JP2821153B2 - Charged particle beam application equipment - Google Patents

Charged particle beam application equipment

Info

Publication number
JP2821153B2
JP2821153B2 JP29452788A JP29452788A JP2821153B2 JP 2821153 B2 JP2821153 B2 JP 2821153B2 JP 29452788 A JP29452788 A JP 29452788A JP 29452788 A JP29452788 A JP 29452788A JP 2821153 B2 JP2821153 B2 JP 2821153B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
charged
deflecting
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29452788A
Other languages
Japanese (ja)
Other versions
JPH02142045A (en
Inventor
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29452788A priority Critical patent/JP2821153B2/en
Publication of JPH02142045A publication Critical patent/JPH02142045A/en
Application granted granted Critical
Publication of JP2821153B2 publication Critical patent/JP2821153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、走査形荷電粒子顕微鏡及びその類似装置に
係り、特に低加速領域において高分解能でかつ二次電子
の高検出効率に好適な荷電粒子光学系に関する。
The present invention relates to a scanning charged particle microscope and similar devices, and more particularly to a charged particle optical system having high resolution in a low acceleration region and suitable for high detection efficiency of secondary electrons.

【従来の技術】[Prior art]

走査形電子顕微鏡の分解能を向上させるために、特開
昭61−294746号に記載されているような光学系が用いら
れている。すなわち、輝度が高く、エネルギ幅の小さな
電界放射形(FE)電子銃と、レンズの内部に試料を配置
して収差を極力小さくしたインレンズ形対物レンズとを
組合わせたものである。このような光学系においても低
加速領域においては分解能は低下する。 一方、色収差を低減するために、特公昭63−34588に
記載されているような光学系が提案されている。 この光学系は、電子線が試料を照射する直前まで高加
速電圧とし、試料照射時に減速して低加速電圧化するも
のである。この場合、レンズ通過時の電子線のエネルギ
が高いので、レンズ収差を小さくできる。すなわち、高
分解能化が図れる。 以上の観点から、低加速領域で従来以上の高分解能を
得るためには、上記両者の光学系を組合せれば可能とな
る。すなわち、試料はレンズの内部に配置し、この試料
に負の電圧を印加して減速すればよい。 ただ、この場合問題となるのは二次電子の検出であ
る。試料がレンズの外部にある従来の場合には、特公昭
63−34588に示されているように、一次電子線の減速電
界で二次電子が加速されるまでに二次電子検出器の電界
で二次電子を検出するように構成すればよかった。しか
し、試料をレンズの内部に配置したインレンズ形では、
レンズの磁界が強いためにこの磁界に二次電子が強く束
縛されるばかりでなく、二次電子検出器をレンズの内部
に配置できないという問題が生じる。 また、一次電子線と二次電子とを分離することについ
ては特開昭62−31933号に磁界のみで分離することが開
示されていた。
In order to improve the resolution of a scanning electron microscope, an optical system as described in JP-A-61-294746 is used. That is, a field emission (FE) electron gun having a high luminance and a small energy width is combined with an in-lens type objective lens in which a sample is arranged inside a lens to minimize aberration. Even in such an optical system, the resolution is reduced in the low acceleration region. On the other hand, in order to reduce chromatic aberration, an optical system as described in JP-B-63-34588 has been proposed. This optical system has a high accelerating voltage until just before the electron beam irradiates the sample, and decelerates to a low accelerating voltage during the sample irradiation. In this case, since the energy of the electron beam when passing through the lens is high, lens aberration can be reduced. That is, high resolution can be achieved. From the above viewpoints, it is possible to obtain higher resolution than before in the low acceleration region by combining the above two optical systems. That is, the sample may be placed inside the lens, and a negative voltage may be applied to the sample to reduce the speed. However, the problem in this case is the detection of secondary electrons. In the conventional case where the sample is outside the lens,
As shown in JP-A-63-34588, the secondary electron should be detected by the electric field of the secondary electron detector before the secondary electron is accelerated by the deceleration electric field of the primary electron beam. However, in the in-lens type where the sample is placed inside the lens,
Since the magnetic field of the lens is strong, not only the secondary electrons are strongly bound by the magnetic field, but also a problem arises in that the secondary electron detector cannot be arranged inside the lens. Japanese Patent Application Laid-Open No. Sho 62-31933 discloses that a primary electron beam and a secondary electron are separated only by a magnetic field.

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明の目的は、低加速領域で高分解能化を図り、か
つ二次電子の高検出感度が得られる電子光学系を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electron optical system capable of achieving high resolution in a low acceleration region and obtaining high detection sensitivity for secondary electrons.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成する構成は、荷電粒子源と、前記荷電
粒子源から出た第1の荷電粒子線を絞って試料に照射す
る対物レンズと、第1の荷電粒子線を減速するとともに
試料から荷電粒子源側へ向かう第2の荷電粒子を加速す
る減速手段と、荷電粒子源側方向に対物レンズから出て
きた第2の荷電粒子を電界と磁界とで偏向して第1の荷
電粒子線から分離する偏向器と、偏向器によって偏向さ
れた第2の荷電粒子を検出する検出器を有する荷電粒子
線応用装置から成る。より具体的にはこの光学系で、二
次電子の高検出効率化を図るために、一次電子線の減速
電界で加速された二次電子をレンズ通過後検出器の方に
偏向させればよい。ただこの場合、一次電子線には実質
的に影響しないように二次電子のみを検出器の方に偏向
する必要がある。そのためには、電界(E)と磁界
(B)とを直行させたいわゆるE×B形のフィルタを用
いれば可能となる。
A configuration for achieving the above object includes a charged particle source, an objective lens that squeezes a first charged particle beam emitted from the charged particle source and irradiates the sample with the charged particle beam, decelerates the first charged particle beam and charges the sample from the sample. Decelerating means for accelerating the second charged particle heading toward the particle source; and deflecting the second charged particle coming out of the objective lens in the direction toward the charged particle source with an electric field and a magnetic field, and then deflecting the second charged particle from the first charged particle beam. It comprises a charged particle beam application device having a deflector for separation and a detector for detecting the second charged particles deflected by the deflector. More specifically, in this optical system, in order to increase the detection efficiency of secondary electrons, secondary electrons accelerated by the deceleration electric field of the primary electron beam may be deflected to the detector after passing through the lens. . However, in this case, only the secondary electrons need to be deflected to the detector so as not to substantially affect the primary electron beam. This can be achieved by using a so-called E × B-type filter in which an electric field (E) and a magnetic field (B) are perpendicular to each other.

【作用】[Action]

まず、試料照射の直前に電子線の減速を行えば、低加
速電圧でも高分解能が得られることは従来技術からも分
かる。 一方、二次電子検出に関しては、E×B形のフィルタ
を試料と検出器との間に用いているので、一次電子線を
直進するようにしてやれば、エネルギの異なる二次電子
は自然に偏向されることになる。すなわち、第5図に示
すように電子線2の加速電圧V0にたいして、次式を満足
するようにEとBを印加すれば、電子線2の軌道に影響
を与えない。 E/V0=2kB ……(1) ここで、 :電子の電荷/質量である。 この時、検出すべき二次電子8のエネルギは減速電圧
VRでありかつ電子線2と方向が逆であるので,二次電子
8の偏向角θは、 となる。 この偏向方向を検出器の方向と一致させておけば、二
次電子は検出器に向かって進むので、検出効率の向上が
図れることになる。
First, it can be seen from the prior art that if the electron beam is decelerated immediately before the sample irradiation, high resolution can be obtained even at a low acceleration voltage. On the other hand, regarding secondary electron detection, since an E × B type filter is used between the sample and the detector, secondary electrons having different energies are naturally deflected if the primary electron beam is made to go straight. Will be done. That is, as shown in FIG. 5, if E and B are applied to the acceleration voltage V 0 of the electron beam 2 so as to satisfy the following expression, the trajectory of the electron beam 2 is not affected. E / V 0 = 2 kB (1) where : Charge / mass of electrons. At this time, the energy of the secondary electrons 8 to be detected is a deceleration voltage.
V R and the direction is opposite to that of the electron beam 2, so that the deflection angle θ of the secondary electron 8 is Becomes If this deflection direction is made to coincide with the direction of the detector, the secondary electrons travel toward the detector, so that the detection efficiency can be improved.

【実施例】【Example】

本発明の一実施例を第1図により説明する。 電子銃1からでた電子線2は、幾つかのレンズ(本実
施例では加速レンズ3、コンデンサレンズ4、対物レン
ズ5)により細く絞られて試料6上を照射する。この電
子線2は偏向器7により試料6上で二次元的に走査され
る。また、試料6からでてきた二次電子8は、二次電子
検出器9により検出されて映像信号となる。 ここで、試料6は電子線2を減速するために負の電圧
VRが印加されている。このとき、出てきた二次電子はこ
の減速電圧VRにより逆に加速され、検出器9の電界のみ
では十分に検出器9の方に偏向できなくなる。 そこで、出てきた二次電子8を検出器9の方に偏向す
るために偏向器を配置すればよいが、電子線2の軌道に
影響のないように電界Eと磁界Bとを直行させたいわゆ
るE×B形のフィルタ10を対物レンズ5と検出器9との
間に配置している。このとき、(1)式のようにEとB
を印加すれば、電子線2の軌道には影響を与えずに二次
電子8のみを検出器の方に偏向でき、検出効率の向上が
図れる。 ただこの場合、フィルタ10による色収差が問題にな
る。この色収差による偏向角βは、 で表わされる。ここで、ΔVは電子線2のエネルギ幅で
ある。 すなわち、第2図に示すようにこの色収差により物点
12でSβの拡がりを持つことになり、対物レンズの倍率
をMとすると試料上ではMSβの拡がりを生ずる。具体的
数値の典型的な一例を示すと、θ=30゜、ΔV=0.3e
V、V0=1kV、としてVRに対するβは第3図に示すものと
なる。この図からβを大きく見積もって5×10-5とし、
S=200mm,M=1/50とすると、0.2μmの拡がりとなる。
この値は、電子線2の所望の値(〜nm)より非常に大き
い。 そこで、本発明では第4図ならびに第1図に示すよう
に、E×B形のフィルタ11を配置してこの色収差を自己
消去できるようにした。すなわち、第4図から分かるよ
うにΔVのエネルギ拡がりを持つ電子線2があたかも物
点12の一点から出たかのようになるようにフィルタ11を
動作させる。このフィルタ11の偏向角β′は、 β′=Sβ/T ……(4) とすればよい。 以上により、電子線2の径を増大させることなく、二
次電子8のみを検出器9の方に偏向することが可能とな
る。すなわち、低加速領域でも高分解能でかつ二次電子
の高検出効率が得られることになる。 第1図に示す本発明を実施した結果のごく一例を以下
に示す。フィルタ11を物点12とフィルタ10とのほぼ中間
に配置して電界Eと磁界Bとの作用長を約20mmとなるよ
うに構成し、V0=1kVと固定にしてVR=0〜900Vと変化
させた。このとき、フィルタ10、11のそれぞれのEとB
の強さをE=0〜25V/mm,0〜50V/mm,B=0〜14ガウス
(Gauss),0〜28GaussとVRに連動させて変化させたとこ
ろ、4〜6nmの高分解能が実現できた。 本発明は、1kV以下の低加速電圧でnmオーダの分解能
を得ることを目的になされたため、フィルタを2段にし
たが、目的によっては1段で構成しても二次電子の高検
出効率化は可能であることは、本実施例で述べた通りで
ある。 また、本実施例では試料がレンズの内部に配置した
が、レンズの外側に配置された構成の光学系にたいして
も実施することができる。なおこの場合、二次電子検出
器は試料と対物レンズとの間にあってもよいし、第1図
のように対物レンズの上側にあってもよいことはいうま
でもない。要は、試料と二次電子検出器との間にE×B
形のフィルタがあれば実現できる。 さらに、本発明は走査形電子顕微鏡に対して述べた
が、これに限ることなく類似の電子線応用装置一般に適
用できるし、さらにイオン線のような荷電粒子線応用装
置一般に適用できることは言うまでもない。ただ、正の
電荷を持っている荷電粒子線の場合には、減速電圧は正
の値にする必要がある。
One embodiment of the present invention will be described with reference to FIG. The electron beam 2 emitted from the electron gun 1 is narrowed down by a number of lenses (in this embodiment, an acceleration lens 3, a condenser lens 4, and an objective lens 5), and irradiates the sample 6 on it. The electron beam 2 is two-dimensionally scanned on the sample 6 by the deflector 7. Further, the secondary electrons 8 coming out of the sample 6 are detected by the secondary electron detector 9 and become a video signal. Here, the sample 6 has a negative voltage to decelerate the electron beam 2.
V R is applied. At this time, the emitted secondary electrons are inversely accelerated by the deceleration voltage V R , and cannot be sufficiently deflected toward the detector 9 only by the electric field of the detector 9. Therefore, a deflector may be arranged to deflect the emitted secondary electrons 8 toward the detector 9, but the electric field E and the magnetic field B are made perpendicular to each other so as not to affect the trajectory of the electron beam 2. A so-called E × B filter 10 is disposed between the objective lens 5 and the detector 9. At this time, E and B as shown in equation (1)
Is applied, only the secondary electrons 8 can be deflected to the detector without affecting the trajectory of the electron beam 2, and the detection efficiency can be improved. However, in this case, chromatic aberration due to the filter 10 becomes a problem. The deflection angle β due to this chromatic aberration is Is represented by Here, ΔV is the energy width of the electron beam 2. That is, as shown in FIG.
At 12 the Sβ spreads, and if the magnification of the objective lens is M, MSβ spreads on the sample. As a typical example of specific numerical values, θ = 30 ° and ΔV = 0.3e
V, V 0 = 1kV, β for V R as is as shown in Figure 3. From this figure, β is largely estimated to be 5 × 10 -5 ,
If S = 200 mm and M = 1/50, the spread is 0.2 μm.
This value is much larger than the desired value (〜nm) of the electron beam 2. Therefore, in the present invention, as shown in FIGS. 4 and 1, an E × B type filter 11 is arranged so that this chromatic aberration can be eliminated by itself. That is, as can be seen from FIG. 4, the filter 11 is operated such that the electron beam 2 having an energy spread of ΔV is as if it had come out of one point of the object point 12. The deflection angle β 'of the filter 11 may be set as follows: β' = Sβ / T (4) As described above, only the secondary electrons 8 can be deflected to the detector 9 without increasing the diameter of the electron beam 2. That is, high resolution and high detection efficiency of secondary electrons can be obtained even in a low acceleration region. Only one example of the result of implementing the present invention shown in FIG. 1 is shown below. The filter 11 is arranged almost in the middle between the object point 12 and the filter 10 so that the action length of the electric field E and the magnetic field B is about 20 mm, and V 0 = 1 kV and V R = 0 to 900 V Was changed. At this time, E and B of the filters 10 and 11 respectively
The strength of E = 0~25V / mm, 0~50V / mm, B = 0~14 Gauss (Gauss), was varied in conjunction to 0~28Gauss and V R, the high resolution 4~6nm I realized it. The present invention aims to obtain a resolution of the order of nm with a low acceleration voltage of 1 kV or less, so that the filter has two stages. Is possible as described in the present embodiment. In this embodiment, the sample is arranged inside the lens. However, the present invention can be applied to an optical system having a structure arranged outside the lens. In this case, it goes without saying that the secondary electron detector may be located between the sample and the objective lens, or may be located above the objective lens as shown in FIG. In short, ExB between the sample and the secondary electron detector
This can be achieved with a shaped filter. Further, although the present invention has been described with respect to the scanning electron microscope, it is needless to say that the present invention is not limited to this and can be applied to similar electron beam application devices in general and further to charged particle beam application devices such as ion beams. However, in the case of a charged particle beam having a positive charge, the deceleration voltage needs to be a positive value.

【発明の効果】【The invention's effect】

本発明によれば、低加速領域でも荷電粒子線径を増大
させることなく二次荷電粒子を検出器の方に偏向するこ
とが可能となるので、高分解能でかつ二次荷電粒子の高
検出効率が得られる効果がある。
According to the present invention, it is possible to deflect the secondary charged particles toward the detector without increasing the charged particle beam diameter even in a low acceleration region, so that the resolution is high and the secondary charged particle detection efficiency is high. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す荷電粒子光学系の縦断
面図、第2図はE×B形フィルタの色収差に関する説明
図、第3図はE×B形フィルタの色収差により生じる偏
向角と試料に印加した減速電圧との関係曲線図、第4図
はフィルタの色収差を自己打消しさせるための基本光学
系の縦断面図、第5図はE×B形フィルタによる一次電
子線と二次電子の軌道を示す説明図である。 符号の説明 1:電子銃,2:電子線,3:加速レンズ,4:コンデンサレンズ,
5:対物レンズ,6:試料,7:偏向器,8:二次電子,9:二次電子
検出器,10,11:E×B形フィルタ,12:物点
FIG. 1 is a longitudinal sectional view of a charged particle optical system showing an embodiment of the present invention, FIG. 2 is an explanatory diagram relating to chromatic aberration of an E × B filter, and FIG. 3 is deflection caused by chromatic aberration of an E × B filter. FIG. 4 is a longitudinal sectional view of a basic optical system for self-cancelling the chromatic aberration of the filter, and FIG. 5 is a diagram showing a relationship between a primary electron beam by an E × B type filter and a deceleration voltage applied to the sample. FIG. 3 is an explanatory diagram showing orbits of secondary electrons. Explanation of reference numerals 1: electron gun, 2: electron beam, 3: acceleration lens, 4: condenser lens,
5: objective lens, 6: sample, 7: deflector, 8: secondary electron, 9: secondary electron detector, 10, 11: E × B filter, 12: object point

Claims (30)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
荷電粒子源側へ向かう第2の荷電粒子を加速する減速手
段と、前記荷電粒子源側方向に前記対物レンズから出て
きた第2の荷電粒子を電界と磁界とで偏向して前記第1
の荷電粒子線から分離する偏向手段と、前記偏向手段に
よって偏向された前記第2の荷電粒子を検出する検出手
段を具備したことを特徴とする荷電粒子線応用装置。
1. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with a charged particle beam, and decelerating the first charged particle beam and charging particles from the sample Decelerating means for accelerating the second charged particles toward the source, and deflecting the second charged particles coming out of the objective lens in the direction of the charged particle source by an electric field and a magnetic field to the first charged particles.
A charged particle beam application apparatus, comprising: a deflecting unit for separating the charged particle beam from the charged particle beam; and a detecting unit for detecting the second charged particle deflected by the deflecting unit.
【請求項2】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
発生する第2の荷電粒子を加速する減速手段と、前記対
物レンズ内を通り前記荷電粒子線源側方向に向う前記加
速された第2の荷電粒子を電界と磁界とで偏向して前記
第1の荷電粒子線から分離する偏向手段と、前記偏向手
段によって偏向された前記第2の荷電粒子を検出する検
出手段を具備したことを特徴とする荷電粒子線応用装
置。
2. A charged particle source, an objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles, and deflecting the accelerated second charged particles passing through the objective lens toward the charged particle beam source by an electric field and a magnetic field to thereby produce the first charged particles. A charged particle beam application apparatus comprising: a deflecting unit that separates from a particle beam; and a detecting unit that detects the second charged particle deflected by the deflecting unit.
【請求項3】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
発生する第2の荷電粒子を加速する減速手段と、前記減
速手段で加速された第2の荷電粒子を電界と磁界とで偏
向する偏向手段と、前記対物レンズより前記荷電粒子源
側に配置され前記偏向手段で偏向された前記第2の荷電
粒子を検出する検出手段を具備したことを特徴とする荷
電粒子線応用装置。
3. A charged particle source, objective lens means for squeezing the first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam generated from the sample. Decelerating means for accelerating the second charged particles, deflecting means for deflecting the second charged particles accelerated by the decelerating means with an electric field and a magnetic field, and the deflecting means arranged closer to the charged particle source side than the objective lens. A charged particle beam application apparatus, comprising: a detection unit that detects the second charged particle deflected by the unit.
【請求項4】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
発生する第2の荷電粒子を加速する減速手段と、前記減
速手段で加速された第2の荷電粒子を電界と磁界とで偏
向し前記対物レンズより前記荷電粒子源側に導き出す偏
向手段と、前記偏向手段で偏向された前記第2の荷電粒
子を検出する検出手段を具備したことを特徴とする荷電
粒子線応用装置。
4. A charged particle source, objective lens means for squeezing the first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles, deflecting means for deflecting the second charged particles accelerated by the decelerating means with an electric field and a magnetic field and leading the charged particles to the charged particle source side from the objective lens, and the deflecting means A charged particle beam application device, comprising: detection means for detecting the second charged particle deflected in (1).
【請求項5】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
発生する第2の荷電粒子を加速する減速手段と、前記荷
電粒子源側方向に前記対物レンズから出てきた第2の荷
電粒子を電界と磁界とで偏向して前記第1の荷電粒子線
から選択的に偏向する偏向手段と、前記偏向手段によっ
て偏向された前記第2の荷電粒子を検出する検出手段を
具備したことを特徴とする荷電粒子線応用装置。
5. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles; and selectively deflecting the second charged particles coming out of the objective lens in the direction toward the charged particle source by an electric field and a magnetic field from the first charged particle beam. A charged particle beam application device, comprising: a deflecting means for deflecting the second charged particles; and a detecting means for detecting the second charged particles deflected by the deflecting means.
【請求項6】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
発生する第2の荷電粒子を加速する減速手段と、前記対
物レンズ内を通り前記荷電粒子線源側方向に向う前記加
速された第2の荷電粒子を電極と磁極とで偏向して前記
第1の荷電粒子線から選択的に偏向する偏向手段と、前
記偏向手段によって偏向された前記第2の荷電粒子を検
出する検出手段を具備したことを特徴とする荷電粒子線
応用装置。
6. A charged particle source, an objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles, and deflecting the accelerated second charged particles, which pass through the objective lens toward the charged particle beam source side, by an electrode and a magnetic pole, thereby forming the first charged particles. A charged particle beam application apparatus comprising: a deflecting unit for selectively deflecting from a particle beam; and a detecting unit for detecting the second charged particle deflected by the deflecting unit.
【請求項7】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
発生する第2の荷電粒子を加速する減速手段と、前記減
速手段で加速された第2の荷電粒子を選択的に電界と磁
磁界とで偏向する偏向手段と、前記対物レンズより前記
荷電粒子源側に配置され前記偏向手段で選択的に偏向さ
れた前記第2の荷電粒子を検出する検出手段を具備した
ことを特徴とする荷電粒子線応用装置。
7. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles, deflecting means for selectively deflecting the second charged particles accelerated by the decelerating means with an electric field and a magnetic magnetic field, and closer to the charged particle source side than the objective lens. A charged particle beam application apparatus comprising: a detection unit that detects the second charged particle that is disposed and that is selectively deflected by the deflection unit.
【請求項8】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
発生する第2の荷電粒子を加速する減速手段と、前記減
速手段で加速された第2の荷電粒子を選択的に電界と磁
磁界とで偏向し前記対物レンズより前記荷電粒子源側に
導き出す偏向手段と、前記偏向手段で偏向された前記第
2の荷電粒子を検出する検出手段を具備したことを特徴
とする荷電粒子線応用装置。
8. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles; deflecting means for selectively deflecting the second charged particles accelerated by the decelerating means with an electric field and a magnetic magnetic field and guiding the second charged particles to the charged particle source side from the objective lens. And a detector for detecting the second charged particles deflected by the deflecting unit.
【請求項9】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記第1の荷電粒子線を減速するとともに試料から
荷電粒子源側へ向かう第2の荷電粒子を加速する減速手
段と、前記荷電粒子源側方向に前記対物レンズから出て
きた第2の荷電粒子を前記第1の荷電粒子線に実質的に
影響せずに前記第1の荷電粒子線から分離する偏向手段
と、前記偏向手段によって偏向された前記第2の荷電粒
子を検出する検出手段を具備したことを特徴とする荷電
粒子線応用装置。
9. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with a charged particle beam, and decelerating the first charged particle beam and charging particles from the sample Decelerating means for accelerating the second charged particles toward the source; and causing the second charged particles coming out of the objective lens toward the charged particle source to substantially not affect the first charged particle beam. A charged particle beam application apparatus, further comprising: a deflecting unit for separating from the first charged particle beam; and a detecting unit for detecting the second charged particle deflected by the deflecting unit.
【請求項10】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら発生する第2の荷電粒子を加速する減速手段と、前記
対物レンズ内を通り前記荷電粒子線源側方向に向う前記
加速された第2の荷電粒子を前記第1の荷電粒子線に実
質的に影響せずに前記第1の荷電粒子線から分離する偏
向手段と、前記偏向手段によって偏向された前記第2の
荷電粒子を検出する検出手段を具備したことを特徴とす
る荷電粒子線応用装置。
10. A charged particle source, an objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles; and causing the accelerated second charged particles passing through the objective lens toward the charged particle beam source to substantially affect the first charged particle beam. A charged particle beam application apparatus comprising: a deflecting unit for separating the first charged particle beam from the first charged particle beam; and a detecting unit for detecting the second charged particle deflected by the deflecting unit.
【請求項11】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら発生する第2の荷電粒子を加速する減速手段と、前記
減速手段で加速された第2の荷電粒子を前記第1の荷電
粒子線に実質的に影響せずに前記第1の荷電粒子線から
偏向する偏向手段と、前記対物レンズより前記荷電粒子
源側に配置され前記偏向手段で偏向された前記第2の荷
電粒子を検出する検出手段を具備したことを特徴とする
荷電粒子線応用装置。
11. A charged particle source, an objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles, and deflecting the second charged particles accelerated by the decelerating means from the first charged particle beam without substantially affecting the first charged particle beam A charged particle beam application apparatus comprising: a deflecting unit; and a detecting unit that is disposed closer to the charged particle source than the objective lens and detects the second charged particle deflected by the deflecting unit.
【請求項12】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら発生する第2の荷電粒子を加速する減速手段と、前記
減速手段で加速された第2の荷電粒子を前記第1の荷電
粒子線に実質的に影響せずに前記第1の荷電粒子線から
偏向し前記対物レンズより前記荷電粒子源側に導き出す
偏向手段と、前記偏向手段で偏向された前記第2の荷電
粒子を検出する検出手段を具備したことを特徴とする荷
電粒子線応用装置。
12. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particle; and deflected the second charged particle accelerated by the decelerating means from the first charged particle beam without substantially affecting the first charged particle beam. A charged particle beam application apparatus comprising: a deflecting unit that guides the charged particle source side from the objective lens; and a detecting unit that detects the second charged particle deflected by the deflecting unit.
【請求項13】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら発生する第2の荷電粒子を加速する減速手段と、前記
荷電粒子源側方向に前記対物レンズから出てきた第2の
荷電粒子を前記第1の荷電粒子線に実質的に影響せずに
前記第1の荷電粒子線から偏向して前記第1の荷電粒子
線から選択的に偏向する偏向手段と、前記偏向手段によ
って偏向された前記第2の荷電粒子を検出する検出手段
を具備したことを特徴とする荷電粒子線応用装置。
13. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles; and the first charged particle beam substantially without affecting the second charged particles coming out of the objective lens in the direction toward the charged particle source. Deflecting means for deflecting from the charged particle beam and selectively deflecting from the first charged particle beam, and detecting means for detecting the second charged particle deflected by the deflecting means. Charged particle beam application equipment.
【請求項14】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら発生する第2の荷電粒子を加速する減速手段と、前記
対物レンズ内を通り前記荷電粒子線源側方向に向う前記
加速された第2の荷電粒子を前記第1の荷電粒子線に実
質的に影響せずに前記第1の荷電粒子線から偏向して前
記第1の荷電粒子線から選択的に偏向する偏向手段と、
前記偏向手段によって偏向された前記第2の荷電粒子を
検出する検出手段を具備したことを特徴とする荷電粒子
線応用装置。
14. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles; and causing the accelerated second charged particles passing through the objective lens toward the charged particle beam source to substantially affect the first charged particle beam. Deflecting means for deflecting from the first charged particle beam and selectively deflecting from the first charged particle beam,
An apparatus for applying a charged particle beam, comprising: detecting means for detecting the second charged particles deflected by the deflecting means.
【請求項15】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら発生する第2の荷電粒子を加速する減速手段と、前記
減速手段で加速された第2の荷電粒子を選択的に前記第
1の荷電粒子線に実質的に影響せずに前記第1の荷電粒
子線から偏向する偏向手段と、前記対物レンズより前記
荷電粒子源側に配置され前記偏向手段で選択的に偏向さ
れた前記第2の荷電粒子を検出する検出手段を具備した
ことを特徴とする荷電粒子線応用装置。
15. A charged particle source, objective lens means for squeezing the first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam generated from the sample. Decelerating means for accelerating the second charged particles; and the first charged particle beam without selectively affecting the second charged particles accelerated by the decelerating means on the first charged particle beam A charged particle, wherein the charged particle is provided on the charged particle source side of the objective lens and the second charged particle is selectively deflected by the deflecting means. Wire application equipment.
【請求項16】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら発生する第2の荷電粒子を加速する減速手段と、前記
減速手段で加速された第2の荷電粒子を前記第1の荷電
粒子線に実質的に影響せずに前記第1の荷電粒子線から
選択的に偏向し前記対物レンズより前記荷電粒子源側に
導き出す偏向手段と、前記偏向手段で偏向された前記第
2の荷電粒子を検出する検出手段を具備したことを特徴
とする荷電粒子線応用装置。
16. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the charged particle beam, and decelerating the first charged particle beam and generating the first charged particle beam from the sample. Decelerating means for accelerating the second charged particles; and selectively discharging the second charged particles accelerated by the decelerating means from the first charged particle beam without substantially affecting the first charged particle beam. A charged particle beam application device, comprising: a deflecting means for deflecting the charged particles to the charged particle source side from the objective lens; and a detecting means for detecting the second charged particles deflected by the deflecting means.
【請求項17】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を絞って試料に照射する対物レンズ手
段と、前記第1の荷電粒子線を減速するとともに試料か
ら荷電粒子源側へ向かう第2の荷電粒子を加速する減速
手段と、前記減速手段より前記荷電粒子源側に配置され
前記荷電粒子源側方向に前記対物レンズから出てきた第
2の荷電粒子を電界と磁界とで偏向して前記第1の荷電
粒子線から分離する偏向手段と、前記偏向手段より前記
荷電粒子源側に配置され前記偏向手段によって偏向され
た前記第2の荷電粒子を検出する検出手段を具備したこ
とを特徴とする荷電粒子線応用装置。
17. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with a charged particle beam, and decelerating the first charged particle beam and charging particles from the sample. Decelerating means for accelerating the second charged particles heading toward the source; and an electric field, the second charged particles being arranged on the charged particle source side from the decelerating means and coming out of the objective lens in the direction toward the charged particle source. Deflecting means for deflecting from the first charged particle beam by being deflected by a magnetic field, and detecting means for detecting the second charged particles which are arranged on the charged particle source side of the deflecting means and deflected by the deflecting means A charged particle beam application device comprising:
【請求項18】前記第1の荷電粒子線が一次荷電粒子線
であり、第2の荷電粒子が二次荷電粒子であることを特
徴とする請求項1から17のいずれか記載の荷電粒子線応
用装置。
18. The charged particle beam according to claim 1, wherein the first charged particle beam is a primary charged particle beam, and the second charged particle is a secondary charged particle beam. Applied equipment.
【請求項19】前記第1の荷電粒子線は前記荷電粒子源
から試料へ向う電子線でありと、第2の荷電粒子は前記
試料から前記荷電粒子源へ向う電子線であることを特徴
する請求項1から18のいずれか記載の荷電粒子線応用装
置。
19. The apparatus according to claim 19, wherein the first charged particle beam is an electron beam directed from the charged particle source to the sample, and the second charged particle is an electron beam directed from the sample to the charged particle source. A charged particle beam application device according to any one of claims 1 to 18.
【請求項20】前記偏向手段は電極と磁極との組み合わ
せた手段からなることを特徴する請求項1から19のいず
れか記載の荷電粒子線応用装置。
20. The charged particle beam application apparatus according to claim 1, wherein said deflecting means comprises means combining an electrode and a magnetic pole.
【請求項21】前記電極と磁極との組み合わせた手段と
して前記電界と磁界が交叉することを特徴する請求項20
記載の荷電粒子線応用装置。
21. The electric field and the magnetic field intersect as means combining the electrode and the magnetic pole.
The charged particle beam application device according to the above.
【請求項22】前記偏向手段はE×Bフィルタであるこ
とを特徴する請求項1から21のいずれか記載の荷電粒子
線応用装置。
22. An apparatus according to claim 1, wherein said deflecting means is an E × B filter.
【請求項23】前記第1の荷電粒子線が試料に入射する
エネルギーが1KeV以下であることを特徴とする請求項1
から22のいずれか記載の荷電粒子線応用装置。
23. The method according to claim 1, wherein the energy of the first charged particle beam incident on the sample is 1 KeV or less.
23. The charged particle beam application apparatus according to any one of to 22.
【請求項24】荷電粒子源と、前記荷電粒子源から出た
第1の荷電粒子線を偏向する第1の偏向器と、前記偏向
器からの第1の荷電粒子線を絞って試料に照射する対物
レンズ手段と、前記試料を保持する試料台と、前記第1
の荷電粒子線を減速するとともに試料から荷電粒子源側
へ向かう第2の荷電粒子を加速する減速手段と、前記第
1の偏向器より前記試料台側に配置され前記荷電粒子源
側方向に前記対物レンズから出てきた第2の荷電粒子を
電界と磁磁界とで偏向して前記第1の荷電粒子線から分
離する第2の偏向手段と、前記対物レンズと前記第1の
偏向器との間に配置され前記第2の偏向手段によって偏
向された前記第2の荷電粒子を検出する検出手段を具備
したことを特徴とする荷電粒子線応用装置。
24. A charged particle source, a first deflector for deflecting a first charged particle beam emitted from the charged particle source, and a first charged particle beam from the deflector is focused on the sample. Objective lens means, a sample stage for holding the sample, and the first
Decelerating means for decelerating the charged particle beam and accelerating a second charged particle heading from the sample toward the charged particle source side; and a deflector arranged on the sample stage side from the first deflector in the direction toward the charged particle source side. A second deflecting means for deflecting the second charged particles coming out of the objective lens with an electric field and a magnetic magnetic field to separate the second charged particles from the first charged particle beam; A charged particle beam application apparatus comprising: a detection unit that is disposed therebetween and detects the second charged particle deflected by the second deflection unit.
【請求項25】前記第1の荷電粒子線が一次荷電粒子線
であり、第2の荷電粒子が二次荷電粒子であることを特
徴とする請求項24記載の荷電粒子線応用装置。
25. The apparatus according to claim 24, wherein the first charged particle beam is a primary charged particle beam, and the second charged particle is a secondary charged particle beam.
【請求項26】前記第1の荷電粒子線は前記荷電粒子源
から試料へ向う電子線でありと、第2の荷電粒子は前記
試料から前記荷電粒子源へ向う電子線であることを特徴
する請求項24記載の荷電粒子線応用装置。
26. The method according to claim 26, wherein the first charged particle beam is an electron beam directed from the charged particle source to the sample, and the second charged particle is an electron beam directed from the sample to the charged particle source. 25. The charged particle beam application device according to claim 24.
【請求項27】前記第2の偏向手段は電界と磁界とを交
叉していることを特徴する請求項24記載の荷電粒子線応
用装置。
27. An apparatus according to claim 24, wherein said second deflecting means crosses an electric field and a magnetic field.
【請求項28】前記電界と磁界との組み合わせた手段と
して前記電界と磁界がほぼ直角であることを特徴する請
求項27記載の荷電粒子線応用装置。
28. An apparatus according to claim 27, wherein said electric field and said magnetic field are substantially perpendicular to each other as a combination of said electric field and said magnetic field.
【請求項29】前記第2の偏向手段はE×Bフィルタで
あることを特徴する請求項24記載の荷電粒子線応用装
置。
29. An apparatus according to claim 24, wherein said second deflecting means is an E × B filter.
【請求項30】前記第1の偏向手段は前記第1の荷電粒
子線を走査偏向することを特徴する請求項24から29まで
のいずれか記載の荷電粒子線応用装置。
30. The charged particle beam application apparatus according to claim 24, wherein said first deflecting means scans and deflects said first charged particle beam.
JP29452788A 1988-11-24 1988-11-24 Charged particle beam application equipment Expired - Lifetime JP2821153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29452788A JP2821153B2 (en) 1988-11-24 1988-11-24 Charged particle beam application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29452788A JP2821153B2 (en) 1988-11-24 1988-11-24 Charged particle beam application equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP1995304088A Division JP2993873B6 (en) 1995-11-22 Charged particle beam application device and electron beam application device
JP10116460A Division JP3006581B2 (en) 1998-04-27 1998-04-27 Charged particle beam application equipment

Publications (2)

Publication Number Publication Date
JPH02142045A JPH02142045A (en) 1990-05-31
JP2821153B2 true JP2821153B2 (en) 1998-11-05

Family

ID=17808936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29452788A Expired - Lifetime JP2821153B2 (en) 1988-11-24 1988-11-24 Charged particle beam application equipment

Country Status (1)

Country Link
JP (1) JP2821153B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864482B2 (en) 1999-10-29 2005-03-08 Hitachi, Ltd. Electron beam apparatus
JP2014010928A (en) * 2012-06-28 2014-01-20 Hitachi High-Technologies Corp Charged particle beam device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927627B2 (en) * 1992-10-20 1999-07-28 株式会社日立製作所 Scanning electron microscope
US6580074B1 (en) * 1996-09-24 2003-06-17 Hitachi, Ltd. Charged particle beam emitting device
JP3564958B2 (en) 1997-08-07 2004-09-15 株式会社日立製作所 Inspection method and inspection apparatus using electron beam
JP3661592B2 (en) * 1998-03-27 2005-06-15 株式会社日立製作所 Pattern inspection device
US6509564B1 (en) 1998-04-20 2003-01-21 Hitachi, Ltd. Workpiece holder, semiconductor fabricating apparatus, semiconductor inspecting apparatus, circuit pattern inspecting apparatus, charged particle beam application apparatus, calibrating substrate, workpiece holding method, circuit pattern inspecting method, and charged particle beam application method
TWI294632B (en) 2000-06-27 2008-03-11 Ebara Corp Inspecting device using an electron ebam and method for making semiconductor devices with such inspection device
JP4634852B2 (en) 2005-04-25 2011-02-16 株式会社日立ハイテクノロジーズ SEM type visual inspection apparatus and inspection method
US7462828B2 (en) 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
JP4875905B2 (en) 2006-02-24 2012-02-15 株式会社日立ハイテクノロジーズ Sample holding device and charged particle beam device
JP4528317B2 (en) 2007-07-25 2010-08-18 株式会社日立ハイテクノロジーズ Visual inspection apparatus equipped with scanning electron microscope and image generation method using scanning electron microscope
JP4764436B2 (en) * 2008-02-14 2011-09-07 株式会社日立ハイテクノロジーズ Appearance inspection method and inspection apparatus
JP4767270B2 (en) 2008-02-15 2011-09-07 株式会社日立ハイテクノロジーズ Visual inspection apparatus equipped with scanning electron microscope and image data processing method using scanning electron microscope
JP4548537B2 (en) * 2008-10-20 2010-09-22 株式会社日立製作所 Inspection method and inspection apparatus using electron beam
JP4702472B2 (en) * 2009-07-28 2011-06-15 株式会社日立製作所 Inspection method and inspection apparatus using electron beam
JP4853581B2 (en) * 2010-08-11 2012-01-11 株式会社日立製作所 Inspection method and inspection apparatus using electron beam
JP6254445B2 (en) 2014-01-09 2017-12-27 株式会社日立ハイテクノロジーズ Charged particle beam equipment
US10090131B2 (en) * 2016-12-07 2018-10-02 Kla-Tencor Corporation Method and system for aberration correction in an electron beam system
JP6408116B2 (en) * 2017-11-30 2018-10-17 株式会社日立ハイテクノロジーズ Charged particle beam equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864482B2 (en) 1999-10-29 2005-03-08 Hitachi, Ltd. Electron beam apparatus
US7491933B2 (en) 1999-10-29 2009-02-17 Hitachi, Ltd. Electron beam apparatus
JP2014010928A (en) * 2012-06-28 2014-01-20 Hitachi High-Technologies Corp Charged particle beam device
US9627171B2 (en) 2012-06-28 2017-04-18 Hitachi High-Technologies Corporation Charged particle beam device

Also Published As

Publication number Publication date
JPH02142045A (en) 1990-05-31

Similar Documents

Publication Publication Date Title
JP2821153B2 (en) Charged particle beam application equipment
JP3268583B2 (en) Particle beam device
JP4287549B2 (en) Particle beam equipment
US20030209667A1 (en) Charged particle beam apparatus and method for inspecting samples
JPH06101318B2 (en) Ion microbeam device
JP2810797B2 (en) Reflection electron microscope
US4551599A (en) Combined electrostatic objective and emission lens
EP0952606B1 (en) Dynamically compensated objective lens-detection device and method
JPH08138611A (en) Charged particle beam device
JP2000228162A (en) Electron beam device
JP3006581B2 (en) Charged particle beam application equipment
JP3862344B2 (en) Electrostatic lens
EP0150941A1 (en) Charged-particle optical systems
JP3031378B2 (en) Charged particle beam application equipment
JP3139484B2 (en) Charged particle beam microscopy
JP3225961B2 (en) Charged particle beam application equipment
JP2993873B2 (en) Charged particle beam application equipment and electron beam application equipment
JP3137115B2 (en) Charged particle beam microscopy method and charged particle beam application device
JP2993873B6 (en) Charged particle beam application device and electron beam application device
JPH0864163A (en) Charged particle beam device
JPH0349142A (en) Scanning type electron microscope and similar device thereof
JP3696827B2 (en) Energy filter
JP2001256914A (en) Charged particle beam application device
JP3730041B2 (en) Method for accelerating emitted electrons in a composite emission electron microscope
JP4283843B2 (en) Mapping electron microscope with reduced geometric aberration and space charge effect

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11