JPH0864163A - Charged particle beam device - Google Patents
Charged particle beam deviceInfo
- Publication number
- JPH0864163A JPH0864163A JP6195211A JP19521194A JPH0864163A JP H0864163 A JPH0864163 A JP H0864163A JP 6195211 A JP6195211 A JP 6195211A JP 19521194 A JP19521194 A JP 19521194A JP H0864163 A JPH0864163 A JP H0864163A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- electron beam
- sample
- aberration
- charged particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 16
- 238000005421 electrostatic potential Methods 0.000 claims abstract description 10
- 230000001133 acceleration Effects 0.000 claims description 10
- 238000010894 electron beam technology Methods 0.000 abstract description 38
- 230000004075 alteration Effects 0.000 abstract description 19
- 230000005684 electric field Effects 0.000 abstract description 19
- 230000003287 optical effect Effects 0.000 abstract description 11
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 208000028659 discharge Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、試料に電子ビームを照
射し、試料から発生した2次電子を検出して試料像を表
示するようにした走査電子顕微鏡などの荷電粒子ビーム
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus such as a scanning electron microscope which irradiates a sample with an electron beam and detects secondary electrons generated from the sample to display a sample image.
【0002】[0002]
【従来の技術】走査電子顕微鏡では電子銃から発生した
一次電子ビームをコンデンサレンズや対物レンズによっ
て試料上に細く集束し、更に、電子ビームを偏向手段に
よって走査する。試料への電子ビームの照射によって発
生した2次電子は、2次電子検出器によって検出され
る。検出器の検出信号は電子ビームの走査に同期した陰
極線管に供給されることから、陰極線管上には試料の2
次電子像が表示される。2. Description of the Related Art In a scanning electron microscope, a primary electron beam generated from an electron gun is finely focused on a sample by a condenser lens or an objective lens, and the electron beam is scanned by a deflecting means. Secondary electrons generated by irradiating the sample with the electron beam are detected by the secondary electron detector. Since the detection signal of the detector is supplied to the cathode ray tube synchronized with the scanning of the electron beam, 2
The next electron image is displayed.
【0003】このような走査電子顕微鏡において、試料
として半導体などを用いた場合、半導体試料に高い加速
電圧の電子ビームを照射すると試料が破損するので、低
い加速電圧の電子ビームを試料に照射することが望まれ
る。しかしながら、低い加速電圧の電子ビームは収差が
大きくなり、高い分解能の2次電子像の観察が困難とな
る。このため、磁界型レンズと静電型レンズとを組み合
わせた重畳場レンズを対物レンズとして用い、一次電子
ビームの収差や歪みを低減する事が行われている。例え
ば、この重畳場レンズを用いた例として、加速電圧が1
kVで分解能4nmを達成した例が報告されている。In such a scanning electron microscope, when a semiconductor or the like is used as the sample, the sample is damaged when the semiconductor sample is irradiated with an electron beam having a high acceleration voltage. Therefore, the sample should be irradiated with an electron beam having a low acceleration voltage. Is desired. However, an electron beam with a low acceleration voltage has large aberration, and it becomes difficult to observe a secondary electron image with high resolution. For this reason, a superimposed field lens in which a magnetic field type lens and an electrostatic type lens are combined is used as an objective lens to reduce the aberration and distortion of the primary electron beam. For example, as an example using this superposed field lens, the acceleration voltage is 1
An example of achieving a resolution of 4 nm at kV has been reported.
【0004】特開昭63−160144号に示された重
畳場レンズは、全長40mm以上の光軸に平行な円筒電
極と、シュノーケル型の磁界レンズと、試料近くに配置
され電子ビームを減速させるための電場を発生する円筒
電極より構成されている。この重畳場レンズの原理は、
光軸上もしくは近軸の電子ビーム軌道に対し、円筒電場
の効果を生かすためにできるだけ円筒電極の穴径を小さ
くし、電子ビームを加速することである。この電場と重
畳している磁界レンズは、円筒電極の穴径が小さい分外
側磁極を光軸に近付けることができ、試料近傍に強励磁
の磁場ピークを持ってきて、短焦点で電子ビームを試料
上に集束させる。また、試料近くの電場は、加速された
電子ビームを減速させ、歪みを小さくするために用いら
れる。The superposed field lens disclosed in Japanese Unexamined Patent Publication No. 63-160144 has a cylindrical electrode parallel to the optical axis with a total length of 40 mm or more, a snorkel type magnetic lens, and is arranged near the sample to decelerate the electron beam. It is composed of a cylindrical electrode that generates an electric field. The principle of this superposed field lens is
With respect to the electron beam trajectories on the optical axis or paraxial, the hole diameter of the cylindrical electrode is made as small as possible in order to utilize the effect of the cylindrical electric field, and the electron beam is accelerated. The magnetic field lens that overlaps with this electric field can bring the outer magnetic pole closer to the optical axis because the hole diameter of the cylindrical electrode is smaller, and brings the magnetic field peak of strong excitation near the sample to make the electron beam sample in the short focus. Focus on top. An electric field near the sample is used to decelerate the accelerated electron beam and reduce distortion.
【0005】[0005]
【発明が解決しようとする課題】前記した磁界型レンズ
を主に集束要因とする重畳場レンズは、円筒電極に電子
ビームを加速するための高電圧を印加するが、穴径が小
さいので電場効果は大きくなるが、その反面電極に高電
圧が掛かるので、電極の単位面積当たりに掛かる負担は
大きくなる。そのため電極が破損しやすい欠点を有す
る。また、磁界型レンズと円筒電極との間の間隔は、真
空間放電を避けるため少なくとも2mm以上開けなけれ
ばならない。その結果、磁界型レンズは光軸から一定以
上の距離が必要となり、光軸を通過する電子ビームに対
する磁場の効果が減少するので、磁界型レンズの励磁を
少なくとも2000AT以上にして、飽和近くまで上げ
ないと強い集束レンズができない。The superposed field lens, which mainly uses the magnetic field type lens as a focusing factor, applies a high voltage for accelerating the electron beam to the cylindrical electrode, but since the hole diameter is small, an electric field effect is produced. However, since a high voltage is applied to the electrode, the burden on the unit area of the electrode is increased. Therefore, there is a drawback that the electrode is easily damaged. Further, the distance between the magnetic field type lens and the cylindrical electrode must be at least 2 mm or more in order to avoid discharge between vacuums. As a result, the magnetic field type lens requires a certain distance or more from the optical axis, and the effect of the magnetic field on the electron beam passing through the optical axis is reduced. Without strong focusing lens.
【0006】本発明は、このような点に鑑みてなされた
もので、その目的は、軸上収差を極めて小さくできる重
畳場レンズを用いた荷電粒子ビーム装置を実現するにあ
る。The present invention has been made in view of the above points, and an object thereof is to realize a charged particle beam apparatus using a superposed field lens capable of extremely reducing axial aberration.
【0007】[0007]
【課題を解決するための手段】本発明に基づく荷電粒子
ビーム装置は、磁界型レンズと非対称型アインツェルレ
ンズである静電型レンズとより成る重畳場レンズと、試
料に電圧を印加するための電源とを備えた荷電粒子ビー
ム装置において、前記非対称アインツェルレンズは加速
型レンズとして用いられており、前記磁界型レンズの外
側磁極と内側磁極との間のギャップは磁界型レンズで発
生する磁気ポテンシャルと静電型レンズで発生する静電
ポテンシャルが試料に照射される荷電粒子ビームを最適
に集束するように調整されていることを特徴としてい
る。A charged particle beam apparatus according to the present invention includes a superposed field lens including a magnetic lens and an electrostatic lens which is an asymmetric Einzel lens, and a voltage applied to a sample. In a charged particle beam apparatus including a power source, the asymmetric Einzel lens is used as an acceleration type lens, and a gap between an outer magnetic pole and an inner magnetic pole of the magnetic field type lens is a magnetic potential generated in the magnetic field type lens. The electrostatic potential generated by the electrostatic lens is adjusted so as to optimally focus the charged particle beam with which the sample is irradiated.
【0008】また、本発明においては、磁界型レンズで
発生する磁気ポテンシャルのピークと静電型レンズで発
生する静電ポテンシャルのピークのいずれもが試料の前
方に位置するように前記ギャップが調整されているIn the present invention, the gap is adjusted so that both the peak of the magnetic potential generated by the magnetic field type lens and the peak of the electrostatic potential generated by the electrostatic type lens are located in front of the sample. ing
【0009】[0009]
【作用】本発明に基づく荷電粒子ビーム装置は、重畳場
レンズで用いる非対称アインツェルレンズを加速型レン
ズとして用い、更に、磁界型レンズの外側磁極と内側磁
極との間のギャップを磁界型レンズで発生する磁気ポテ
ンシャルと静電型レンズで発生する静電ポテンシャルが
試料に照射される荷電粒子ビームを最適に集束するよう
に調整し、収差を極めて小さくする。In the charged particle beam system according to the present invention, the asymmetric Einzel lens used in the superposed field lens is used as the acceleration type lens, and the gap between the outer magnetic pole and the inner magnetic pole of the magnetic field type lens is formed by the magnetic field type lens. The magnetic potential generated and the electrostatic potential generated by the electrostatic lens are adjusted to optimally focus the charged particle beam with which the sample is irradiated, and aberration is made extremely small.
【0010】[0010]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明に基づく走査電子顕微鏡の要
部を示しており、1は磁界型の対物レンズである。図示
していない電子銃から発生し加速された一次電子ビーム
EBは、磁界型対物レンズ1によって試料2上に細く集
束される。対物レンズ1は外側磁極3、内側磁極4、コ
イル5などより構成されている。対物レンズ1の中心部
の電子ビームの通路には、3枚の電極6,7,8より成
る非対称のアインツェルレンズ9が配置されている。試
料2には電源10から負の電圧が印加されている。ま
た、対物レンズ1の上部の光軸から離れた位置には2次
電子検出器11が設けられている。この検出器11の前
面には2次電子を引き寄せるための弱い正電圧が印加さ
れている。このような構成の動作を次に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a main part of a scanning electron microscope according to the present invention, and 1 is a magnetic field type objective lens. The primary electron beam EB generated and accelerated by an electron gun (not shown) is finely focused on the sample 2 by the magnetic field type objective lens 1. The objective lens 1 is composed of an outer magnetic pole 3, an inner magnetic pole 4, a coil 5, and the like. An asymmetric Einzel lens 9 composed of three electrodes 6, 7 and 8 is arranged in the electron beam passage in the center of the objective lens 1. A negative voltage is applied to the sample 2 from the power source 10. A secondary electron detector 11 is provided at a position above the optical axis above the objective lens 1. A weak positive voltage for attracting secondary electrons is applied to the front surface of the detector 11. The operation of such a configuration will be described below.
【0011】2次電子像を得る場合、一次電子ビームE
Bが磁界型対物レンズ1と電極6,7,8から構成され
る静電型のアインツェルレンズ9とによって細く集束さ
れ、試料2上に照射される。この試料2上の電子ビーム
の照射位置は、図示していない偏向手段によって走査さ
れる。試料2への電子ビームの照射にともなって試料か
らは2次電子が発生するが、この2次電子は対物レンズ
1の磁場とアインツェルレンズ9の電場により拘束さ
れ、対物レンズ1の上方に取り出される。対物レンズ1
の上方の2次電子は、2次電子検出器11に印加された
正電界によって検出器10に引き寄せられ検出される。
検出器11の検出信号は一次電子ビームEBの走査に同
期した陰極線管(図示せず)に供給されることから、陰
極線管には試料の走査2次電子像が表示される。To obtain a secondary electron image, the primary electron beam E
B is finely focused by the magnetic field type objective lens 1 and the electrostatic type Einzel lens 9 composed of the electrodes 6, 7, and 8, and is irradiated onto the sample 2. The irradiation position of the electron beam on the sample 2 is scanned by a deflecting unit (not shown). Secondary electrons are generated from the sample as the sample 2 is irradiated with the electron beam. The secondary electrons are restrained by the magnetic field of the objective lens 1 and the electric field of the Einzel lens 9, and are taken out above the objective lens 1. Be done. Objective lens 1
The secondary electrons above is detected by being attracted to the detector 10 by the positive electric field applied to the secondary electron detector 11.
Since the detection signal of the detector 11 is supplied to a cathode ray tube (not shown) synchronized with the scanning of the primary electron beam EB, a scanning secondary electron image of the sample is displayed on the cathode ray tube.
【0012】さて、上記した構成で、光軸上もしくは近
軸の一次電子ビームEBが対物レンズ1の近くに到達す
ると、まず電極6と7で構成される電場の加速部と、電
極7と8で構成される電場の減速部のレンズ作用によ
り、電子ビームEBは軸方向に偏向を受ける。更に、電
子ビームの加速電圧より多少小さな電圧を試料2に印加
することにより、静電ポテンシャルが軸に沿って強減衰
し、電子ビームの減速により球面収差Csと色収差Cc
の軸上収差が低減される。With the above structure, when the primary electron beam EB on the optical axis or near the axis arrives near the objective lens 1, first, the accelerating part of the electric field constituted by the electrodes 6 and 7, and the electrodes 7 and 8. The electron beam EB is deflected in the axial direction by the lens action of the deceleration part of the electric field constituted by. Further, by applying a voltage that is slightly lower than the acceleration voltage of the electron beam to the sample 2, the electrostatic potential is strongly attenuated along the axis, and the spherical aberration Cs and the chromatic aberration Cc due to the deceleration of the electron beam.
On-axis aberration is reduced.
【0013】また、図1の構成で対物レンズ1の外側磁
極3の先端と内側磁極4の先端との間の軸方向のギャッ
プαは、試料に対して静電ポテンシャルEと磁気ポテン
シャルBのピークが互いに干渉し、電子ビームが軸方向
に最も集束するように調整されている。すなわち、外側
磁極3と内側磁極4が軸方向から見て内側磁極4を内側
に引っ込めている。Further, in the configuration of FIG. 1, the axial gap α between the tip of the outer magnetic pole 3 and the tip of the inner magnetic pole 4 of the objective lens 1 is the peak of the electrostatic potential E and the magnetic potential B with respect to the sample. Interfere with each other and the electron beams are adjusted to be most focused in the axial direction. That is, the outer magnetic pole 3 and the inner magnetic pole 4 retract the inner magnetic pole 4 inward when viewed in the axial direction.
【0014】ここで、図1の構成における収差について
考察する。電子銃における一次電子ビームEBの加速電
圧を−10kVとし、電極6と8は接地電位、電極7に
は例えば7kVを印加する。また、試料2には電源10
から−9.99kVの負の電圧を印加する。この結果、
最終的に試料2に到達する電子ビームのエネルギVs
は、10Vとなる。更に対物レンズ1の励磁を2000
ATとし、試料2と対物レンズ1との間の距離(ワーキ
ングディスタンス)を3mmとすると、コンピュータシ
ミュレーションにより、アインツェルレンズ9のみを動
作させた電場だけの場合と、アインツェルレンズ9と対
物レンズ1との両者を同時に動作させた重畳場の場合に
おける、球面収差(Cs),色収差(Cc),電極7に
掛かる電圧(VCEN)は次の表1のようになる。Here, the aberration in the configuration of FIG. 1 will be considered. The acceleration voltage of the primary electron beam EB in the electron gun is set to −10 kV, the electrodes 6 and 8 are applied to the ground potential, and the electrode 7 is applied to, for example, 7 kV. In addition, the sample 2 has a power source 10
To -9.99 kV negative voltage is applied. As a result,
Energy Vs of the electron beam that finally reaches the sample 2
Is 10V. Furthermore, the excitation of the objective lens 1 is set to 2000
Assuming AT and the distance (working distance) between the sample 2 and the objective lens 1 is 3 mm, computer simulation shows that only the electric field in which only the Einzel lens 9 is operated and the Einzel lens 9 and the objective lens 1 are used. The following table 1 shows the spherical aberration (Cs), the chromatic aberration (Cc), and the voltage (VCEN) applied to the electrode 7 in the case of a superimposed field in which both and are simultaneously operated.
【0015】[0015]
【表1】 [Table 1]
【0016】上表から明らかなように、電場のみの場合
に比べ、重畳場とすることによって収差を極めて小さく
することができる。また、電極7にかける電圧も重畳場
にすることによって低くすることができる。As is clear from the above table, the aberration can be made extremely small by using the superimposed field as compared with the case where only the electric field is used. Further, the voltage applied to the electrode 7 can be lowered by setting the superimposed field.
【0017】次に、試料2に対して電子ビームが衝突す
る際の軸に対する開き角θが、上表の重畳場のデータか
ら約8.44mradのとき、分解能として2.79n
mを得ることができる。Next, when the opening angle θ with respect to the axis when the electron beam collides with the sample 2 is about 8.44 mrad from the superposed field data in the above table, the resolution is 2.79 n.
m can be obtained.
【0018】また、図1における対物レンズ1の外側磁
極3と内側磁極4との間のギャップαを変更した時の軸
上収差のデータを表2に、また、ギャップαがケース1
とケース2の場合の重畳場ポテンシャルをそれぞれ図
2,図3に示す。なお、図2,図3において横軸は光軸
方向の位置を示し、縦軸は電場と磁場のポテンシャルを
示している。Table 2 shows the data of the axial aberration when the gap α between the outer magnetic pole 3 and the inner magnetic pole 4 of the objective lens 1 in FIG. 1 is changed, and the gap α is the case 1
2 and 3 show the superposed field potentials in case 2 and case 2, respectively. 2 and 3, the horizontal axis represents the position in the optical axis direction, and the vertical axis represents the electric field and magnetic field potentials.
【0019】[0019]
【表2】 [Table 2]
【0020】上記表2に示すように、ギャップαの値を
適宜に調整することにより、収差をより小さくすること
ができる。図2はケース1の場合、すなわち、ギャップ
αが0の場合で、点線で示した試料位置Sに対して電場
ポテンシャルEのピークPeは左側(電子銃側)にある
が、磁場ポテンシャルBのピークPbが右側にあり、磁
場の上昇部が試料にかかっている。この結果、磁場と電
場のポテンシャルの干渉度は低く、十分な電子ビームの
集束ができない。これに比べて、図3のケース2の場
合,すなわち、ギャップαが2mmの場合、試料位置S
に対して磁場ポテンシャルBのピークPbが、電場ポテ
ンシャルEのピークPeと同様に左側にあり、磁場と電
場のポテンシャルは互いに干渉し、電子ビームを収差の
小さい状態で光軸方向に最も効率良く集束するように動
作する。As shown in Table 2 above, the aberration can be made smaller by appropriately adjusting the value of the gap α. FIG. 2 shows the case 1 in which the gap α is 0, and the peak Pe of the electric field potential E is on the left side (electron gun side) with respect to the sample position S shown by the dotted line, but the peak of the magnetic field potential B is. Pb is on the right side, and the rising part of the magnetic field is on the sample. As a result, the degree of interference between the magnetic field and the electric field potential is low, and the electron beam cannot be sufficiently focused. Compared with this, in case 2 of FIG. 3, that is, when the gap α is 2 mm, the sample position S
On the other hand, the peak Pb of the magnetic field potential B is on the left side like the peak Pe of the electric field potential E, the potentials of the magnetic field and the electric field interfere with each other, and the electron beam is most efficiently focused in the optical axis direction with a small aberration. To work.
【0021】以上本発明の実施例を説明したが、本発明
はこの実施例に限定されない。例えば、走査電子顕微鏡
を例に説明したが、イオンビーム装置などのイオンビー
ムを走査する装置に用いても良い。その場合、試料には
正の電圧が印加される。また、アインツェルレンズを構
成する各電極(6,7,8)の光軸に対向する面を平面
状とせず、曲率を付けることにより、放電を防止するこ
とができる。更に、試料に印加する電圧を任意に変更で
きるようにすることは有効である。Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment. For example, although the scanning electron microscope has been described as an example, it may be used in an apparatus for scanning an ion beam such as an ion beam apparatus. In that case, a positive voltage is applied to the sample. Further, the surface of each electrode (6, 7, 8) forming the Einzel lens, which faces the optical axis, is not flat but has a curvature, so that the discharge can be prevented. Furthermore, it is effective to be able to arbitrarily change the voltage applied to the sample.
【0022】[0022]
【発明の効果】以上説明したように、本発明に基づく荷
電粒子ビーム装置は、重畳場レンズで用いる非対称アイ
ンツェルレンズを加速型レンズとして用い、更に、磁界
型レンズの外側磁極と内側磁極との間のギャップを磁界
型レンズで発生する磁気ポテンシャルと静電型レンズで
発生する静電ポテンシャルが試料に照射される荷電粒子
ビームを最適に集束するように調整した。この結果、軸
上収差を極めて小さくすることができる。また、電場に
磁場を重畳させたので、アインツェルレンズの中央電極
に掛かる電圧が軽減され、このレンズによる荷電粒子ビ
ームの偏向作用を十分に生かせることができると共に、
電圧が軽減できる分、各電極に掛かる電場による負担が
減り、真空間放電の危険も減少する。As described above, the charged particle beam system according to the present invention uses the asymmetric Einzel lens used in the superimposed field lens as the acceleration type lens, and further includes the outer magnetic pole and the inner magnetic pole of the magnetic field type lens. The gap between them was adjusted so that the magnetic potential generated by the magnetic field type lens and the electrostatic potential generated by the electrostatic type lens optimally focused the charged particle beam with which the sample was irradiated. As a result, the axial aberration can be made extremely small. Further, since the magnetic field is superimposed on the electric field, the voltage applied to the central electrode of the Einzel lens is reduced, and the deflection effect of the charged particle beam by this lens can be fully utilized.
As the voltage can be reduced, the load of the electric field applied to each electrode is reduced, and the risk of discharge between vacuums is reduced.
【図1】本発明に基づく走査電子顕微鏡の一実施例を示
す図である。FIG. 1 is a diagram showing an embodiment of a scanning electron microscope according to the present invention.
【図2】重畳場ポテンシャルを示す図である。FIG. 2 is a diagram showing a superimposed field potential.
【図3】重畳場ポテンシャルを示す図である。FIG. 3 is a diagram showing a superimposed field potential.
1 対物レンズ 2 試料 3 外側磁極 4 内側磁極 5 コイル 6,7,8 電極 9 アインツェルレンズ 10 電源 11 2次電子検出器 1 Objective Lens 2 Sample 3 Outer Magnetic Pole 4 Inner Magnetic Pole 5 Coil 6, 7, 8 Electrode 9 Einzel Lens 10 Power Supply 11 Secondary Electron Detector
Claims (2)
ンズである静電型レンズとより成る重畳場レンズと、試
料に電圧を印加するための電源とを備えた荷電粒子ビー
ム装置において、前記非対称アインツェルレンズは加速
型レンズとして用いられており、前記磁界型レンズの外
側磁極と内側磁極との間のギャップは磁界型レンズで発
生する磁気ポテンシャルと静電型レンズで発生する静電
ポテンシャルが試料に照射される荷電粒子ビームを最適
に集束するように調整されていることを特徴とする荷電
粒子ビーム装置。1. A charged particle beam apparatus comprising a superposed field lens comprising a magnetic field type lens and an electrostatic type lens which is an asymmetrical Einzel lens, and a power source for applying a voltage to a sample. The Zell lens is used as an acceleration type lens, and the gap between the outer magnetic pole and the inner magnetic pole of the magnetic field type lens has a magnetic potential generated by the magnetic field type lens and an electrostatic potential generated by the electrostatic type lens on the sample. A charged particle beam device, which is adjusted to optimally focus an irradiated charged particle beam.
ルのピークと静電型レンズで発生する静電ポテンシャル
のピークのいずれもが試料の前方に位置するように前記
ギャップが調整されている請求項1記載の荷電粒子ビー
ム装置。2. The gap is adjusted so that both the peak of the magnetic potential generated by the magnetic lens and the peak of the electrostatic potential generated by the electrostatic lens are located in front of the sample. Charged particle beam device as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6195211A JPH0864163A (en) | 1994-08-19 | 1994-08-19 | Charged particle beam device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6195211A JPH0864163A (en) | 1994-08-19 | 1994-08-19 | Charged particle beam device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0864163A true JPH0864163A (en) | 1996-03-08 |
Family
ID=16337312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6195211A Withdrawn JPH0864163A (en) | 1994-08-19 | 1994-08-19 | Charged particle beam device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0864163A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10134754A (en) * | 1996-11-05 | 1998-05-22 | Jeol Ltd | Scanning electron microscope |
JP2001110351A (en) * | 1999-10-05 | 2001-04-20 | Hitachi Ltd | Scanning electron microscope |
JP2004134379A (en) * | 2002-07-19 | 2004-04-30 | Leo Elektronenmikroskopie Gmbh | Objective lens for electron microscope system, and electron microscope system |
EP1471562A2 (en) * | 2003-04-24 | 2004-10-27 | FEI Company | Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens |
DE102007010873A1 (en) * | 2007-03-06 | 2008-09-18 | Carl Zeiss Nts Gmbh | objective lens |
-
1994
- 1994-08-19 JP JP6195211A patent/JPH0864163A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10134754A (en) * | 1996-11-05 | 1998-05-22 | Jeol Ltd | Scanning electron microscope |
JP2001110351A (en) * | 1999-10-05 | 2001-04-20 | Hitachi Ltd | Scanning electron microscope |
JP2004134379A (en) * | 2002-07-19 | 2004-04-30 | Leo Elektronenmikroskopie Gmbh | Objective lens for electron microscope system, and electron microscope system |
JP2011222525A (en) * | 2002-07-19 | 2011-11-04 | Carl Zeiss Nts Gmbh | Objective lens for electron microscope system and electron microscope system |
EP1471562A2 (en) * | 2003-04-24 | 2004-10-27 | FEI Company | Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens |
EP1471562A3 (en) * | 2003-04-24 | 2006-11-22 | FEI Company | Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens |
DE102007010873A1 (en) * | 2007-03-06 | 2008-09-18 | Carl Zeiss Nts Gmbh | objective lens |
DE102007010873B4 (en) * | 2007-03-06 | 2009-07-30 | Carl Zeiss Nts Gmbh | objective lens |
US8178849B2 (en) | 2007-03-06 | 2012-05-15 | Carl Zeiss Nts Gmbh | Objective lens |
US8362443B2 (en) | 2007-03-06 | 2013-01-29 | Carl Zeiss Microscopy Gmbh | Objective lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4236742B2 (en) | Scanning electron microscope | |
JP4215282B2 (en) | SEM equipped with electrostatic objective lens and electrical scanning device | |
US5894124A (en) | Scanning electron microscope and its analogous device | |
JPH0536371A (en) | Corpuscular ray device | |
JP3372138B2 (en) | Scanning electron microscope | |
JP2821153B2 (en) | Charged particle beam application equipment | |
JP2014165174A (en) | FOCUSED ION BEAM LOW kV ENHANCEMENT | |
US20080149831A1 (en) | Beam Apparatus | |
JP2008198471A (en) | Charged particle beam device | |
US6232601B1 (en) | Dynamically compensated objective lens-detection device and method | |
JP3341226B2 (en) | Scanning electron microscope | |
JPH0864163A (en) | Charged particle beam device | |
JPH08138611A (en) | Charged particle beam device | |
JP3474082B2 (en) | Electron beam equipment | |
JP2003187730A (en) | Beam separator and reflection electron microscope | |
JP2000149850A (en) | Charged particle beam device | |
US6717141B1 (en) | Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like | |
JPH10241616A (en) | Electrostatic lens | |
US6858845B2 (en) | Scanning electron microscope | |
JP4128487B2 (en) | Charged particle beam equipment | |
JPS63274049A (en) | Scanning type electron microscope | |
JP3898614B2 (en) | Scanning electron microscope | |
JPH0973871A (en) | Scanning electron microscope | |
JP3101141B2 (en) | Electron beam equipment | |
JP2001243904A (en) | Scanning electron microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011106 |