている。一方、軽負荷放電・の場合は放電期
間が長く、しかも外気が高湿あるいは低湿の場合には酸
素の供給速度よシも水分や炭酸ガス、特に水分の透過防
止が優れた性能を得るために重要となり、水分や炭酸ガ
スの透過阻止機構をもたない比較例3の電池は水分の枯
渇、あるいは逆に水分の過剰取入れによる漏液による空
気孔の閉塞などにより、放電の途中で電圧が低下し、重
負荷試験で得られた放電容量の一部分に相当する容量が
得られるにすぎない。まだ、放電途中での漏液は実用面
で致命的な開門であることはいうまでもない。これに対
し実施例はきわめて優れた性能を示し、これらは重負荷
試験の放電容量とほぼ等しい容量が得られ、中でも均一
薄膜層が比較的厚い実施例6〜9がより優れている。こ
れらの傾向は試験雰囲気が高湿。
In Examples 1 to 6, relatively thin uniform thin films were formed within the range in which a uniform thin film without pinholes could be obtained, and in Examples 6 to 9, uniform thin films were formed with a slightly higher uniformity. The former is designed to increase the permeation rate of oxygen, while the latter is designed to prevent the permeation of water vapor and carbon dioxide. In these cases, the support of the composite membrane is composed of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 3 in which no composite membrane was used. First, in a heavy load test at 20°C and normal humidity, the discharge period is short, and the effects of moisture uptake and dissipation, as well as the effects of carbon dioxide gas, are small. There is no need to give much consideration to gas permeation prevention. Therefore, under such conditions, excellent characteristics can be obtained even in the comparative example. On the other hand, among the aforementioned Examples 1 to 6, discharge characteristics equivalent to those of Comparative Example 3 were obtained, and the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. It shows that you are doing it. In Examples 6 to 9, although the discharge voltage and duration were slightly inferior, they exhibited comparable good characteristics, and the supply of oxygen was carried out in a satisfactory manner. On the other hand, in the case of light-load discharge, the discharge period is long, and when the outside air is high or low humidity, the oxygen supply rate may be lower than the oxygen supply rate, and moisture and carbon dioxide gas, especially moisture permeation prevention, is required to obtain excellent performance. The battery of Comparative Example 3, which does not have a mechanism to prevent water and carbon dioxide permeation, has a voltage drop during discharge due to depletion of water or, conversely, blockage of air holes due to leakage due to excessive water intake. However, the capacity obtained is only a portion of the discharge capacity obtained in the heavy load test. Needless to say, liquid leakage during discharge is a fatal problem in practical terms. On the other hand, the Examples showed extremely excellent performance, with a capacity almost equal to the discharge capacity in the heavy load test being obtained, and among them, Examples 6 to 9, in which the uniform thin film layer was relatively thick, were more excellent. These trends occur when the test atmosphere is highly humid.

低湿いずれの場合とも同様である。このことは、実施例
の場合、複合膜の水分や炭酸ガスの透過阻止効果が充分
に発揮されていることを示している。
The same applies to both cases of low humidity. This shows that, in the case of the example, the composite membrane sufficiently exhibits the permeation blocking effect of moisture and carbon dioxide gas.

また、比較例1,2は膜厚が厚いために均一薄膜の水蒸
気及び炭酸ガス透過阻止能は充分であるが、酸素透過速
度が充分ではないために軽負荷の場合の放電特性は実施
例と対比してあまり遜色ないが、重負荷特性は実施例よ
”シ著しく劣る。
In addition, in Comparative Examples 1 and 2, the film thickness is thick, so the water vapor and carbon dioxide permeation blocking ability of the uniform thin film is sufficient, but the oxygen permeation rate is not sufficient, so the discharge characteristics under light load are not as good as the examples. Although it is comparable in comparison, the heavy load characteristics are significantly inferior to the examples.

以上を総合して、ポリビニルトリオルガノシランの均一
性薄膜と微多孔膜との複合膜を用いた試作電池は重負荷
特性、軽負荷特性ともに優れ、外部雰囲気の変化への対
応性も良好であり、特にポリビニルトリオルガノシラン
の均一性薄膜の厚さを0.2〜1.0μmとし耐アルカ
リ性の多孔質膜を支持体に用いた場合に優れた電池を提
供できることが結論できる。
Taking all the above into account, the prototype battery using a composite film of a uniform thin film of polyvinyltriorganosilane and a microporous film has excellent both heavy-load and light-load characteristics, and has good responsiveness to changes in the external atmosphere. In particular, it can be concluded that an excellent battery can be provided when the uniform thin film of polyvinyltriorganosilane has a thickness of 0.2 to 1.0 μm and an alkali-resistant porous film is used as the support.

なお、上記の実施例ではポリビニルトリオルガノシラン
としてR1=R2=R3=CH3のものを用いた複合膜
について説明したがR1,R2,R3の一部まだは全部
がH,C2S5.C3H7のポリビニルトリオルガノシ
ランを用いた複合膜でもほぼ同様の効果が得られること
を確認している。
In the above example, a composite film using polyvinyltriorganosilane with R1=R2=R3=CH3 was explained, but some of R1, R2, and R3 were all H, C2S5. It has been confirmed that almost the same effect can be obtained with a composite film using C3H7 polyvinyltriorganosilane.

まだ、上記の実施例ではポリビニルトリオルガノシラン
の薄膜を微多孔性の支持膜あるいは微多孔膜と不織布を
一体化した支持膜の片面につけた複合膜を用いた場合に
ついて説明しだが、本発明は薄膜を支持膜の両面に形成
させた複合膜の場合でも、ポリビニルトリオルガノシラ
ンの膜厚が総計で0.2〜1.0μmであれば上記と同
様に優れた電池性能が得られる。さらに実施例に示した
ポリビニルトリオルガノシランを支持する微多孔膜は他
の耐アルカリ性を有する微多孔膜(例えばナイロン製微
多孔膜)でも同様の効果が得られる。また、実施例では
支持体が微多孔膜とポリプロピレン製の不織布と一体化
した複合層とした場合を説明したが、前記不織布がポリ
エチレン、ナイロン等の他の耐アルカリ性のあるもので
あれば同様の効果が得られる。
However, in the above embodiments, a composite film in which a thin film of polyvinyltriorganosilane is attached to one side of a microporous support film or a support film in which a microporous film and a nonwoven fabric are integrated is used. Even in the case of a composite membrane in which thin films are formed on both sides of a support membrane, if the total film thickness of polyvinyltriorganosilane is 0.2 to 1.0 μm, excellent battery performance can be obtained in the same way as described above. Furthermore, the microporous membrane supporting polyvinyltriorganosilane shown in the examples can also be used with other microporous membranes having alkali resistance (for example, microporous nylon membranes) to obtain the same effect. In addition, in the examples, a case where the support is a composite layer in which a microporous membrane and a nonwoven fabric made of polypropylene are integrated is explained, but if the nonwoven fabric is made of other alkali-resistant material such as polyethylene or nylon, a similar method may be used. Effects can be obtained.

なお、実施例では複合膜の薄膜側が空気取入れ孔側に当
接された場合について示したが、逆にガス拡散電極側に
当接させた場合でもほぼ同一の結果となることを確認し
ている。
In addition, although the example shows the case where the thin film side of the composite membrane is brought into contact with the air intake hole side, it has been confirmed that almost the same result will be obtained even if the thin film side of the composite membrane is brought into contact with the gas diffusion electrode side. .

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜は微多孔膜、場合によってはさらに不織布を一体化
した支持体よシ構成されており、前記空気拡散用の多孔
体を除いても電池特性の差異はない。但し、複合膜の強
度が充分でなく空気取入れ孔側に変形するような場合に
は、多孔体を設置することにより複合膜が安定形状を保
つ。さらに、上記実施例では本発明の複合膜を酸素極と
の間に酸素極を支持する多孔膜を介して設置したが、酸
素極の強度が充分であれば前記多孔膜は不用であシ、除
いても電池特性は変わらない。
In addition, in the above embodiments, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric is further integrated into the composite membrane of the present invention. The battery is composed of a support, and there is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the composite membrane does not have sufficient strength and deforms toward the air intake hole, the composite membrane can maintain a stable shape by installing a porous body. Furthermore, in the above embodiments, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane could be unnecessary. Even if it is removed, the battery characteristics will not change.

また、塩化アンモニウム、塩化亜鉛などの中性塩の水溶
液を電解液に用いた空気電池に対しても、実施例で示し
たアルカリ性の電解液に用いた電池と同様の効果がある
ことも確認しておシ、実施例と同様の理由で本発明の詳
細な説明できる。
We also confirmed that an air battery using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as an electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. Now, the present invention can be explained in detail for the same reasons as the examples.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の重負荷から軽負荷にわたる優れた実用
性能と、優れた耐漏液性。
Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance across heavy to light loads for batteries using a neutral or alkaline aqueous solution as the electrolyte, and excellent performance. Leak resistant.

長期貯蔵性を具備させることができるという効果が得ら
れる。
The effect is that it can be stored for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の半断面図、第2図は第1図の部分拡
大図、第3図は複合膜を使用していない従来のボタン形
空気亜鉛電池の半断面図である。 1・・・・・・酸素Wi(空気極)、2・・・・・・撥
水膜、3・・・・・・空気取入れ孔、4・・・・・・多
孔膜、6,6・・・・・・セパレーター、7・・・・・
・負極亜鉛、8・・・・・・負極容器、9・・・・・・
絶縁ガスケット、10・・・・・・正極容器、11・・
・・・・複合膜。
Figure 1 is a half-sectional view of a button-type zinc-air battery used to study examples and comparative examples of the present invention, Figure 2 is a partially enlarged view of Figure 1, and Figure 3 shows no composite membrane used. FIG. 1 is a half-sectional view of a conventional button-type zinc-air battery. 1... Oxygen Wi (air electrode), 2... Water repellent membrane, 3... Air intake hole, 4... Porous membrane, 6, 6. ...Separator, 7...
・Negative electrode zinc, 8...Negative electrode container, 9...
Insulating gasket, 10... Positive electrode container, 11...
...Composite membrane.

Claims (8)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取り入れ側と前記電池容器の内面との間に、
ポリビニルトリオルガノシランの薄膜と前記薄膜を支持
する一層または二層以上の微多孔膜とから形成された複
合膜を介在させたことを特徴とする電池。
(1) A gas diffusion electrode having oxygen as an active material and a battery container having an air intake hole communicating with the outside air, between the air intake side of the gas diffusion electrode and the inner surface of the battery container,
1. A battery comprising a composite membrane formed from a polyvinyltriorganosilane thin film and one or more microporous membranes supporting the thin film.
(2)前記複合膜のポリビニルトリオルガノシランの薄
膜側が、空気取り入れ孔を有する前記電池容器の内面に
当接され、前記複合膜の微多孔膜側に、直接ガス拡散電
極が接していることを特徴とする特許請求の範囲第1項
記載の電池。
(2) The polyvinyltriorganosilane thin film side of the composite membrane is in contact with the inner surface of the battery container having air intake holes, and the gas diffusion electrode is in direct contact with the microporous membrane side of the composite membrane. A battery according to claim 1, characterized in that:
(3)前記複合膜のポリビニルトリオルガノシランの微
多孔膜側が、空気取り入れ孔を有する前記電池容器の内
面に当接され、前記複合膜の薄膜側に、直接ガス拡散電
極が接していることを特徴とする特許請求の範囲第1項
記載の電池。
(3) The polyvinyltriorganosilane microporous film side of the composite membrane is in contact with the inner surface of the battery container having air intake holes, and the gas diffusion electrode is in direct contact with the thin film side of the composite membrane. A battery according to claim 1, characterized in that:
(4)前記複合膜と前記電池容器との間に、不織布等の
空気拡散多孔性を介在させたことを特徴とする特許請求
の範囲第2項又は第3項記載の電池。
(4) The battery according to claim 2 or 3, characterized in that air diffusion porosity such as a nonwoven fabric is interposed between the composite membrane and the battery container.
(5)前記複合膜と前記ガス拡散電極との間にポリテト
ラフルオロエチレン(PTFE)等の多孔性フィルムよ
りなる酸素極を支持する微多孔膜を介在させたことを特
徴とする特許請求の範囲第2項又は第3項記載の電池。
(5) A microporous membrane that supports an oxygen electrode made of a porous film such as polytetrafluoroethylene (PTFE) is interposed between the composite membrane and the gas diffusion electrode. The battery according to item 2 or 3.
(6)前記複合膜と前記電池容器との間に不織布等の空
気拡散多孔体を介在させ、かつ前記複合膜と前記ガス拡
散電極との間にポリテトラフルオロエチレン等の多孔性
フィルムよりなる酸素極を支持する微多孔膜を介在させ
たことを特徴とする特許請求の範囲第2項又は第3項記
載の電池。
(6) An air-diffusion porous material such as a non-woven fabric is interposed between the composite membrane and the battery container, and a porous film such as polytetrafluoroethylene is provided between the composite membrane and the gas diffusion electrode. The battery according to claim 2 or 3, characterized in that a microporous membrane supporting the electrode is interposed.
(7)前記複合膜を形成する微多孔膜がポリプロピレン
、ポリエチレン等のポリオレフィン、フッ素樹脂、ポリ
スルホン等を主成分とする耐アルカリ性微多孔膜である
ことを特徴とする特許請求の範囲第1項から第6項のい
ずれかに記載の電池。
(7) The microporous membrane forming the composite membrane is an alkali-resistant microporous membrane containing polyolefin such as polypropylene, polyethylene, fluororesin, polysulfone, etc. as a main component. The battery according to any of paragraph 6.
(8)前記複合膜を形成する微多孔膜をポリプロピレン
等を主成分とする耐アルカリ性不織布と一体化した複合
層としたものであることを特徴とする特許請求の範囲第
1項から第6項のいずれかに記載の電池。
(8) Claims 1 to 6 are characterized in that the microporous membrane forming the composite membrane is a composite layer integrated with an alkali-resistant nonwoven fabric mainly composed of polypropylene or the like. A battery described in any of the above.
JP9600288A 1988-04-19 1988-04-19 Battery Pending JPH01267971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9600288A JPH01267971A (en) 1988-04-19 1988-04-19 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9600288A JPH01267971A (en) 1988-04-19 1988-04-19 Battery

Publications (1)

Publication Number Publication Date
JPH01267971A true JPH01267971A (en) 1989-10-25

Family

ID=14152913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9600288A Pending JPH01267971A (en) 1988-04-19 1988-04-19 Battery

Country Status (1)

Country Link
JP (1) JPH01267971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019855A1 (en) * 1990-06-22 1992-11-19 Mmd Messtechnik M D Gyulai Tec Gas diffusion barrier for electrochemical gas sensors - consists of thin layer of poly-di:methyl-siloxane, pref. applied to working electrode or its supporting film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019855A1 (en) * 1990-06-22 1992-11-19 Mmd Messtechnik M D Gyulai Tec Gas diffusion barrier for electrochemical gas sensors - consists of thin layer of poly-di:methyl-siloxane, pref. applied to working electrode or its supporting film

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JPH01267971A (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JP2782837B2 (en) Battery
JPH04312771A (en) Air battery
JPH01267974A (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JP2757383B2 (en) Battery
JPH01267973A (en) Battery
JPH01195678A (en) Cell
JPH01267970A (en) Battery
JPH01267972A (en) Battery
JPH0287459A (en) Battery
JP2817343B2 (en) Battery
JP2778078B2 (en) Battery
JPH04162374A (en) Battery
JPH042067A (en) Battery
JP2743574B2 (en) Battery
JPH02109254A (en) Battery
JP2822485B2 (en) Battery
JP2782911B2 (en) Battery
JPH0287458A (en) Battery
JPH03108258A (en) Battery
JPH0475253A (en) Manufacture of battery
JPH03108254A (en) Battery