JP2993873B2 - Charged particle beam application equipment and electron beam application equipment - Google Patents
Charged particle beam application equipment and electron beam application equipmentInfo
- Publication number
- JP2993873B2 JP2993873B2 JP7304088A JP30408895A JP2993873B2 JP 2993873 B2 JP2993873 B2 JP 2993873B2 JP 7304088 A JP7304088 A JP 7304088A JP 30408895 A JP30408895 A JP 30408895A JP 2993873 B2 JP2993873 B2 JP 2993873B2
- Authority
- JP
- Japan
- Prior art keywords
- deflector
- charged particle
- sample
- electron beam
- particle beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010894 electron beam technology Methods 0.000 title claims description 52
- 239000002245 particle Substances 0.000 title claims description 44
- 230000005684 electric field Effects 0.000 claims description 26
- 230000004075 alteration Effects 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 10
- 239000012141 concentrate Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Description
【0001】[0001]
【産業上の利用分野】本発明は、走査形荷電粒子顕微鏡
及びその類似装置に係り、特に低加速領域において高分
解能でかつ二次電子の高検出効率に好適な荷電粒子光学
系に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning charged particle microscope and similar devices, and more particularly, to a charged particle optical system having high resolution in a low acceleration range and suitable for high secondary electron detection efficiency.
【0002】[0002]
【従来の技術】走査形電子顕微鏡の分解能を向上させる
ために、特開昭61−294746号に記載されている
ような光学系が用いられている。すなわち、輝度が高
く、エネルギ幅の小さな電界放射形(FE)電子銃と、
レンズの内部に試料を配置して収差を極力小さくしたイ
ンレンズ形対物レンズとを組合わせたものである。この
ような光学系においても低加速領域においては分解能は
低下する。2. Description of the Related Art In order to improve the resolution of a scanning electron microscope, an optical system as described in JP-A-61-294746 is used. That is, a field emission (FE) electron gun having a high brightness and a small energy width;
This is a combination of an in-lens type objective lens in which a sample is arranged inside a lens and aberration is minimized. Even in such an optical system, the resolution is reduced in the low acceleration region.
【0003】一方、色収差を低減するために、特公昭6
3−34588に記載されているような光学系が提案さ
れている。On the other hand, in order to reduce chromatic aberration, Japanese Patent Publication No.
An optical system as described in 3-34588 has been proposed.
【0004】この光学系は、電子線が試料を照射する直
前まで高加速電圧とし、試料照射時に減速して低加速電
圧化するものである。この場合、レンズ通過時の電子線
のエネルギが高いので、レンズ収差を小さくできる。す
なわち、高分解能化が図れる。This optical system has a high accelerating voltage until just before an electron beam irradiates a sample, and decelerates to a low accelerating voltage when irradiating the sample. In this case, since the energy of the electron beam when passing through the lens is high, lens aberration can be reduced. That is, high resolution can be achieved.
【0005】以上の観点から、低加速領域で従来以上の
高分解能を得るためには、上記両者の光学系を組合せれ
ば可能となる。すなわち、試料はレンズの内部に配置
し、この試料に負の電圧を印加して減速すればよい。From the above viewpoints, it is possible to obtain higher resolution than before in the low acceleration region by combining the above two optical systems. That is, the sample may be placed inside the lens, and a negative voltage may be applied to the sample to reduce the speed.
【0006】ただ、この場合問題となるのは二次電子の
検出である。試料がレンズの外部にある従来の場合に
は、特公昭63−34588に示されているように、一
次電子線の減速電界で二時電子が加速されるまでに二次
電子検出器の電界で二次電子を検出するように構成すれ
ばよかった。しかし、試料をレンズの内部に配置したイ
ンレンズ形では、レンズの磁界が強いためにこの磁界に
二時電子が強く束縛されるばかりでなく、二次電子検出
器をレンズの内部に配置できないという問題が生じる。However, the problem in this case is the detection of secondary electrons. In the conventional case where the sample is outside the lens, as shown in JP-B-63-34588, the electric field of the secondary electron detector is used until the secondary electrons are accelerated by the deceleration electric field of the primary electron beam. It should have been configured to detect secondary electrons. However, in the in-lens type where the sample is placed inside the lens, the magnetic field of the lens is so strong that not only the two-time electrons are strongly bound by this magnetic field but also the secondary electron detector cannot be placed inside the lens. Problems arise.
【0007】また、一次電子線と二次電子とを分離する
ことについては特開昭62−31933号に磁界のみで
分離することが開示されていた。[0007] Japanese Patent Application Laid-Open No. Sho 62-31933 discloses that a primary electron beam and a secondary electron are separated only by a magnetic field.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、二次
電子の高検出感度が得られる電子光学系を提供すること
にある。SUMMARY OF THE INVENTION It is an object of the present invention to provide an electron optical system capable of obtaining high secondary electron detection sensitivity.
【0009】荷電粒子源と、前記荷電粒子源から出た第
1の荷電粒子線を絞って試料に照射する対物レンズと、
前記対物レンズと前記試料との間で前記第1の荷電粒子
線を減速させる減速手段と、前記第1の荷電粒子線を試
料に照射し、前記試料から発生する第2の荷電粒子を前
記第1の荷電粒子線から分離する第1の偏向器と、前記
第1の偏向器により発生する前記第1の荷電粒子線への
影響を補正する第2の電界と第2の磁界とを発生する第
2の偏向器と、を具備したことを特徴とする荷電粒子線
応用装置にある。 A charged particle source; and a second source from the charged particle source.
An objective lens for focusing the charged particle beam and irradiating the sample with the charged particle beam;
The first charged particles between the objective lens and the sample;
A deceleration means for decelerating the beam and the first charged particle beam.
And irradiates the sample with the second charged particles generated from the sample.
A first deflector for separating from the first charged particle beam;
To the first charged particle beam generated by the first deflector
A second electric field and a second magnetic field for generating a second magnetic field for compensating the influence;
Charged particle beam, comprising: two deflectors;
Applied equipment.
【0010】電子源と、前記電子源から出た1次電子線
を減速する負の電圧を試料に印加する手段と、減速され
た前記1次電子線の前記試料への照射によって前記試料
から発生する2次電子と前記1次電子線とを第1の電界
と第1の磁界とで分離する第1の偏向器と、前記第1の
偏向器により発生する前記第1の荷電粒子線への影響を
補正する第2の電界と第2の磁界とを発生する第2の偏
向器と、を具備したことを特徴とする電子線応用装置に
ある。 An electron source and a primary electron beam emitted from the electron source
Means for applying a negative voltage to the sample to decelerate
Irradiating the sample with the primary electron beam
A secondary electric field generated from the electron beam and the primary electron beam into a first electric field.
A first deflector separating the first deflector and a first magnetic field;
The influence on the first charged particle beam generated by the deflector
A second polarization generating a second electric field and a second magnetic field to be corrected;
An electron beam application device comprising:
is there.
【0011】また、電子源と、前記電子源から出た1次
電子線の試料への照射によって前記試料から発生する2
次電子を加速する負の電圧を試料に印加する手段と、加
速された前記2次電子と前記第1次電子線とを第1の電
界と第1の磁界とで分離する第1の偏向器と、前記第1
の偏向器により発生する前記第1の荷電粒子線への影響
を補正する第2の電界と第2の磁界とを発生する第2の
偏向器と、を具備したことを特徴とする電子線応用装置
にある。 Also, an electron source and a primary light emitted from the electron source.
2 generated from the sample by irradiating the sample with an electron beam
Means for applying a negative voltage to the sample to accelerate secondary electrons,
The accelerated secondary electrons and the primary electron beam
A first deflector separating the field and a first magnetic field;
Of the first deflector on the first charged particle beam
To generate a second electric field and a second magnetic field for correcting
An electron beam application device comprising: a deflector.
It is in.
【0012】更にまた、電子源と、前記電子源から出た
1次電子線を絞って試料に照射する対物レンズと、前記
試料から発生する2次電子を加速する電界を発生する手
段と、前記対物レンズを通った前記1次電子線と前記加
速された2次電子とを分離する第1の偏向器と、前記第
1の偏向器により発生する前記第1の荷電粒子線への影
響を補正する第2の電界と第2の磁界とを発生する第2
の偏向器と、を具備したことを特徴とする電子線応用装
置にある。 Still further, an electron source and an electron source
An objective lens for focusing the primary electron beam and irradiating the sample with the primary electron beam;
Hand that generates an electric field that accelerates secondary electrons generated from the sample
A step, the primary electron beam passing through the objective lens, and the
A first deflector for separating the accelerated secondary electrons;
Shadow on the first charged particle beam generated by the first deflector
A second electric field generating a second electric field and a second magnetic field for
Electron beam application device, comprising:
It is in the place.
【0013】ただ、この場合問題となるのは二次電子の
検出である。試料がレンズの外部にある従来の場合に
は、特公昭63−34588に示されているように、一
次電子線の減速電界で二次電子が加速されるまでに二次
電子検出器の電界で二次電子を検出するように構成すれ
ばよかった。しかし、試料をレンズの内部に配置したイ
ンレンズ形では、レンズの磁界が強いためにこの磁界に
二次電子が強く束縛されるばかりでなく、二次電子検出
器をレンズの内部に配置できないという問題が生じる。However, the problem in this case is the detection of secondary electrons. In the conventional case where the sample is outside the lens, as shown in JP-B-63-34588, the electric field of the secondary electron detector is used until the secondary electrons are accelerated by the deceleration electric field of the primary electron beam. It should have been configured to detect secondary electrons. However, in the in-lens type in which the sample is placed inside the lens, the secondary electron is not only strongly bound by the magnetic field of the lens, but also the secondary electron detector cannot be placed inside the lens. Problems arise.
【0014】一方、二次電子検出に関しては、E×B形
のフィルタを試料と検出器との間に用いているので、一
次電子線を直進するようにしてやれば、エネルギの異な
る二次電子は自然に偏向されることになる。すなわち、
図5に示すように電子線2の加速電圧V 0 にたいして、
次式を満足するようにEとBを印加すれば、電子線2の
軌道に影響を与えない。On the other hand, regarding the secondary electron detection, since an E × B type filter is used between the sample and the detector, if the primary electron beam is made to go straight, the secondary electrons having different energies can be obtained. You will be naturally deflected. That is,
As shown in FIG. 5, with respect to the acceleration voltage V 0 of the electron beam 2,
If E and B are applied so as to satisfy the following expression, the trajectory of the electron beam 2 is not affected.
【0015】[0015]
【数1】 (Equation 1)
【0016】この時、検出すべき二次電子8のエネルギ
は減速電圧VRでありかつ電子線2と方向が逆であるの
で、二次電子8の偏向角θは、At this time, since the energy of the secondary electrons 8 to be detected is the deceleration voltage VR and the direction is opposite to that of the electron beam 2, the deflection angle θ of the secondary electrons 8 is
【0017】[0017]
【数2】 (Equation 2)
【0018】となる。## EQU1 ##
【0019】この偏向方向を検出器の方向と一致させて
おけば、二次電子は検出器に向かって進むので、検出効
率の向上が図れることになる。If this deflection direction is made to coincide with the direction of the detector, the secondary electrons travel toward the detector, so that the detection efficiency can be improved.
【0020】[0020]
【実施例】本発明の一実施例を図1により説明する。FIG. 1 shows an embodiment of the present invention.
【0021】電子銃1からでた電子線2は、幾つかのレ
ンズ(本実施例では加速レンズ3、コンデンサレンズ
4、対物レンズ5)により細く絞られて試料6上を照射
する。この電子線2は偏向器7により試料6上で二次元
的に走査される。また、試料6からでてきた二次電子8
は、二次電子検出器9により検出されて映像信号とな
る。The electron beam 2 emitted from the electron gun 1 is narrowed down by a number of lenses (in this embodiment, an acceleration lens 3, a condenser lens 4, and an objective lens 5), and irradiates the sample 6 onto the sample. The electron beam 2 is two-dimensionally scanned on the sample 6 by the deflector 7. Also, secondary electrons 8 coming out of sample 6
Is detected by the secondary electron detector 9 and becomes a video signal.
【0022】ここで、試料6は電子線2を減速するため
に負の電圧VRが印加されている。Here, a negative voltage VR is applied to the sample 6 to decelerate the electron beam 2.
【0023】このとき、出てきた二次電子はこの減速電
圧VRにより逆に加速され、検出器9の電界のみでは十
分に検出器9の方に偏向できなくなる。At this time, the emitted secondary electrons are accelerated in reverse by the deceleration voltage VR, and cannot be sufficiently deflected toward the detector 9 only by the electric field of the detector 9.
【0024】そこで、出てきた二次電子8を検出器9の
方に偏向するために偏向器を配置すればよいが、電子線
2の軌道に影響のないように電界Eと磁界Bとを直交さ
せたいわゆるE×B形のフィルタ10を対物レンズ5と
検出器9との間に配置している。このとき、(1)式の
ようにEとBを印加すれば、電子線2の軌道には影響を
与えずに二次電子8のみを検出器の方に偏向でき、検出
効率の向上が図れる。Therefore, a deflector may be arranged to deflect the emitted secondary electrons 8 toward the detector 9. However, the electric field E and the magnetic field B are changed so as not to affect the trajectory of the electron beam 2. An orthogonal so-called E × B filter 10 is arranged between the objective lens 5 and the detector 9. At this time, if E and B are applied as in the expression (1), only the secondary electrons 8 can be deflected to the detector without affecting the trajectory of the electron beam 2, and the detection efficiency can be improved. .
【0025】ただ、この場合、フィルタ10による色収
差が問題になる。この色収差による偏向角βは、However, in this case, chromatic aberration caused by the filter 10 becomes a problem. The deflection angle β due to this chromatic aberration is
【0026】[0026]
【数3】 (Equation 3)
【0027】で表わされる。ここで、ΔVは電子線2の
エネルギ幅である。## EQU2 ## Here, ΔV is the energy width of the electron beam 2.
【0028】すなわち、図2に示すようにこの色収差に
より物点12でSβの拡がりを持つことになり、対物レ
ンズの倍率をMとすると試料上ではMSβの拡がりを生
ずる。具体的数値の典型的な一例を示すと、θ=30
°、ΔV=0.3eV、V 0 =1kV、としてVRに対す
るβは図3に示すものとなる。この図からβを大きく見
積もって5×10 -5 とし、S=200mm,M=1/5
0とすると、0.2μmの拡がりとなる。この値は、電
子線2の所望の値(〜nm)より非常に大きい。That is, as shown in FIG. 2, this chromatic aberration causes the spread of Sβ at the object point 12, and when the magnification of the objective lens is M, the spread of MSβ occurs on the sample. As a typical example of specific numerical values, θ = 30
Assuming that °, Δ V = 0.3 eV and V 0 = 1 kV, β for VR is as shown in FIG. From this figure, β is largely estimated to be 5 × 10 −5 , S = 200 mm, M = 1/5
If it is set to 0, the spread will be 0.2 μm. This value is much larger than the desired value (〜 nm) of the electron beam 2.
【0029】そこで、本発明では図4ならびに図1に示
すように、E×B形のフィルタ11を配置してこの色収
差を自己消去できるようにした。すなわち、図4から分
かるようにΔVのエネルギが拡がりを持つ電子線2があ
たかも物点12の一点から出たかのようになるようにフ
ィルタ11を動作させる。このフィルタ11の偏向角
β′は、Therefore, in the present invention, as shown in FIG. 4 and FIG. 1, an E × B type filter 11 is arranged so that this chromatic aberration can be self-erased. That is, as can be seen from FIG. 4, the filter 11 is operated so that the electron beam 2 having the energy of ΔV spreads as if it came out of one point of the object point 12. The deflection angle β ′ of this filter 11 is
【0030】[0030]
【数4】 (Equation 4)
【0031】とすればよい。It is sufficient to set
【0032】以上により、電子線2の径を増大させるこ
となく、二次電子8のみを検出器9の方に偏向すること
が可能となる。すなわち、低加速領域でも高分解能でか
つ二次電子の高検出効率が得られることになる。As described above, it is possible to deflect only the secondary electrons 8 toward the detector 9 without increasing the diameter of the electron beam 2. That is, high resolution and high detection efficiency of secondary electrons can be obtained even in a low acceleration region.
【0033】図1に示す本発明を実施した結果のごく一
例を以下に示す。フィルタ11を物点12とフィルタ1
0とのほぼ中間に配置して電界Eと磁界Bとの作用長を
約20mmとなるように構成し、V0=1kVと固定に
してVR=0〜900Vと変化させた。このとき、フィ
ルタ10、11のそれぞれのEとBの強さをE=0〜2
5V/mm,0〜50V/mm,B=0〜14ガウス
(Gauss),0〜28GaussとVRに連動させて変化させ
たところ、4〜6nmの高分解能が実現できた。One example of the result of implementing the present invention shown in FIG. 1 is shown below. Filter 11 is the object point 12 and filter 1
It was arranged almost at the center of 0, and the action length of the electric field E and the magnetic field B was set to about 20 mm. V0 was fixed at 1 kV and VR was changed to 0 to 900 V. At this time, the strengths of E and B of the filters 10 and 11 are set to E = 0 to 2
5 V / mm, 0 to 50 V / mm, B = 0 to 14 Gauss, 0 to 28 Gauss, and a high resolution of 4 to 6 nm were realized by changing the values in conjunction with VR.
【0034】本発明は、1kV以下の低加速電圧でnm
オーダの分解能を得ることを目的になされたため、フィ
ルタを2段にしたが、目的によっては1段で構成しても
二次電子の高検出効率化は可能であることは、本実施例
で述べた通りである。According to the present invention, at a low acceleration voltage of 1 kV or less, nm
Although the filter is provided in two stages for the purpose of obtaining the resolution of the order, it is described in the present embodiment that the efficiency of secondary electron detection can be increased even if the filter is formed in one stage depending on the purpose. As expected.
【0035】また、本実施例では試料がレンズの内部に
配置したが、レンズの外側に配置された構成の光学系に
たいしても実施することができる。なおこの場合、二次
電子検出器は試料と対物レンズとの間にあってもよい
し、図1のように対物レンズの上側にあってもよいこと
はいうまでもない。要は、試料と二次電子検出器との間
にE×B形のフィルタがあれば実現できる。In this embodiment, the sample is arranged inside the lens. However, the present invention can be applied to an optical system having a structure arranged outside the lens. In this case, it goes without saying that the secondary electron detector may be located between the sample and the objective lens, or may be located above the objective lens as shown in FIG. In short, it can be realized if there is an E × B type filter between the sample and the secondary electron detector.
【0036】さらに、本発明は走査形電子顕微鏡に対し
て述べたが、これに限ることなく類似の電子線応用装置
一般に適用できるし、さらにイオン線のような荷電粒子
線応用装置一般に適用できることは言うまでもない。た
だ、正の電荷を持っている荷電粒子線の場合には、減速
電圧は正の値にする必要がある。Furthermore, the present invention has been described with respect to a scanning electron microscope. However, the present invention is not limited to this, but can be applied to similar electron beam application devices in general and further to general charged particle beam application devices such as ion beams. Needless to say. However, in the case of a charged particle beam having a positive charge, the deceleration voltage needs to be a positive value.
【0037】[0037]
【発明の効果】本発明によれば、低加速領域でも荷電粒
子線径を増大させることなく二次荷電粒子を検出器の方
に偏向することが可能となるので、高分解能でかつ二次
荷電粒子の高検出効率が得られる効果がある。According to the present invention, the secondary charged particles can be deflected toward the detector without increasing the charged particle diameter even in the low acceleration region, so that the secondary charged particles can be highly resolved and the secondary charged particles can be deflected. There is an effect that a high particle detection efficiency can be obtained.
【図1】本発明の一実施例を示す荷電粒子光学系の縦断
面図。FIG. 1 is a longitudinal sectional view of a charged particle optical system according to an embodiment of the present invention.
【図2】E×B形フィルタの色収差に関する説明図。FIG. 2 is a diagram illustrating chromatic aberration of an E × B filter.
【図3】E×B形フィルタの色収差により生じる偏向角
と試料に印加した減速電圧との関係曲線図。FIG. 3 is a graph showing a relationship between a deflection angle caused by chromatic aberration of an E × B filter and a deceleration voltage applied to a sample.
【図4】フィルタの色収差を自己打消しさせるための基
本光学系の縦断面図。FIG. 4 is a longitudinal sectional view of a basic optical system for self-cancelling chromatic aberration of a filter.
【図5】E×B形フィルタによる一次電子線と二次電子
の軌道を示す説明図である。FIG. 5 is an explanatory diagram showing trajectories of primary electron beams and secondary electrons by an E × B filter.
1…電子銃、2…電子線、3…加速レンズ、4…コンデ
ンサレンズ、5…対物レンズ、6…試料、7…偏向器、
8…二次電子、9…二次電子検出器、10,11…E×
B形フィルタ、12…物点。REFERENCE SIGNS LIST 1 electron gun 2 electron beam 3 acceleration lens 4 condenser lens 5 objective lens 6 sample 7 deflector
8 secondary electron, 9 secondary electron detector, 10, 11 Ex
B-type filter, 12 ... object point.
Claims (11)
1の荷電粒子線を絞って試料に照射する対物レンズと、
前記対物レンズと前記試料との間で前記第1の荷電粒子
線を減速させる減速手段と、前記第1の荷電粒子線を試
料に照射し、前記試料から発生する第2の荷電粒子を前
記第1の荷電粒子線から分離する第1の偏向器と、前記
第1の偏向器により発生する前記第1の荷電粒子線への
影響を補正する第2の電界と第2の磁界とを発生する第
2の偏向器と、を具備したことを特徴とする荷電粒子線
応用装置。 1. A charged particle source, and an objective lens for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with the first charged particle beam;
Deceleration means for decelerating the first charged particle beam between the objective lens and the sample, irradiating the sample with the first charged particle beam, and causing the second charged particles generated from the sample to pass through the second charged particle. A first deflector for separating from the first charged particle beam, and a second electric field and a second magnetic field for correcting an influence on the first charged particle beam generated by the first deflector. A charged particle beam application apparatus, comprising: a second deflector.
磁界が交叉する如く配置されていることを特徴とする請
求項1記載の荷電粒子線応用装置。 2. The charged particle beam application device according to claim 1, wherein said first deflector and said second deflector are arranged so that an electric field and a magnetic field cross each other.
であることを特徴とする請求項2記載の荷電粒子線応用
装置。 3. The charged particle beam application apparatus according to claim 2, wherein said first and second deflectors are E × B filters.
ネルギーが1KeV以下であることを特徴とする請求項
1から3いずれか記載の荷電粒子線応用装置。 Wherein said first energy to the charged particle beam is incident on the sample charged particle beam apparatus according to any one of claims 1, wherein 3 to or less than 1 KeV.
を減速する負の電圧を試料に印加する手段と、減速され
た前記1次電子線の前記試料への照射によって前記試料
から発生する2次電子と前記1次電子線とを第1の電界
と第1の磁界とで分離する第1の偏向器と、前記第1の
偏向器により発生する前記第1の荷電粒子線への影響を
補正する第2の電界と第2の磁界とを発生する第2の偏
向器と、を具備したことを特徴とする電子線応用装置。 5. and the electron source, said sample by irradiation of a negative voltage for decelerating the primary electron beam emitted from said electron source means for applying to the sample, to the sample of decelerated the primary electron beam Deflector that separates secondary electrons generated from the primary electron beam from the primary electron beam by a first electric field and a first magnetic field, and the first charged particle beam generated by the first deflector An electron beam application device comprising: a second deflector for generating a second electric field and a second magnetic field for correcting the influence on the electron beam.
の試料への照射によって前記試料から発生する2次電子
を加速する負の電圧を試料に印加する手段と、加速され
た前記2次電子と前記第1次電子線とを第1の電界と第
1の磁界とで分離する第1の偏向器と、前記第1の偏向
器により発生する前記第1の荷電粒子線への影響を補正
する第2の電界と第2の磁界とを発生する第2の偏向器
と、を具備したことを特徴とする電子線応用装置。 6. An electron source, and means for applying a negative voltage to the sample to accelerate secondary electrons generated from the sample by irradiating the sample with a primary electron beam emitted from the electron source; A first deflector that separates the secondary electrons and the primary electron beam by a first electric field and a first magnetic field; and a first charged particle beam generated by the first deflector. An electron beam application device comprising: a second deflector for generating a second electric field and a second magnetic field for correcting the influence of the above.
の試料への照射によって前記試料から発生する2次電子
を加速する負の電圧を試料に印加する手段と、加速され
た前記2次電子と前記第1次電子線とを第1の電界と第
1の磁界とで分離する第1の偏向器と、前記電子源と前
記第1の偏向器との間に前記1次電子線の収差を取り除
く如く第2の電界と第2の磁界を発生する第2の偏向器
と、を具備したことを特徴とする電子線応用装置。 7. An electron source, and means for applying a negative voltage to the sample for accelerating secondary electrons generated from the sample by irradiating the sample with a primary electron beam emitted from the electron source; A first deflector that separates the secondary electrons and the primary electron beam by a first electric field and a first magnetic field; and a first deflector between the electron source and the first deflector. An electron beam application apparatus, comprising: a second deflector for generating a second electric field and a second magnetic field so as to remove aberration of the electron beam.
を絞って試料に照射する対物レンズと、前記試料から発
生する2次電子を加速する電界を発生する手段と、前記
対物レンズを通った前記1次電子線と前記加速された2
次電子とを分離する第1の偏向器と、前記第1の偏向器
により発生する前記第1の荷電粒子線への影響を補正す
る第2の電界と第2の磁界とを発生する第2の偏向器
と、を具備したことを特徴とする電子線応用装置。 8. A electron source, an objective lens for irradiating the sample concentrates the primary electron beam emitted from said electron source, means for generating an electric field for accelerating secondary electrons generated from said specimen, said objective The primary electron beam passing through the lens and the accelerated 2
A first deflector for separating secondary electrons from a second electron; and a second deflector for generating a second electric field and a second magnetic field for correcting an influence on the first charged particle beam generated by the first deflector. An electron beam application apparatus, comprising:
磁界が交叉する如く配置されていることを特徴とする請
求項5から8のいずれか記載の電子線応用装置。 9. An electron beam application apparatus according to claim 5, wherein said first deflector and said second deflector are arranged so that an electric field and a magnetic field cross each other.
タであることを特徴とする請求項9記載の荷電粒子線応
用装置。 Wherein said first and second deflector charged particle beam apparatus according to claim 9, characterized in that the E × B filter.
ギーが1KeV以下であることを特徴とする請求項5か
ら10いずれか記載の荷電粒子線応用装置。 11. The charged particle beam application apparatus according to claim 5, wherein an energy of the primary electron beam incident on the sample is 1 KeV or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1995304088A JP2993873B6 (en) | 1995-11-22 | Charged particle beam application device and electron beam application device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1995304088A JP2993873B6 (en) | 1995-11-22 | Charged particle beam application device and electron beam application device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63294527A Division JP2821153B2 (en) | 1988-11-24 | 1988-11-24 | Charged particle beam application equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10362129A Division JP3139484B2 (en) | 1998-12-21 | 1998-12-21 | Charged particle beam microscopy |
Publications (3)
Publication Number | Publication Date |
---|---|
JPH08212955A JPH08212955A (en) | 1996-08-20 |
JP2993873B2 true JP2993873B2 (en) | 1999-12-27 |
JP2993873B6 JP2993873B6 (en) | 2008-02-27 |
Family
ID=
Also Published As
Publication number | Publication date |
---|---|
JPH08212955A (en) | 1996-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2821153B2 (en) | Charged particle beam application equipment | |
US7544937B2 (en) | Charged particle beam device for high spatial resolution and multiple perspective imaging | |
JP2919170B2 (en) | Scanning electron microscope | |
US6674075B2 (en) | Charged particle beam apparatus and method for inspecting samples | |
US6407387B1 (en) | Particle beam apparatus | |
US6667478B2 (en) | Particle beam apparatus | |
JP2810797B2 (en) | Reflection electron microscope | |
US6232601B1 (en) | Dynamically compensated objective lens-detection device and method | |
JP3006581B2 (en) | Charged particle beam application equipment | |
JP3862344B2 (en) | Electrostatic lens | |
JP2002367552A (en) | Charged-particle beam device | |
JPH05174768A (en) | Scanning electron microscope of environment control type | |
JPH08138611A (en) | Charged particle beam device | |
JP2993873B2 (en) | Charged particle beam application equipment and electron beam application equipment | |
JP3139484B2 (en) | Charged particle beam microscopy | |
JP3031378B2 (en) | Charged particle beam application equipment | |
JP3225961B2 (en) | Charged particle beam application equipment | |
JP2993873B6 (en) | Charged particle beam application device and electron beam application device | |
JP3137115B2 (en) | Charged particle beam microscopy method and charged particle beam application device | |
JPH0349142A (en) | Scanning type electron microscope and similar device thereof | |
JP2001256914A (en) | Charged particle beam application device | |
JPH0864163A (en) | Charged particle beam device | |
JPH03295141A (en) | Detector | |
JP3101141B2 (en) | Electron beam equipment | |
JPH0973871A (en) | Scanning electron microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |