JPH0475253A - Manufacture of battery - Google Patents

Manufacture of battery

Info

Publication number
JPH0475253A
JPH0475253A JP2189022A JP18902290A JPH0475253A JP H0475253 A JPH0475253 A JP H0475253A JP 2189022 A JP2189022 A JP 2189022A JP 18902290 A JP18902290 A JP 18902290A JP H0475253 A JPH0475253 A JP H0475253A
Authority
JP
Japan
Prior art keywords
battery
oxygen
gas
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189022A
Other languages
Japanese (ja)
Inventor
Akira Hanabusa
花房 彰
Shigeto Noya
重人 野矢
Masaaki Yoshino
芳野 公明
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2189022A priority Critical patent/JPH0475253A/en
Publication of JPH0475253A publication Critical patent/JPH0475253A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To improve the storage properties and long-range service performance of a battery by forming on a microporous film having predetermined microholes a predetermined thin film by sputtering method using La1-XSrXCo1-YFeYO3-Z (0<=X<1, 0<=Y<1, 0<=Z<1) as a target. CONSTITUTION:A thin film of thickness 2000Angstrom is formed using sputtering method which uses a mixed gas of Ar and N2 (the partial pressure ratio of Ar to N2: N2/Ar=25%) and by the use of La0.2Sr0.8Co0.8Fe0.2O2.7 as a target on one side of a polycarbonate film 4 of thickness 6mum having microholes of average diameter 0.05mum therethrough, so as to obtain a composite film 11. Such a battery is excellent at both heavy and light load characteristics and an excellent battery which is stable against changes in ambient atmosphere can be offered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液からなる電解液と、亜鉛、マグネシウム、ア
ルミニウム等の金属、もしくはアルコール、ヒドラジン
、水素等の負極活物質とを備えた電池の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolytic solution consisting of an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a method for manufacturing a battery including negative electrode active materials such as the above.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性塩水溶液を電解質として使用する電池においては、
ガス拡散電極(酸素極)より内部の蒸気圧に応じて水蒸
気の出入りがあり、電池内電解液の濃度変化2体積変化
が起こり、これが電池の緒特性に影響を与えていた。ボ
タン形空気電池を例にとり、第2図を用いてその状況を
説、明する。図中、1は酸素極(空気極)、2はガス拡
散性はあるが液体は阻止するポリテトラフルオロエチレ
ン(PTFE)よりなり酸素極1を支持する多孔性撥水
膜である。3は外部からの空気取入れ孔、4は空気の拡
散を行う多孔体、5.6はセパレータ、7は負極亜鉛で
、これらに含浸保持されるアルカリ電解液には水酸化カ
リウム水溶液を使用し、その濃度は30〜35重量%と
じている。このため相対湿度が47〜59%より高いと
外部の湿気を取り込み、電解液濃度の低下と体積膨張と
が起こり、放電性能の低下、電解液の漏液を生じていた
。一方、相対湿度が前記以下の場合には電解液の蒸発が
起こり、内部抵抗の増大や放電性能の低下をもたらして
いた。従って、環境雰囲気による影響を受は易いため、
長期間保存後の電池特性に問題が生じ、これが空気電池
や燃料電池を特定の分野での使用に制約し、その汎用化
を図る上で大きな課題となっていた。なお、図中8は負
極亜鉛7を収容した負極容器、9は絶縁ガスケット、1
0は正極容器である。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In batteries that use a neutral salt aqueous solution as the electrolyte,
Water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in the concentration and volume of the electrolyte in the battery, which affected the battery's performance characteristics. Taking a button-type air battery as an example, the situation will be explained using FIG. In the figure, 1 is an oxygen electrode (air electrode), and 2 is a porous water-repellent membrane that supports the oxygen electrode 1 and is made of polytetrafluoroethylene (PTFE), which has gas diffusivity but blocks liquid. 3 is an air intake hole from the outside, 4 is a porous body for air diffusion, 5.6 is a separator, 7 is a negative electrode zinc, and the alkaline electrolyte impregnated and retained in these is a potassium hydroxide aqueous solution, Its concentration is 30-35% by weight. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, resulting in a decrease in electrolyte concentration and volumetric expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, it is easily affected by the environmental atmosphere, so
Problems arose in battery characteristics after long-term storage, which restricted the use of air cells and fuel cells in specific fields and posed a major challenge in making them more versatile. In addition, in the figure, 8 is a negative electrode container containing negative electrode zinc 7, 9 is an insulating gasket, 1
0 is a positive electrode container.

発明が解決しようとする課題 これらの課題を改善するため、従来より種々の提案がな
されてきた。例えば、空気孔周辺の一部に電解液と反応
する物質を挿入し、電池外部への電解液漏出を防止する
。あるいは紙または高分子材料よりなる不織布等の電解
液吸収材を設けて、電池外部への電解液漏出を防止する
。さらには空気孔を極端に小さ(して酸素の供給量を制
限してまでも、水蒸気や炭酸ガスの電池内部への進入を
防止する等の提案がなされている。
Problems to be Solved by the Invention Various proposals have been made in the past in order to improve these problems. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery by making the air holes extremely small (even by limiting the amount of oxygen supplied).

しかし、いずれの方法も漏液防止や放電性能、特に長時
間放電での性能に大きな問題を残していた。これらの主
要原因は、空気中の水蒸気の電池内への進入によるアル
カリ電解液の希釈と体積膨張、及び炭酸ガスの進入によ
る炭酸塩の生成に基づく放電反応の阻害と空気流通経路
の閉塞によるもので、外気が低湿度の場合には逆に電解
液中の水分の逸散が性能低下の原因となっていた。この
原因を取り除くため、近年では、水蒸気や炭酸ガスの透
過量を制御し、選択的に酸素を優先して透過させる膜を
介して空気を酸素極に供給する方法、例えばオルガノポ
リシロキサン系の無孔性の均一な薄膜や金属酸化物、あ
るいは金属元素を含有する有機化合物の薄膜と適宜な多
孔性膜とを一体化させた膜を用いる方法が提案されてい
る。
However, both methods had major problems in preventing liquid leakage and discharge performance, especially in long-term discharge performance. The main causes of these are the dilution and volumetric expansion of the alkaline electrolyte due to the entry of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the entry of carbon dioxide gas, and the blockage of the air circulation path. However, when the outside air has low humidity, the loss of moisture in the electrolyte causes performance to deteriorate. In order to eliminate this cause, in recent years, methods have been developed to control the amount of permeation of water vapor and carbon dioxide gas and to supply air to the oxygen electrode through a membrane that selectively allows oxygen to permeate with priority. A method has been proposed that uses a film in which a uniformly porous thin film, a thin film of a metal oxide, or an organic compound containing a metal element is integrated with a suitable porous film.

しかしながら、現在までのところ、充分に有効な酸素選
択透過性が得られないことから、満足な放電性能は得ら
れず、電池として長期の使用や貯蔵に耐えられないので
、その実用化には至っていない。
However, to date, it has not been possible to achieve a sufficiently effective oxygen permselectivity, so satisfactory discharge performance cannot be obtained, and the battery cannot withstand long-term use or storage, so it has not been put into practical use. not present.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善すると共に、軽負荷から重負荷に至る広い放
電条件で満足な放電性能を得るた′めに、大気中の酸素
を選択的に充分な速度で電池内に取入れると共に、水蒸
気の電池への出入りと、大気中の炭酸ガスの電池内への
進入を長期にわたり防止する有効な手段を提供すること
を目的にするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, and to selectively remove oxygen from the atmosphere in order to obtain satisfactory discharge performance under a wide range of discharge conditions from light loads to heavy loads. The purpose of this invention is to provide an effective means for introducing water vapor into the battery at a sufficient rate and preventing the entry and exit of water vapor into the battery and the entry of carbon dioxide gas from the atmosphere into the battery over a long period of time.

課題を解決するための手段 上記の目的を達成するため1本発明は酸素を活物質とす
るガス拡散電極と、外気に通じる空気取入れ孔を有する
電池容器を備えた電池のガス拡散電極の空気取入れ側と
電池容器内面との間に、スパッタガスとしてArとN2
の混合ガスを用いたスパッタ法にて、La1−xS r
zco+−yFeyozをターゲットに用い、微多孔性
基板上に薄膜を形成することによって得られた複合膜を
介在させたものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides an air intake system for a gas diffusion electrode of a battery comprising a gas diffusion electrode using oxygen as an active material and a battery container having an air intake hole communicating with outside air. Ar and N2 are used as sputtering gas between the side and the inner surface of the battery container.
La1-xS r
A composite film obtained by forming a thin film on a microporous substrate using zco+-yFeyoz as a target was interposed.

本発明は、酸素選択透過性の優れた膜として、スパッタ
ガスにArとN2の混合ガスを用いたスパッタ法により
、La+−xS rxCo+−yFeyozをターゲッ
トに用いて微多孔性基板上に薄膜を形成することで得ら
れた複合膜の大きい酸素選択性透過能に着目したもので
ある。
The present invention forms a thin film on a microporous substrate using La+-xS rxCo+-yFeyoz as a target by a sputtering method using a mixed gas of Ar and N2 as a sputtering gas as a film with excellent oxygen selective permeability. We focused on the high oxygen selective permeability of the composite membrane obtained by this method.

この膜が、重負荷での満足な放電性能を得るために必要
な酸素透過速度と、長期保存や低湿度下あるいは、高湿
度雰囲気下での長期放電に耐えるだけの水蒸気及び炭酸
ガスに対する透過阻止能とを持ち、この膜を適用した電
池の性能がきわめて優れていることを見い出し、完成さ
せたものである。
This membrane has the oxygen permeation rate necessary to obtain satisfactory discharge performance under heavy loads, and the permeation prevention of water vapor and carbon dioxide gas to withstand long-term storage and long-term discharge under low humidity or high humidity atmospheres. They found that the performance of batteries to which this membrane was applied was extremely excellent, and they completed it.

作用 この構成による複合膜は、後述の実施例における電池試
験の結果からも明らかなように、電池用としての良好な
酸素透過速度と、空気中の水蒸気や炭酸ガスの電池内へ
の進入を遮断する効果を共に満足すべき状態に保て、実
用的な電池に要求される重負荷放電性能と、高湿度や低
湿度の雰囲気下で長時間放電した場合の性能も共に満足
することとなる。
Function: As is clear from the results of the battery test in the Examples described later, the composite membrane with this configuration has a good oxygen permeation rate for batteries and blocks water vapor and carbon dioxide from entering the battery. Both the heavy load discharge performance required of a practical battery and the performance when discharged for a long time in an atmosphere of high humidity or low humidity can be maintained in a satisfactory state.

実施例 (実施例1) 平均孔径0.05μmの微細孔を有する厚さ6μmのポ
リカーボネート膜にュクリボアー製)の片面に、 L 
ao、2s ro、ec oo、aF eo、ro2.
7をターゲットに用いて、ArとN2の混合ガス(Ar
とN2の分圧比: N2 /Ar=25%)を用いたス
パッタ法で、2000Aの厚みを持つ薄膜を形成し、複
合膜とした。
Example (Example 1) L
ao, 2s ro, ec oo, aF eo, ro2.
7 as a target, a mixed gas of Ar and N2 (Ar
A thin film having a thickness of 2000 A was formed by a sputtering method using a partial pressure ratio of N2 and N2 (N2/Ar=25%) to form a composite film.

(実施例2) 実施例1で用いたものと同仕様のポリカーボネート膜の
片面に、LaCoO3をターゲットに用いて、ArとN
2の混合ガス(ArとN2の分圧比:N2/Ar=25
%)を用いたスパッタ法で、2000Åの厚みを持つ薄
膜を形成し、複合膜とした。
(Example 2) Ar and N were applied to one side of a polycarbonate film with the same specifications as that used in Example 1 using LaCoO3 as a target.
2 mixed gas (partial pressure ratio of Ar and N2: N2/Ar=25
A thin film with a thickness of 2000 Å was formed by a sputtering method using %) to form a composite film.

(比較例1〉 平均孔径0.2μmの微細孔を有する厚さ10μmのポ
リカーボネート膜にュクリポアー製)の片面に、L a
o、2s ro、sc oo、sF eo、202.7
をターゲットに用いて、ArとN2の混合ガス(Arと
N2の分圧比: N2 /Ar=25%)を用いたスパ
ッタ法で、2000Aの厚みを持つ薄膜を形成し、複合
膜とした。
(Comparative Example 1) La
o, 2s ro, sc oo, sF eo, 202.7
A thin film having a thickness of 2000 A was formed by a sputtering method using a mixed gas of Ar and N2 (partial pressure ratio of Ar and N2: N2/Ar=25%) using the target as a composite film.

(比較例2) 実施例1で用いたものと同仕様のポリカーボネート膜の
片面に、L ao、zs ro、sCoo、eF eo
、202.7をターゲットに用いて、Arのみを用いた
スパッタ法で、2000Aの厚みを持つ薄膜を形成し、
複合、膜とした。
(Comparative Example 2) Lao, zs ro, sCoo, eF eo were coated on one side of a polycarbonate membrane with the same specifications as that used in Example 1.
, 202.7 as a target, a thin film with a thickness of 2000A was formed by sputtering using only Ar,
Composite, membrane.

(比較例3) 平均孔径0.05μmの微細孔を有する厚さ6μmのポ
リカーボネート膜にュクリボアー製)の片面に、L a
o、2s ro、ec oo、eF ea、202.−
tをターゲットに用いて、ArとN2の混合ガス(Ar
とN2の分圧比: N2 /A r=25%)を用いた
スパッタ法で、400Aの厚みを持つ薄膜を形成し、複
合膜とした。
(Comparative Example 3) La
o, 2s ro, ec oo, eF ea, 202. −
A mixed gas of Ar and N2 (Ar
A thin film having a thickness of 400 A was formed by a sputtering method using a partial pressure ratio of N2 and N2 (N2/Ar = 25%) to form a composite film.

(比較例4) 平均孔径0.05μmの微細孔を有する厚さ6μmのポ
リカーボネート膜にュクリポアー製)の片面に、Lag
、2s ro、aCoo、eFeo、2027をターゲ
ットに用いて、ArとN2の混合ガス(ArとN2の分
圧比:Np/Ar=60%)を用いたスパッタ法で、1
00OAの厚みを持つ薄膜を形成し、複合膜とした。
(Comparative Example 4) Lag
, 2s ro, aCoo, eFeo, 2027 as a target, 1 was sputtered using a mixed gas of Ar and N2 (partial pressure ratio of Ar and N2: Np/Ar = 60%).
A thin film having a thickness of 00OA was formed to form a composite film.

(比較例5) 多孔性撥水膜は使用するが、複合膜を用いないもの。(Comparative example 5) A porous water-repellent membrane is used, but a composite membrane is not used.

本発明の効果を確認するために、実施例1,2で作成し
た複合膜、及び比較例1〜4の複合膜を使用した電池と
、複合膜を使用していない電池を試作し、評価、検討し
た。まず、複合膜を用いない比較例5の場合は第2図と
全く同一の構成とした。次に、複合膜を使用した電池は
、第1図に示すようにPTFEの多孔膜2と、酸素の流
れを分散しかつ均一化させる多孔体4との間にそれぞれ
の複合膜が介在した構成としたものである。
In order to confirm the effects of the present invention, a battery using the composite membranes prepared in Examples 1 and 2 and the composite membranes of Comparative Examples 1 to 4, and a battery not using the composite membrane were prototyped and evaluated. investigated. First, in the case of Comparative Example 5 in which no composite membrane was used, the configuration was exactly the same as that in FIG. 2. Next, as shown in Fig. 1, a battery using a composite membrane has a structure in which each composite membrane is interposed between a porous PTFE membrane 2 and a porous body 4 that disperses and equalizes the flow of oxygen. That is.

試作した電池の寸法はいずれも直径11.6m、総高5
.4+mであり、比較的重負荷(75Ω)で20℃、常
湿(60%RH)での連続放電により電池内への空気中
の酸素取り込み速度の充足性を評価し、比較的軽負荷(
3にΩ)で20℃、高湿度(90%RH) 、および低
湿度(20%RH)での長時間連続放電により、長期の
放電期間中における雰囲気からの水蒸気の電池内への取
り込みや電池内の水分の蒸発、及び炭酸ガスの取り込み
など電池性能への影響度を評価した。
The dimensions of the prototype batteries are 11.6 m in diameter and 5 m in total height.
.. 4+m, and the sufficiency of the rate of oxygen uptake into the battery was evaluated by continuous discharge at 20°C and normal humidity (60% RH) under a relatively heavy load (75Ω).
Long-term continuous discharge at 20°C, high humidity (90% RH), and low humidity (20% RH) at a temperature of 3 Ω) prevents the intake of water vapor from the atmosphere into the battery during the long-term discharge period. We evaluated the effects on battery performance, such as evaporation of water inside the battery and uptake of carbon dioxide gas.

試作した電池の内訳は第1表に示す通りである。ここで
、比較例1〜4と実施例1,2を比較すれば明らかなよ
うに、酸素と水蒸気のガス透過速度比は、比較例ではい
ずれも1以下であり、電池用の膜としては酸素選択性透
過膜とはいえない。しかし、実施例ではいずれも3以上
であり、本発明の複合膜は電池用として優れた酸素選択
性透過能を有していることがわかる。
The details of the prototype battery are shown in Table 1. Here, as is clear from comparing Comparative Examples 1 to 4 and Examples 1 and 2, the gas permeation rate ratio of oxygen and water vapor is less than 1 in all of the comparative examples, and oxygen It cannot be said to be a selectively permeable membrane. However, in all the examples, the value was 3 or more, indicating that the composite membrane of the present invention has excellent oxygen selective permeability for use in batteries.

また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype batteries.

(以 下 余 白) 第2表において、放電終止電圧はいずれも〕、9vであ
り、重量変化は放電試験前後の増減を示しており、主と
して放電中の水分の取り込み、あるいは蒸発の多少を示
唆する数値である。
(Left below) In Table 2, the end-of-discharge voltage is 9V in all cases, and the change in weight indicates an increase or decrease before and after the discharge test, which mainly suggests the amount of water taken in or evaporated during discharge. This is the numerical value.

これらの電池の特性を、複合膜を使用していない比較例
5と対比すると最も端的に本発明の詳細な説明できる。
The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 5, which does not use a composite membrane.

まず20℃、常湿での重負荷試験では放電時間が短く、
水分の取り込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば水分
や炭酸ガスの透過阻止はあまり考慮する必要がない。従
って、このような条件下では比較例1〜5でも優れた特
性が得られる。これに対し、前述の実施例1,2は比較
例1〜5と同等の放電特性が得られており、複合膜を酸
素が透過する速度が放電反応で酸素が消費される速度に
充分追随していることを示している。
First, in a heavy load test at 20℃ and normal humidity, the discharge time was short.
Since the influence of moisture uptake and evaporation and the influence of carbon dioxide gas are small, there is no need to consider blocking the permeation of moisture and carbon dioxide gas as long as the oxygen supply rate is sufficient for battery performance. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Examples 1 to 5. On the other hand, in Examples 1 and 2 described above, discharge characteristics equivalent to Comparative Examples 1 to 5 were obtained, and the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. It shows that

一方、軽負荷放電の場合は放電時間が長く、しかも外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や炭酸ガス、特に水分の透過阻止が優れた電池特
性を得るために重要となり、水分や炭酸ガスの充分な透
過阻止機構を持たない比較例1〜5の電池は水分の枯渇
、あるいは逆に水分の過剰取入れによる漏液に起因した
空気孔の閉塞などにより、放電の途中で電圧が低下し、
重負荷試験で得られた放電容量の一部分に相当する容量
が得られるに過ぎない。また放電途中での漏液は実用面
で致命的な問題であることはいうまでもない。これに対
して実施例は極めて優れた性能を示し、これらは重負荷
試験の放電容量とほぼ等しい容量が得られている。これ
らの傾向は試験雰囲気が高湿度、低湿度、いずれの場合
とも同様である。このことは、実施例の場合、複合膜の
水分透過阻止効果が充分に発揮されていることを示して
いる。
On the other hand, in the case of light load discharge, the discharge time is long, and in addition, when the outside air is high or low humidity, it is necessary to obtain battery characteristics that are superior in preventing the permeation of moisture and carbon dioxide gas, especially moisture, rather than the oxygen supply rate. The batteries of Comparative Examples 1 to 5, which do not have a sufficient mechanism to prevent the permeation of moisture and carbon dioxide gas, suffer from discharge due to depletion of moisture or, conversely, blockage of air holes due to leakage due to excessive intake of moisture. The voltage drops along the way,
A capacity equivalent to only a portion of the discharge capacity obtained in the heavy load test is obtained. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem in practical terms. On the other hand, the Examples showed extremely excellent performance, and a capacity almost equal to the discharge capacity in the heavy load test was obtained. These trends are the same whether the test atmosphere is high humidity or low humidity. This shows that in the case of the example, the moisture permeation blocking effect of the composite membrane was sufficiently exhibited.

以上を総合して、スパッタガスとしてArとN2の混合
ガスを用いたスパッタ法にて、La1−Xs rxCo
+−yFeyozをターゲットに用いて微多孔性基板上
に薄膜を形成することによって得られた複合膜を用いた
電池は、重負荷特性。
Taking all the above into account, La1-Xs rxCo
A battery using a composite film obtained by forming a thin film on a microporous substrate using +-yFeyoz as a target has heavy load characteristics.

軽負荷特性とも優れ、外部雰囲気の変化にも安定した優
れた電池を提供できることが結論できる。
It can be concluded that it is possible to provide an excellent battery that has excellent light load characteristics and is stable even under changes in the external atmosphere.

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが11本発明の
複合膜の機械的強度が充分な場合は、前記空気拡散用の
多孔体を除いても電池特性に差異はない。さらに上記実
施例では、本発明の複合膜を酸素極との間に酸素極を支
持する多孔膜を介して設置したが、酸素極の強度が充分
であれば、前記支持用多孔膜は不要にでき、その場合に
も電池特性は変わらない。また、塩化アンモニウム、塩
化亜鉛などの中性塩水溶液を電解液に用いた空気電池に
対しても、実施例で示したアルカリ性の電解液を用いた
電池と同様の効果があることも確認している。
In addition, in the above embodiment, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but if the mechanical strength of the composite membrane of the present invention is sufficient, the air diffusion There is no difference in battery characteristics even if the porous material is removed. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane supporting the oxygen electrode, but if the oxygen electrode has sufficient strength, the supporting porous membrane is unnecessary. Even in that case, the battery characteristics will not change. We also confirmed that air batteries using neutral salt aqueous solutions such as ammonium chloride and zinc chloride as electrolytes have the same effect as batteries using alkaline electrolytes shown in the examples. There is.

発明の効果 以上の説明で明らかなように、本発明による酸素選択透
過性複合膜によれば、中性もしくはアルカリ性の水溶液
を電解液とする電池の重負荷から軽負荷にわたる広い範
囲で優れた実用性能と、優れた耐漏液性、長期貯蔵性を
得ることができるという効果がある。
Effects of the Invention As is clear from the above explanation, the oxygen selectively permeable composite membrane of the present invention can be used in a wide range of practical applications, from heavy loads to light loads, in batteries using neutral or alkaline aqueous solutions as electrolytes. It has the effect of being able to obtain high performance, excellent leakage resistance, and long-term storage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の断面図、第2図は複合膜を使用して
いない従来のボタン形空気亜鉛電池の断面図である。 1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取入れ孔、4・・・・・・多孔
膜、5,6・・・・・・セパレータ、7・・・・・・負
極亜鉛、8・・・・・・負極容器、9・・・・・・絶縁
ガスケット、10・・・・・・正極容器、11・・・・
・・複合膜。 代理人の氏名 弁理士 粟野重孝 ほか12第 2 図 f−・−*1益 11−・11番朕 ] 手続補正書 平成 3年 6月r日 ■事件の表示 2発明の名称 電池の製造法 6、補正の内容 (1)明細書の第6頁第5行の[La 1−JXSrz
CO1イF賀O2Jを[La1−5(SrzCol−Y
 I’elY 03−ZJに補正します。 (2)同第6頁第11行の[La14SrzCo1−Y
Fey OzJをF La1−zsrz Col yF
6y O河Jに補正します。 (3)同第13頁の「第2表」を別紙の通り補正します
。 (4)同第15頁第18行のr La 14Srz C
0I−J/ FeYOz Jを[L1帽5rzCo+−
yFeyos−z Jに補正します。 代表者 6補正の対象
FIG. 1 is a cross-sectional view of a button-type zinc-air battery used to study examples and comparative examples of the present invention, and FIG. 2 is a cross-sectional view of a conventional button-type zinc-air battery that does not use a composite membrane. 1... Oxygen electrode (air electrode), 2... Water repellent membrane, 3... Air intake hole, 4... Porous membrane, 5, 6... ... Separator, 7 ... Negative electrode zinc, 8 ... Negative electrode container, 9 ... Insulating gasket, 10 ... Positive electrode container, 11 ...・・・
...Composite membrane. Name of agent Patent attorney Shigetaka Awano et al. 12 No. 2 Figure f-・-*1 11-・11] Written amendment June 1991 ■ Indication of the case 2 Name of the invention Method of manufacturing batteries 6 , Contents of amendment (1) [La 1-JXSrz on page 6, line 5 of the specification]
CO1 IFga O2J [La1-5(SrzCol-Y
Correct to I'elY 03-ZJ. (2) [La14SrzCo1-Y on page 6, line 11]
Fey OzJ F La1-zsrz Col yF
6y Correct to Okawa J. (3) “Table 2” on page 13 of the same document will be amended as shown in the attached sheet. (4) r La 14Srz C on page 15, line 18
0I-J/ FeYOz J [L1 cap 5rzCo+-
Correct to yFeyos-z J. Target of representative 6 amendment

Claims (4)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取入れ側と前記電池容器内面との間に、 La_1_−_XSr_XCo_1_−_YFe_YO
_3_−_Z(但し0≦X<1、0≦Y<1、0≦Z<
1)をターゲットに用い、0.1μm以下の微細孔を有
する微多孔膜上に、Arガスと窒素ガスとの混合ガスを
用いたスパッタ法にて薄膜を形成することによって得ら
れた酸素選択透過性複合膜を介在させる電池の製造法。
(1) A gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air are provided, and between the air intake side of the gas diffusion electrode and the inner surface of the battery container, La_1_-_XSr_XCo_1_-_YFe_YO is provided.
_3_-_Z(However, 0≦X<1, 0≦Y<1, 0≦Z<
Oxygen selective permeation obtained by using 1) as a target and forming a thin film by sputtering using a mixed gas of Ar gas and nitrogen gas on a microporous film having micropores of 0.1 μm or less. A method for manufacturing a battery using a composite membrane.
(2)前記薄膜の膜厚が500〜2000Åである特許
請求の範囲第1項記載の電池の製造法。
(2) The method for manufacturing a battery according to claim 1, wherein the thin film has a thickness of 500 to 2000 Å.
(3)前記混合ガス中の窒素分圧比が0.1〜50%で
ある特許請求の範囲第1項記載の電池の製造法。
(3) The method for manufacturing a battery according to claim 1, wherein the nitrogen partial pressure ratio in the mixed gas is 0.1 to 50%.
(4)前記酸素選択透過性複合膜が、空気取入れ孔を有
する前記電池容器の内面と前記ガス拡散電極に直接接し
ている特許請求の範囲第1項または第2項記載の電池の
製造法。
(4) The method for manufacturing a battery according to claim 1 or 2, wherein the oxygen selectively permeable composite membrane is in direct contact with the inner surface of the battery container having an air intake hole and the gas diffusion electrode.
JP2189022A 1990-07-16 1990-07-16 Manufacture of battery Pending JPH0475253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189022A JPH0475253A (en) 1990-07-16 1990-07-16 Manufacture of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189022A JPH0475253A (en) 1990-07-16 1990-07-16 Manufacture of battery

Publications (1)

Publication Number Publication Date
JPH0475253A true JPH0475253A (en) 1992-03-10

Family

ID=16233993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189022A Pending JPH0475253A (en) 1990-07-16 1990-07-16 Manufacture of battery

Country Status (1)

Country Link
JP (1) JPH0475253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365535B1 (en) * 1999-11-02 2002-04-02 Advanced Technology Materials, Inc. Ceramic composition having high adsorptive capacity for oxygen at elevated temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365535B1 (en) * 1999-11-02 2002-04-02 Advanced Technology Materials, Inc. Ceramic composition having high adsorptive capacity for oxygen at elevated temperature

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JPH0475253A (en) Manufacture of battery
JP2782837B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH04312771A (en) Air battery
JPH09894A (en) Oxygen permselective membrane and cell using the same
JP2817343B2 (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JP2822485B2 (en) Battery
JP2817341B2 (en) Battery
JP2778078B2 (en) Battery
JPH042067A (en) Battery
JP2743574B2 (en) Battery
JPH03108254A (en) Battery
JP2782911B2 (en) Battery
JP2757383B2 (en) Battery
JPH03108258A (en) Battery
JPH02109254A (en) Battery
JPH01267974A (en) Battery
JPH05326036A (en) Battery
JPH04162374A (en) Battery
JPH0374047A (en) Battery
JPH01267971A (en) Battery
JPH08241737A (en) Oxygen selective permeable film, and air battery using it
JPH01195678A (en) Cell