JP3139484B2 - Charged particle beam microscopy - Google Patents
Charged particle beam microscopyInfo
- Publication number
- JP3139484B2 JP3139484B2 JP10362129A JP36212998A JP3139484B2 JP 3139484 B2 JP3139484 B2 JP 3139484B2 JP 10362129 A JP10362129 A JP 10362129A JP 36212998 A JP36212998 A JP 36212998A JP 3139484 B2 JP3139484 B2 JP 3139484B2
- Authority
- JP
- Japan
- Prior art keywords
- charged particle
- particle beam
- sample
- filter
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 title claims description 42
- 238000000386 microscopy Methods 0.000 title claims 4
- 230000001133 acceleration Effects 0.000 claims description 15
- 230000005684 electric field Effects 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 description 21
- 230000004075 alteration Effects 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Description
【0001】[0001]
【発明の属する技術分野】本発明は、走査形荷電粒子顕
微鏡及びその類似装置に係り、特に低加速領域において
高分解能でかつ二次電子の高検出効率に好適な荷電粒子
光学系に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning charged particle microscope and similar devices, and more particularly to a charged particle optical system having high resolution in a low acceleration region and suitable for high secondary electron detection efficiency.
【0002】[0002]
【従来の技術】走査形電子顕微鏡の分解能を向上させる
ために、特開昭61−294746号に記載されている
ような光学系が用いられている。すなわち、輝度が高
く、エネルギ幅の小さな電界放射形(FE)電子銃と、
レンズの内部に試料を配置して収差を極力小さくしたイ
ンレンズ形対物レンズとを組合わせたものである。この
ような光学系においても低加速領域においては分解能は
低下する。2. Description of the Related Art In order to improve the resolution of a scanning electron microscope, an optical system as described in JP-A-61-294746 is used. That is, a field emission (FE) electron gun having a high brightness and a small energy width;
This is a combination of an in-lens type objective lens in which a sample is arranged inside a lens and aberration is minimized. Even in such an optical system, the resolution is reduced in the low acceleration region.
【0003】一方、色収差を低減するために、特公昭6
3−34588に記載されているような光学系が提案さ
れている。On the other hand, in order to reduce chromatic aberration, Japanese Patent Publication No.
An optical system as described in 3-34588 has been proposed.
【0004】この光学系は、電子線が試料を照射する直
前まで高加速電圧とし、試料照射時に減速して低加速電
圧化するものである。この場合、レンズ通過時の電子線
のエネルギが高いので、レンズ収差を小さくできる。す
なわち、高分解能化が図れる。This optical system has a high accelerating voltage until just before an electron beam irradiates a sample, and decelerates to a low accelerating voltage when irradiating the sample. In this case, since the energy of the electron beam when passing through the lens is high, lens aberration can be reduced. That is, high resolution can be achieved.
【0005】以上の観点から、低加速領域で従来以上の
高分解能を得るためには、上記両者の光学系を組合せれ
ば可能となる。すなわち、試料はレンズの内部に配置
し、この試料に負の電圧を印加して減速すればよい。From the above viewpoints, it is possible to obtain higher resolution than before in the low acceleration region by combining the above two optical systems. That is, the sample may be placed inside the lens, and a negative voltage may be applied to the sample to reduce the speed.
【0006】ただ、この場合問題となるのは二次電子の
検出である。試料がレンズの外部にある従来の場合に
は、特公昭63−34588に示されているように、一
次電子線の減速電界で二次電子が加速されるまでに二次
電子検出器の電界で二次電子を検出するように構成すれ
ばよかった。しかし、試料をレンズの内部に配置したイ
ンレンズ形では、レンズの磁界が強いためにこの磁界に
二次電子が強く束縛されるばかりでなく、二次電子検出
器をレンズの内部に配置できないという問題が生じる。However, the problem in this case is the detection of secondary electrons. In the conventional case where the sample is outside the lens, as shown in JP-B-63-34588, the electric field of the secondary electron detector is used until the secondary electrons are accelerated by the deceleration electric field of the primary electron beam. It should have been configured to detect secondary electrons. However, in the in-lens type, in which the sample is placed inside the lens, the magnetic field of the lens is so strong that not only the secondary electrons are strongly bound by this magnetic field, but also that the secondary electron detector cannot be placed inside the lens. Problems arise.
【0007】また、一次電子線と二次電子とを分離する
ことについては特開昭62−31933号に磁界のみで
分離することが開示されていた。[0007] Japanese Patent Application Laid-Open No. Sho 62-31933 discloses that a primary electron beam and a secondary electron are separated only by a magnetic field.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、低加
速領域で高分解能化を図り、かつ二次電子の高検出感度
が得られる電子光学系を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an electron optical system capable of achieving high resolution in a low acceleration region and obtaining high sensitivity for detecting secondary electrons.
【0009】[0009]
【課題を解決するための手段】荷電粒子源から第1の荷
電粒子線を所定の加速電圧で引き出し、引き出した第1
の荷電粒子線を絞るためのレンズを通過させ、試料上の
所定の位置へ走査偏向する工程と、偏向された前記第1
の荷電粒子線を減速させるための減速電界を通して試料
に照射する工程と、試料へ第1の荷電粒子線の照射によ
り試料から発生する第2荷電粒子線と第1の荷電粒子線
とを第1のフィルタで分離する工程と、分離工程で発生
する第1の荷電粒子線への影響を、第2のフィルタを用
いて補正する工程から成る荷電粒子線顕微方法にある。A first charged particle beam is extracted from a charged particle source at a predetermined acceleration voltage, and the extracted first charged particle beam is charged.
Passing through a lens for narrowing the charged particle beam to scan and deflect to a predetermined position on the sample;
Irradiating the sample with a deceleration electric field for decelerating the charged particle beam of the sample, and the second charged particle beam and the first charged particle beam generated from the sample by irradiating the sample with the first charged particle beam. And a method of correcting the influence on the first charged particle beam generated in the separation step by using the second filter.
【0010】まず、試料照射の直前に電子線の減速を行
えば、低加速電圧でも高分解能が得られることは従来技
術からも分かる。First, it can be seen from the prior art that if the electron beam is decelerated immediately before sample irradiation, high resolution can be obtained even at a low acceleration voltage.
【0011】一方、二次電子検出に関しては、E×B形
のフィルタを試料と検出器との間に用いているので、一
次電子線を直進するようにしてやれば、エネルギの異な
る二次電子は自然に偏向されることになる。すなわち、
図5に示すように電子線2の加速電圧V0にたいして、
次式を満足するようにEとBを印加すれば、電子線2の
軌道に影響を与えない。On the other hand, regarding secondary electron detection, since an E × B type filter is used between the sample and the detector, secondary electrons having different energies can be obtained by moving the primary electron beam straight. You will be naturally deflected. That is,
As shown in FIG. 5, with respect to the acceleration voltage V 0 of the electron beam 2,
If E and B are applied so as to satisfy the following expression, the trajectory of the electron beam 2 is not affected.
【0012】[0012]
【数1】 (Equation 1)
【0013】この時、検出すべき二次電子8のエネルギ
は減速電圧VRでありかつ電子線2と方向が逆であるの
で、二次電子8の偏向角θは、At this time, since the energy of the secondary electrons 8 to be detected is the deceleration voltage VR and the direction is opposite to that of the electron beam 2, the deflection angle θ of the secondary electrons 8 is
【0014】[0014]
【数2】 (Equation 2)
【0015】となる。## EQU1 ##
【0016】この偏向方向を検出器の方向と一致させて
おけば、二次電子は検出器に向かって進むので、検出効
率の向上が図れることになる。If this deflection direction is made to coincide with the direction of the detector, the secondary electrons travel toward the detector, so that the detection efficiency can be improved.
【0017】[0017]
【発明の実施の形態】本発明の一実施例を図1により説
明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.
【0018】電子銃1からでた電子線2は、幾つかのレ
ンズ(本実施例では加速レンズ3、コンデンサレンズ
4、対物レンズ5)により細く絞られて試料6上を照射
する。この電子線2は偏向器7により試料6上で二次元
的に走査される。また、試料6からでてきた二次電子8
は、二次電子検出器9により検出されて映像信号とな
る。The electron beam 2 emitted from the electron gun 1 is narrowed down by a number of lenses (accelerating lens 3, condenser lens 4, and objective lens 5 in this embodiment) to irradiate the sample 6 onto the sample. The electron beam 2 is two-dimensionally scanned on the sample 6 by the deflector 7. Also, secondary electrons 8 coming out of sample 6
Is detected by the secondary electron detector 9 and becomes a video signal.
【0019】ここで、試料6は電子線2を減速するため
に負の電圧VRが印加されている。Here, a negative voltage VR is applied to the sample 6 to decelerate the electron beam 2.
【0020】このとき、出てきた二次電子はこの減速電
圧VRにより逆に加速され、検出器9の電界のみでは十
分に検出器9の方に偏向できなくなる。At this time, the emitted secondary electrons are accelerated in reverse by the deceleration voltage VR, and cannot be sufficiently deflected toward the detector 9 only by the electric field of the detector 9.
【0021】そこで、出てきた二次電子8を検出器9の
方に偏向するために偏向器を配置すればよいが、電子線
2の軌道に影響のないように電界Eと磁界Bとを直交さ
せたいわゆるE×B形のフィルタ10を対物レンズ5と
検出器9との間に配置している。このとき、(1)式の
ようにEとBを印加すれば、電子線2の軌道には影響を
与えずに二次電子8のみを検出器の方に偏向でき、検出
効率の向上が図れる。Therefore, a deflector may be arranged to deflect the emitted secondary electrons 8 toward the detector 9. However, the electric field E and the magnetic field B are changed so as not to affect the trajectory of the electron beam 2. An orthogonal so-called E × B filter 10 is arranged between the objective lens 5 and the detector 9. At this time, if E and B are applied as in the expression (1), only the secondary electrons 8 can be deflected to the detector without affecting the trajectory of the electron beam 2, and the detection efficiency can be improved. .
【0022】ただ、この場合、フィルタ10による色収
差が問題になる。この色収差による偏向角βは、However, in this case, chromatic aberration caused by the filter 10 becomes a problem. The deflection angle β due to this chromatic aberration is
【0023】[0023]
【数3】 (Equation 3)
【0024】で表わされる。ここで、ΔVは電子線2の
エネルギ幅である。## EQU2 ## Here, ΔV is the energy width of the electron beam 2.
【0025】すなわち、図2に示すようにこの色収差に
より物点12でSβの拡がりを持つことになり、対物レ
ンズの倍率をMとすると試料上ではMSβの拡がりを生
ずる。具体的数値の典型的な一例を示すと、θ=30
°、ΔV=0.3eV、V0=1kV、としてVRに対す
るβは図3に示すものとなる。この図からβを大きく見
積もって5×10-5とし、S=200mm,M=1/5
0とすると、0.2μmの拡がりとなる。この値は、電
子線2の所望の値(〜nm)より非常に大きい。That is, as shown in FIG. 2, this chromatic aberration causes the spread of Sβ at the object point 12, and when the magnification of the objective lens is M, the spread of MSβ occurs on the sample. As a typical example of specific numerical values, θ = 30
°, ΔV = 0.3eV, V 0 = 1kV, β for V R as is as shown in FIG. From this figure, β is largely estimated to be 5 × 10 −5 , S = 200 mm, M = 1/5
If it is set to 0, the spread will be 0.2 μm. This value is much larger than the desired value (〜 nm) of the electron beam 2.
【0026】そこで、本発明では図4ならびに図1に示
すように、E×B形のフィルタ11を配置してこの色収
差を自己消去できるようにした。すなわち、図4から分
かるようにΔVのエネルギが拡がりを持つ電子線2があ
たかも物点12の一点から出たかのようになるようにフ
ィルタ11を動作させる。このフィルタ11の偏向角
β′は、Therefore, in the present invention, as shown in FIG. 4 and FIG. 1, an E × B type filter 11 is arranged so that this chromatic aberration can be self-erased. That is, as can be understood from FIG. 4, the filter 11 is operated such that the electron beam 2 having the energy of ΔV spreads as if it came out of one point of the object point 12. The deflection angle β ′ of this filter 11 is
【0027】[0027]
【数4】 (Equation 4)
【0028】とすればよい。[0028]
【0029】以上により、電子線2の径を増大させるこ
となく、二次電子8のみを検出器9の方に偏向すること
が可能となる。すなわち、低加速領域でも高分解能でか
つ二次電子の高検出効率が得られることになる。As described above, it is possible to deflect only the secondary electrons 8 toward the detector 9 without increasing the diameter of the electron beam 2. That is, high resolution and high detection efficiency of secondary electrons can be obtained even in a low acceleration region.
【0030】図1に示す本発明を実施した結果のごく一
例を以下に示す。フィルタ11を物点12とフィルタ1
0とのほぼ中間に配置して電界Eと磁界Bとの作用長L
を約20mmとなるように構成し、V0=1kVと固定
にしてVR=0〜900Vと変化させた。このとき、フ
ィルタ10、11のそれぞれのEとBの強さをE=0〜
25V/mm,0〜50V/mm,B=0〜14ガウス
(Gauss),0〜28GaussとVRに連動させて変化させ
たところ、4〜6nmの高分解能が実現できた。One example of the result of implementing the present invention shown in FIG. 1 is shown below. Filter 11 is the object point 12 and filter 1
0 and the action length L between the electric field E and the magnetic field B
Was set to about 20 mm, and V 0 was fixed to 1 kV, and VR was changed to 0 to 900 V. At this time, the strengths of E and B of the filters 10 and 11 are set to E = 0 to E = 0.
25 V / mm, 0 to 50 V / mm, B = 0 to 14 Gauss, 0 to 28 Gauss, and when changed in conjunction with VR, a high resolution of 4 to 6 nm was realized.
【0031】本発明は、1kV以下の低加速電圧でnm
オーダの分解能を得ることを目的になされたため、フィ
ルタを2段にしたが、目的によっては1段で構成しても
二次電子の高検出効率化は可能であることは、本実施例
で述べた通りである。According to the present invention, at a low accelerating voltage of 1 kV or less, nm
Although the filter is provided in two stages for the purpose of obtaining the resolution of the order, it is described in the present embodiment that the efficiency of secondary electron detection can be increased even if the filter is formed in one stage depending on the purpose. As expected.
【0032】また、本実施例では試料がレンズの内部に
配置したが、レンズの外側に配置された構成の光学系に
たいしても実施することができる。なおこの場合、二次
電子検出器は試料と対物レンズとの間にあってもよい
し、図1のように対物レンズの上側にあってもよいこと
はいうまでもない。要は、試料と二次電子検出器との間
にE×B形のフィルタがあれば実現できる。In this embodiment, the sample is arranged inside the lens. However, the present invention can be applied to an optical system having a structure arranged outside the lens. In this case, it goes without saying that the secondary electron detector may be located between the sample and the objective lens, or may be located above the objective lens as shown in FIG. In short, it can be realized if there is an E × B type filter between the sample and the secondary electron detector.
【0033】さらに、本発明は走査形電子顕微鏡に対し
て述べたが、これに限ることなく類似の電子線応用装置
一般に適用できるし、さらにイオン線のような荷電粒子
線応用装置一般に適用できることは言うまでもない。た
だ、正の電荷を持っている荷電粒子線の場合には、減速
電圧は正の値にする必要がある。Furthermore, the present invention has been described with respect to a scanning electron microscope. However, the present invention is not limited to this, but can be applied to similar electron beam application devices in general, and further to general charged particle beam application devices such as ion beams. Needless to say. However, in the case of a charged particle beam having a positive charge, the deceleration voltage needs to be a positive value.
【0034】[0034]
【発明の効果】本発明によれば、低加速領域でも荷電粒
子線径を増大させることなく二次荷電粒子を検出器の方
に偏向することが可能となるので、高分解能でかつ二次
荷電粒子の高検出効率が得られる効果がある。According to the present invention, the secondary charged particles can be deflected toward the detector without increasing the charged particle diameter even in the low acceleration region, so that the secondary charged particles can be highly resolved and the secondary charged particles can be deflected. There is an effect that a high particle detection efficiency can be obtained.
【図1】本発明の一実施例を示す荷電粒子光学系の縦断
面図。FIG. 1 is a longitudinal sectional view of a charged particle optical system according to an embodiment of the present invention.
【図2】E×B形フィルタの色収差に関する説明図。FIG. 2 is a diagram illustrating chromatic aberration of an E × B filter.
【図3】E×B形フィルタの色収差により生じる偏向角
と試料に印加した減速電圧との関係曲線図。FIG. 3 is a graph showing a relationship between a deflection angle caused by chromatic aberration of an E × B filter and a deceleration voltage applied to a sample.
【図4】フィルタの色収差を自己打消しさせるための基
本光学系の縦断面図。FIG. 4 is a longitudinal sectional view of a basic optical system for self-cancelling chromatic aberration of a filter.
【図5】E×B形フィルタによる一次電子線と二次電子
の軌道を示す説明図である。FIG. 5 is an explanatory diagram showing trajectories of primary electron beams and secondary electrons by an E × B filter.
1…電子銃、2…電子線、3…加速レンズ、4…コンデ
ンサレンズ、5…対物レンズ、6…試料、7…偏向器、
8…二次電子、9…二次電子検出器、10,11…E×
B形フィルタ、12…物点。REFERENCE SIGNS LIST 1 electron gun 2 electron beam 3 acceleration lens 4 condenser lens 5 objective lens 6 sample 7 deflector
8 secondary electron, 9 secondary electron detector, 10, 11 Ex
B-type filter, 12 ... object point.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 37/28 H01J 37/05 H01J 37/244 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H01J 37/28 H01J 37/05 H01J 37/244
Claims (4)
加速電圧で引き出し、引き出した前記第1の荷電粒子線
を絞るためのレンズを通過させ、試料上の所定の位置へ
走査偏向する工程と、偏向された前記第1の荷電粒子線
を減速させるための減速電界を通して試料に照射する工
程と、試料へ前記第1の荷電粒子線の照射により試料か
ら発生する第2荷電粒子線と前記第1の荷電粒子線とを
第1のフィルタで分離する工程と、前記分離工程で発生
する前記第1の荷電粒子線への影響を、前記第2のフィ
ルタを用いて補正する工程を含むことを特徴する荷電粒
子線顕微方法。1. A first charged particle beam is extracted from a charged particle source at a predetermined acceleration voltage, passed through a lens for narrowing the extracted first charged particle beam, and scan-deflected to a predetermined position on a sample. Irradiating the sample through a deceleration electric field for decelerating the deflected first charged particle beam, and a second charged particle beam generated from the sample by irradiating the sample with the first charged particle beam Separating the first charged particle beam and the first charged particle beam by a first filter, and correcting the influence on the first charged particle beam generated in the separating step by using the second filter. A charged particle beam microscopy method characterized by comprising:
加速電圧で引き出し、引き出した前記第1の荷電粒子線
を絞るためのレンズを通過させ、試料上の所定の位置へ
走査偏向する工程と、偏向された前記第1の荷電粒子線
を加速電圧より低い低加速電圧で試料に照射する工程
と、試料へ前記第1の荷電粒子線の照射により試料から
発生する第2荷電粒子線と前記第1の荷電粒子線とを第
1のフィルタで分離する工程と、前記分離工程で発生す
る前記第1の荷電粒子線への影響を、前記第2のフィル
タを用いて補正する工程を含むことを特徴する荷電粒子
線顕微方法。2. A first charged particle beam is extracted from a charged particle source at a predetermined acceleration voltage, passed through a lens for narrowing the extracted first charged particle beam, and scan-deflected to a predetermined position on a sample. Irradiating the sample with the deflected first charged particle beam at a low acceleration voltage lower than the acceleration voltage, and irradiating the sample with the first charged particle beam to generate second charged particles. Separating the first charged particle beam from the first charged particle beam using a first filter, and correcting the influence on the first charged particle beam generated in the separating step using the second filter. A charged particle beam microscopy method comprising:
ことを特徴する請求項2記載の荷電粒子線顕微方法。3. The charged particle beam microscopy method according to claim 2, wherein 1 kV or less is used as said low acceleration voltage.
フィルタであることを特徴とする請求項1,2,3いず
れか記載の荷電粒子線顕微方法。 4. A charged particle beam microscopic method in accordance with claim 1, 2, 3, characterized in that the filter using electric and magnetic fields as the filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10362129A JP3139484B2 (en) | 1998-12-21 | 1998-12-21 | Charged particle beam microscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10362129A JP3139484B2 (en) | 1998-12-21 | 1998-12-21 | Charged particle beam microscopy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1995304088A Division JP2993873B6 (en) | 1995-11-22 | Charged particle beam application device and electron beam application device |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11344239A Division JP3137115B2 (en) | 1999-12-03 | 1999-12-03 | Charged particle beam microscopy method and charged particle beam application device |
JP2000194888A Division JP3225961B2 (en) | 1988-11-24 | 2000-06-23 | Charged particle beam application equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11242942A JPH11242942A (en) | 1999-09-07 |
JP3139484B2 true JP3139484B2 (en) | 2001-02-26 |
Family
ID=18476003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10362129A Expired - Lifetime JP3139484B2 (en) | 1998-12-21 | 1998-12-21 | Charged particle beam microscopy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3139484B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030006492A (en) * | 2001-07-13 | 2003-01-23 | 구정회 | Methodology of Organic sample inspection Using Charge Reduction Tool in SEM |
-
1998
- 1998-12-21 JP JP10362129A patent/JP3139484B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11242942A (en) | 1999-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7544937B2 (en) | Charged particle beam device for high spatial resolution and multiple perspective imaging | |
JP2821153B2 (en) | Charged particle beam application equipment | |
JP2919170B2 (en) | Scanning electron microscope | |
US6674075B2 (en) | Charged particle beam apparatus and method for inspecting samples | |
US6407387B1 (en) | Particle beam apparatus | |
TW201021077A (en) | An electron beam apparatus | |
JPH0286036A (en) | Ion micro-analyzer | |
US7851755B2 (en) | Apparatus for detecting backscattered electrons in a beam apparatus | |
US6232601B1 (en) | Dynamically compensated objective lens-detection device and method | |
JP3006581B2 (en) | Charged particle beam application equipment | |
JP3139484B2 (en) | Charged particle beam microscopy | |
JP2002367552A (en) | Charged-particle beam device | |
JPH08138611A (en) | Charged particle beam device | |
JP3031378B2 (en) | Charged particle beam application equipment | |
JP3862344B2 (en) | Electrostatic lens | |
JP3225961B2 (en) | Charged particle beam application equipment | |
JP2993873B2 (en) | Charged particle beam application equipment and electron beam application equipment | |
JP3137115B2 (en) | Charged particle beam microscopy method and charged particle beam application device | |
US20110139978A1 (en) | Charged particle beam device, method of operating a charged particle beam device | |
US6407388B1 (en) | Corpuscular beam device | |
JP2993873B6 (en) | Charged particle beam application device and electron beam application device | |
JP2001256914A (en) | Charged particle beam application device | |
JPH0349142A (en) | Scanning type electron microscope and similar device thereof | |
JPH0864163A (en) | Charged particle beam device | |
JP3101141B2 (en) | Electron beam equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071215 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081215 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |