JPH02142045A - Scan type electron microscope and similar device thereof - Google Patents

Scan type electron microscope and similar device thereof

Info

Publication number
JPH02142045A
JPH02142045A JP63294527A JP29452788A JPH02142045A JP H02142045 A JPH02142045 A JP H02142045A JP 63294527 A JP63294527 A JP 63294527A JP 29452788 A JP29452788 A JP 29452788A JP H02142045 A JPH02142045 A JP H02142045A
Authority
JP
Japan
Prior art keywords
sample
lens
electron
electron beam
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63294527A
Other languages
Japanese (ja)
Other versions
JP2821153B2 (en
Inventor
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63294527A priority Critical patent/JP2821153B2/en
Publication of JPH02142045A publication Critical patent/JPH02142045A/en
Application granted granted Critical
Publication of JP2821153B2 publication Critical patent/JP2821153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a high resolution in a low acceleration range, and obtain a high detection sensitivity for secondary electrons by using a filter of an in-lens type where a sample is disposed inside a lens, and of an EXB type which decelerates a primary electron beam by applying a negative voltage to the sample while crossing an electric field with a magnetic field. CONSTITUTION:An electron beam 2 generated from an electron gun 1 is throttled through an acceleration lens 3, a capacitor lens 4, and an objective lens 5, for example, to be thin and radiated on a sample 6. The electron beam 2 is scanned on the sample 6 two-dimensionally by a deflector 7, and a secondary electron 8 generated from the sample 6 is detected by a secondary electron detector 9 to be an image signal. A negative voltage VR is then applied to the sample 6 for decelerating the electron beam 2, and the generated secondary electron 8 is accelerated by the decelerating voltage VR inversely, so it cannot be deflected to the detector 9 sufficiently only by the electric field of the detector 9. A filter 10 of a so-called EXB type where an electric field is made to cross with a magnetic field is disposed between the objective lens 5 and the detector 9 to eliminate the effects on the route of the electron beam 2. A high resolution and a high detection sensitivity for secondary charged particles can thus be obtained in a low acceleration range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、走査形荷電粒子顕微鏡及びその類似装置に係
り、特に低加速領域において高分解能でかつ二次電子の
高検出効率に好適な荷電粒子光学系に関する。 【従来の技術】 走査形電子顕微鏡の分解能を向上させるために、特願昭
60−136004に記載されているような光学系が用
いられている。すなわち、輝度が高く、エネルギ幅の小
さな電界放射形(FE)電子銃と、レンズの内部に試料
を配置して収差を極力小さくしたインレンズ形対物レン
ズとを組合わせたものである。このような光学系におい
ても低加・速領域においては分解能は低下する。 一方、色収差を低減するために、特公昭63−3458
8に記載されているような光学系が提案されている。 この光学系は、電子線が試料を照射する直前まで高加速
電圧とし、試料照射時に減速して低加速電圧化するもの
である。この場合、レンズ通過時の電子線のエネルギが
高いので、レンズ収差を小さくできる。すなわち、高分
解能化が図れる。 以上の観点から、低加速領域で従来以上の高分解能を得
るためには、上記両者の光学系を組合せれば可能となる
。すなわち、試料はレンズの内部に配置し、この試料に
負の電圧を印加して減速すればよい。 ただ、この場合問題となるのは二次電子の検出である。 試料がレンズの外部にある従来の場合には、特公昭63
−34588に示されて、いるように、−次層子線の減
速電界で二次電子が加速されるまでに二次電子検出器の
電界で二次電子を検出するように構成すればよかった。 しかし、試料をレンズの内部に配置したインレンズ形で
は、レンズの磁界が強いためにこの磁界に二次電子が強
く束縛されるばかりでなく、二次電子検出器をレンズの
内部に配置できないという問題が生じる。
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to a scanning charged particle microscope and similar devices thereof, and particularly to a charged particle optical system suitable for high resolution in a low acceleration region and high detection efficiency of secondary electrons. 2. Description of the Related Art In order to improve the resolution of a scanning electron microscope, an optical system as described in Japanese Patent Application No. 136004/1983 has been used. That is, it is a combination of a field emission (FE) electron gun with high brightness and a small energy width, and an in-lens type objective lens in which the sample is placed inside the lens to minimize aberrations. Even in such an optical system, the resolution decreases in the low acceleration/velocity region. On the other hand, in order to reduce chromatic aberration,
An optical system as described in 8 has been proposed. This optical system maintains a high accelerating voltage until just before the electron beam irradiates the sample, and decelerates the electron beam when irradiating the sample to lower the accelerating voltage. In this case, since the energy of the electron beam when passing through the lens is high, lens aberration can be reduced. In other words, high resolution can be achieved. From the above point of view, it is possible to obtain a higher resolution than the conventional one in the low acceleration region by combining the two optical systems described above. That is, the sample may be placed inside the lens, and a negative voltage may be applied to the sample to decelerate the sample. However, the problem in this case is the detection of secondary electrons. In the conventional case where the sample is outside the lens, the
As shown in No. 34588, it was sufficient to configure the secondary electron detector to detect the secondary electrons in the electric field of the secondary electron detector before the secondary electrons are accelerated by the deceleration electric field of the -order layer beam. However, with the in-lens type, in which the sample is placed inside the lens, the secondary electrons are not only strongly bound by the strong magnetic field of the lens, but also the secondary electron detector cannot be placed inside the lens. A problem arises.

【発明が解決しようとする課題1 本発明の目的は、低加速領域で高分解能化を図り、かつ
二次電子の高検出感度が得られる電子光学系を提供する
ことにある。 [課題を解決するための手段1 低加速電圧で高分解能を得るためには、試料をレンズの
内部に配置したインレンズ形でかつこの試料に負の電圧
を印加して一次電子線を減速させればよいことはすでに
述べた。この光学系で、二次電子の高検出効率化を図る
ために、−次層子線の減速電界で加速された二次電子を
レンズ通過後検出器の方に偏向させればよい。ただこの
場合、−次層子線には影響しないように二次電子のみを
検出器の方に偏向する必要がある。そのためには、電界
(E)と磁界(B)とを直行させたいわゆるEXB形の
フィルタを用いれば可能となる。 【作用1 まず、試料照射の直前に電子線の減速を行えば、低加速
電圧でも高分解能が得られることは従来技術からも分か
る。 一方、二次電子検出に関しては、EXB形のフィルタを
試料と検出器との間に用いているので。 −次層子線を直進するようにしてやれば、エネルギの異
なる二次電子は自然に偏向されることになる。すなわち
、第5図に示すように電子線2の加速電圧V。にたいし
て1次式を満足するようにEとBを印加すれば、電子線
2の軌道に影響を与えない。 E/V、=2kB          ・・・・・・・
・・・・・(1,)ここで・ k=φフ2mV、  r
e/m:電子の電荷/質量である。 この時、検出すべき二次電子8のエネルギは減速電圧V
Rでありかつ電子線2と方向が逆であるので、二次電子
8の偏向角θは、 tanθ=EL o+、/Vフ耳U可■ ・・・・・・
・・・・・・(2)となる。 この偏向方向を検出器の方向と一致させておけば、二次
電子は検出器に向かって進むので、検出効率の向上が図
れることになる。 【実施例】 本発明の一実施例を第1図により説明する。 電子銃1からでた電子11A2は、幾つかのレンズ(本
実施例では加速レンズ3、コンデンサレンズ4、対物レ
ンズ5)により細く絞られて試料6上を照射する。この
電子IwI2は偏向器7により試料6上で二次元的に走
査される。また、試料6からでてきた二次電子8は、二
次電子検出器9により検出されて映像信号となる。 ここで、試料6は電子線2を減速するために負の電圧V
Rが印加されている。このとき、出てきた二次電子はこ
の減速電圧VRにより逆に加速され、検出器9の電界の
みでは十分に検出器9の方に偏向できなくなる。 そこで、出てきた二次電子8を検出器9の方に偏向する
ために偏向器を配置すればよいが、電子線2の軌道に影
響のないように電界Eと磁界Bとを直行させたいわゆる
EXB形のフィルター0を対物レンズ5と検出器9との
間に配置している。 このとき、(1)式のようにEとBを印加すれば、電子
線2の軌道には影響を与えずに二次電子8のみを検出器
の方に偏向でき、検出効率の向上が図れる。 ただこの場合、フィルター0による色収差が問題になる
。この色収差による偏向角βは、β=ΔVEL/4V。 =tan θAVVR/ 2 Vo (1+ nm)−
・−・−(3)で表わされる。ここで、ΔVは電子線2
のエネルギ帳である。 すなわち、第2図に示すようにこの色収差により物点1
2でSβの拡がりを持つことになり、対物レンズの倍率
をMとすると試料上ではMSβの拡がりを生ずる。具体
的数値の典型的な一例を示すと、θ=30@、 ΔV=
0,3eV、Vo=1.に■、としてVRに対するβは
第3図に示すものとなる。この図からβを大きく見積も
って5×10+5とし、S=200mm、M=1150
とすると、0.2μmの拡がりとなる。この値は、電子
線2の所望の値(〜nm)より非常に大きい。 そこで1本発明では第4図ならびに第1図に示すように
、EXB形のフィルタ11を配置してこの色収差を自己
消去できるようにした。すなわち、第4図から分かるよ
うにΔVのエネルギ拡がりを持つ電子線2があたかも物
点12の一点から出たかのようになるようにフィルタ1
1を動作させる。 このフィルタ11の偏向角β′は。 β’=sβ/T      ・・・・・・・・・・・・
・(4)とすればよい。 以上により、電子線2の径を増大させることなく、二次
電子8のみを検出器9の方に偏向することが可能となる
。すなわち、低加速領域でも高分解能でかつ二次電子の
高検出効率が得られることになる。 第1図に示す本発明を実施した結果のごく一例を以下に
示す。フィルタ11を物点12とフィルタ10とのほぼ
中間に配置して電界Eと磁界Bとの作用長を約20mm
となるように構成し、V0=1kVと固定にしてvR=
O〜900vと変化させた。このとき、フィルタ10.
11のそれぞれのEとBの強さをE=0〜25v/mm
、0〜50V/mm、B=O〜14ガウス(Gauss
) 、 0〜28GaussとVRに連動させて変化さ
せたところ、4〜6nmの高分解能が実現できた。 本発明は、1kV以下の低加速電圧でnmオーダの分解
能を得ることを目的になされたため、フィルタを2段に
したが、目的によっては1段で構成しても二次電子の高
検出効率化は可能であることは、本実施例で述べた通り
である。 また、本実施例では試料がレンズの内部に配置したが、
レンズの外側に配置された構成の光学系にたいしても実
施することができる。なおこの場合、二次電子検出器は
試料と対物レンズとの間にあってもよいし、第1図のよ
うに対物レンズの−L側にあってもよいことはいうまで
もない。要は、試料と二次電子検出器との間にEXB形
のフィルタがあれば実現できる。 さらに1本発明は走査形電子顕微鏡に対して述べたが、
これに限ることなく類似の電子線応用装置一般に適用で
きるし、さらにイオン線のような荷電粒子線応用装置一
般に適用できることは言うまでもない。ただ、正の電荷
を持っている荷電粒子線の場合には、減速電圧は正の値
にする必要がある。
Problem 1 to be Solved by the Invention An object of the present invention is to provide an electron optical system that achieves high resolution in a low acceleration region and provides high detection sensitivity for secondary electrons. [Means for solving the problem 1: In order to obtain high resolution with low accelerating voltage, the sample is placed inside the lens in an in-lens type, and a negative voltage is applied to this sample to decelerate the primary electron beam. I have already mentioned what you should do. In order to achieve high detection efficiency of secondary electrons with this optical system, it is sufficient to deflect the secondary electrons accelerated by the deceleration electric field of the -th layer beam toward the detector after passing through the lens. However, in this case, it is necessary to deflect only the secondary electrons toward the detector so as not to affect the -order beam. This can be achieved by using a so-called EXB type filter in which the electric field (E) and the magnetic field (B) are orthogonal to each other. [Effect 1] First, it is clear from the prior art that high resolution can be obtained even at a low acceleration voltage if the electron beam is decelerated immediately before irradiation of the sample. On the other hand, for secondary electron detection, an EXB type filter is used between the sample and the detector. -If the secondary electron beam is made to travel straight, secondary electrons with different energies will be naturally deflected. That is, the acceleration voltage V of the electron beam 2 as shown in FIG. If E and B are applied so as to satisfy the linear equation, the trajectory of the electron beam 2 will not be affected. E/V, = 2kB ・・・・・・・・・
...(1,) where k=φf2mV, r
e/m: Electron charge/mass. At this time, the energy of the secondary electrons 8 to be detected is the deceleration voltage V
R and the direction is opposite to that of the electron beam 2, so the deflection angle θ of the secondary electrons 8 is: tanθ=EL o+, /V チイ゙゙■ ・・・・・・
...(2). If this deflection direction is made to match the direction of the detector, the secondary electrons will proceed toward the detector, thereby improving detection efficiency. [Embodiment] An embodiment of the present invention will be explained with reference to FIG. Electrons 11A2 emitted from the electron gun 1 are focused narrowly by several lenses (in this embodiment, an accelerating lens 3, a condenser lens 4, and an objective lens 5) and are irradiated onto a sample 6. This electron IwI2 is two-dimensionally scanned on the sample 6 by the deflector 7. Further, secondary electrons 8 emitted from the sample 6 are detected by a secondary electron detector 9 and become a video signal. Here, the sample 6 is applied with a negative voltage V to decelerate the electron beam 2.
R is applied. At this time, the secondary electrons that have come out are accelerated by the deceleration voltage VR, and cannot be sufficiently deflected toward the detector 9 by the electric field of the detector 9 alone. Therefore, a deflector may be placed to deflect the emitted secondary electrons 8 toward the detector 9, but the electric field E and magnetic field B are made perpendicular to each other so as not to affect the trajectory of the electron beam 2. A so-called EXB type filter 0 is arranged between the objective lens 5 and the detector 9. At this time, if E and B are applied as in equation (1), only the secondary electrons 8 can be deflected toward the detector without affecting the trajectory of the electron beam 2, improving detection efficiency. . However, in this case, chromatic aberration due to filter 0 becomes a problem. The deflection angle β due to this chromatic aberration is β=ΔVEL/4V. =tan θAVVR/2Vo (1+ nm)−
・−・−(3) Here, ΔV is the electron beam 2
This is an energy book. In other words, as shown in Figure 2, this chromatic aberration causes the object point 1 to
2, it will have a spread of Sβ, and if the magnification of the objective lens is M, a spread of MSβ will occur on the sample. A typical example of specific numerical values is θ=30@, ΔV=
0.3eV, Vo=1. 3, β for VR is as shown in FIG. From this figure, β is estimated to be 5×10+5, S=200mm, M=1150
Then, the spread is 0.2 μm. This value is much larger than the desired value (~nm) for the electron beam 2. Therefore, in the present invention, as shown in FIG. 4 and FIG. 1, an EXB type filter 11 is arranged so as to be able to self-eliminate this chromatic aberration. In other words, as can be seen from FIG.
Operate 1. The deflection angle β' of this filter 11 is: β'=sβ/T ・・・・・・・・・・・・
・(4) may be used. With the above, it is possible to deflect only the secondary electrons 8 toward the detector 9 without increasing the diameter of the electron beam 2. In other words, high resolution and high secondary electron detection efficiency can be obtained even in the low acceleration region. A small example of the results of implementing the present invention shown in FIG. 1 is shown below. The filter 11 is placed approximately midway between the object point 12 and the filter 10, so that the length of action of the electric field E and the magnetic field B is approximately 20 mm.
The configuration is set so that V0=1kV and vR=
The voltage was varied from 0 to 900v. At this time, filter 10.
The strength of each E and B of 11 is E=0 to 25v/mm
, 0~50V/mm, B=O~14 Gauss (Gauss
), 0 to 28 Gauss was changed in conjunction with VR, and a high resolution of 4 to 6 nm was achieved. The present invention was made with the purpose of obtaining nanometer-order resolution at a low accelerating voltage of 1 kV or less, so the filter is configured in two stages, but depending on the purpose, it may be configured with one stage to achieve high secondary electron detection efficiency. As described in this embodiment, this is possible. In addition, in this example, the sample was placed inside the lens, but
The present invention can also be applied to an optical system arranged outside the lens. In this case, it goes without saying that the secondary electron detector may be located between the sample and the objective lens, or may be located on the -L side of the objective lens as shown in FIG. In short, this can be realized if there is an EXB type filter between the sample and the secondary electron detector. Furthermore, although the present invention has been described with respect to a scanning electron microscope,
It goes without saying that the present invention is not limited to this, and can be applied to similar electron beam application devices in general, and can also be applied to charged particle beam application devices such as ion beams in general. However, in the case of a charged particle beam that has a positive charge, the deceleration voltage needs to be a positive value.

【発明の効果】【Effect of the invention】

本発明によれば、低加速領域でも荷電粒子線径を増大さ
せることなく二次荷電粒子を検出器の方に偏向すること
が可能となるので、高分解能でかつ二次荷電粒子の高検
出効率が得られる効果がある。
According to the present invention, it is possible to deflect secondary charged particles toward the detector without increasing the charged particle beam diameter even in a low acceleration region, resulting in high resolution and high detection efficiency of secondary charged particles. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す荷電粒子光学系の縦断
面図、第2図はEXB形フィルタの色収差に関する説明
図、第3図はEXB形フィルタの色収差により生じる偏
向角と試料に印加した減速電圧との関係曲線図、第4図
はフィルタの色収差を自己打消しさせるための基本光学
系の縦断面図、第5図はEXB形フィルタによる一次電
子線と二次電子の軌道を示す説明図である。 符号の説明 1:電子銃、2:電子線、3:加速レンズ、4:コンデ
ンサレンズ、5:対物レンズ、6:試料。 7:偏向器、8:二次電子、9:二次電子検出器。 10.11:EXB形フイ/L/夕、12:物点′指 第7回 第2目
Fig. 1 is a longitudinal cross-sectional view of a charged particle optical system showing an embodiment of the present invention, Fig. 2 is an explanatory diagram regarding the chromatic aberration of the EXB type filter, and Fig. 3 is a diagram showing the deflection angle caused by the chromatic aberration of the EXB type filter and the effect on the sample. Figure 4 is a longitudinal cross-sectional view of the basic optical system for self-cancelling the chromatic aberration of the filter; Figure 5 is the trajectory of the primary electron beam and secondary electrons in the EXB type filter. FIG. Explanation of symbols 1: Electron gun, 2: Electron beam, 3: Accelerating lens, 4: Condenser lens, 5: Objective lens, 6: Sample. 7: Deflector, 8: Secondary electron, 9: Secondary electron detector. 10.11: EXB type fi/L/Yu, 12: object point' finger 7th 2nd item

Claims (1)

【特許請求の範囲】 1、電子銃と、該電子源からでた電子線を細く絞って試
料に照射するレンズ手段、該電子線を該試料上で二次元
的に走査する走査手段、該試料からでてくる二次電子を
検出する検出手段とからなる装置において、該試料には
負の電圧を印加し、かつ該試料と該検出手段との間なら
びに該検出手段に対して該電子源側にそれぞれ電界(E
)と磁界(B)を直行させたいわゆるEXB形フィルタ
を配置したことを特徴とする走査形電子顕微鏡及びその
類似装置。 2、荷電粒子源と、該荷電粒子源からでた荷電粒子線を
細く絞って試料に照射するレンズ手段、該荷電粒子線を
該試料上で二次元的に走査する走査手段、該試料からで
てくる二次荷電粒子を検出する検出手段とからなる装置
において、該試料には上記荷電粒子が負の荷電粒子であ
るとき負の電圧を、上記荷電粒子が正の荷電粒子である
とき正の電圧を印加し、かつ該試料と該検出手段との間
ならびに該検出手段に対して該荷電粒子源側にそれぞれ
電界(E)と磁界(B)を直行させたいわゆるEXB形
フィルタを配置したことを特徴とする走査形荷電粒子顕
微鏡及びその類似装置。 3、試料配置部が、レンズの内部に配設されたことを特
徴とする請求項第1項記載の走査形荷電粒子顕微鏡及び
その類似装置。 4、上記EXB形フィルタの電界の方向を、検出手段の
方向と一致させたことを特徴とする請求項第1項もしく
は第2項のいずれかに記載の走査形荷電粒子顕微鏡及び
その類似装置。
[Scope of Claims] 1. An electron gun, a lens means for narrowing the electron beam emitted from the electron source and irradiating it onto the sample, a scanning means for two-dimensionally scanning the electron beam on the sample, and the sample. A device comprising a detection means for detecting secondary electrons emitted from the sample, in which a negative voltage is applied to the sample, and between the sample and the detection means and on the electron source side with respect to the detection means. The electric field (E
) and a magnetic field (B) are arranged in a so-called EXB type filter. 2. A charged particle source, a lens means for narrowing the charged particle beam emitted from the charged particle source and irradiating it onto the sample, a scanning means for two-dimensionally scanning the charged particle beam on the sample, and a lens means for irradiating the charged particle beam onto the sample. and a detection means for detecting secondary charged particles coming from the sample, a negative voltage is applied to the sample when the charged particles are negatively charged particles, and a positive voltage is applied to the sample when the charged particles are positively charged particles. A so-called EXB type filter is placed between the sample and the detection means and on the side of the charged particle source with respect to the detection means, in which an electric field (E) and a magnetic field (B) are applied orthogonally, respectively. A scanning charged particle microscope and similar devices characterized by: 3. A scanning charged particle microscope and its similar apparatus according to claim 1, wherein the sample placement section is arranged inside the lens. 4. The scanning charged particle microscope and its similar apparatus according to claim 1 or 2, wherein the direction of the electric field of the EXB type filter is made to coincide with the direction of the detection means.
JP63294527A 1988-11-24 1988-11-24 Charged particle beam application equipment Expired - Lifetime JP2821153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63294527A JP2821153B2 (en) 1988-11-24 1988-11-24 Charged particle beam application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63294527A JP2821153B2 (en) 1988-11-24 1988-11-24 Charged particle beam application equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP1995304088A Division JP2993873B6 (en) 1995-11-22 Charged particle beam application device and electron beam application device
JP10116460A Division JP3006581B2 (en) 1998-04-27 1998-04-27 Charged particle beam application equipment

Publications (2)

Publication Number Publication Date
JPH02142045A true JPH02142045A (en) 1990-05-31
JP2821153B2 JP2821153B2 (en) 1998-11-05

Family

ID=17808936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63294527A Expired - Lifetime JP2821153B2 (en) 1988-11-24 1988-11-24 Charged particle beam application equipment

Country Status (1)

Country Link
JP (1) JP2821153B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594084A1 (en) * 1992-10-20 1994-04-27 Hitachi, Ltd. Scanning electron microscope
WO1998013854A1 (en) * 1996-09-24 1998-04-02 Hitachi, Ltd. Charged particle beam emitting device
WO1999050651A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Pattern inspection device
WO2001033603A1 (en) * 1999-10-29 2001-05-10 Hitachi, Ltd. Electron beam apparatus
US6509564B1 (en) 1998-04-20 2003-01-21 Hitachi, Ltd. Workpiece holder, semiconductor fabricating apparatus, semiconductor inspecting apparatus, circuit pattern inspecting apparatus, charged particle beam application apparatus, calibrating substrate, workpiece holding method, circuit pattern inspecting method, and charged particle beam application method
JP2007227192A (en) * 2006-02-24 2007-09-06 Hitachi High-Technologies Corp Sample holding device and charged particle beam device
US7462828B2 (en) 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
JP2009016360A (en) * 2008-10-20 2009-01-22 Hitachi Ltd Inspection method and device using electron beam
US7518383B2 (en) 2005-04-25 2009-04-14 Hitachi High-Technologies Corporation Inspection apparatus and inspection method using electron beam
JP2009192345A (en) * 2008-02-14 2009-08-27 Hitachi High-Technologies Corp Visual inspection method and inspection device
JP2009245953A (en) * 2009-07-28 2009-10-22 Hitachi Ltd Inspection method using electron beam, and inspection device
JP2010257994A (en) * 2010-08-11 2010-11-11 Hitachi Ltd Inspection method and inspection device using electron beam
EP2365512A2 (en) 2000-06-27 2011-09-14 Ebara Corporation Inspection system by charged particle beam
US8086021B2 (en) 2008-02-15 2011-12-27 Hitachi High-Technologies Corporation Appearance inspection apparatus with scanning electron microscope and image data processing method using scanning electron microscope
US8086022B2 (en) 2007-07-25 2011-12-27 Hitachi High-Technologies Corporation Electron beam inspection system and an image generation method for an electron beam inspection system
US8134125B2 (en) 1997-08-07 2012-03-13 Hitachi, Ltd. Method and apparatus of an inspection system using an electron beam
WO2015104959A1 (en) * 2014-01-09 2015-07-16 株式会社日立ハイテクノロジーズ Charged particle beam device
JP2018029089A (en) * 2017-11-30 2018-02-22 株式会社日立ハイテクノロジーズ Charged particle beam device
JP2019537228A (en) * 2016-12-07 2019-12-19 ケーエルエー コーポレイション Aberration correction method and system in electron beam system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002470B2 (en) * 2012-06-28 2016-10-05 株式会社日立ハイテクノロジーズ Charged particle beam equipment

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594084A1 (en) * 1992-10-20 1994-04-27 Hitachi, Ltd. Scanning electron microscope
US5389787A (en) * 1992-10-20 1995-02-14 Hitachi, Ltd. Scanning electron microscope
WO1998013854A1 (en) * 1996-09-24 1998-04-02 Hitachi, Ltd. Charged particle beam emitting device
US8134125B2 (en) 1997-08-07 2012-03-13 Hitachi, Ltd. Method and apparatus of an inspection system using an electron beam
US8604430B2 (en) 1997-08-07 2013-12-10 Hitachi, Ltd. Method and an apparatus of an inspection system using an electron beam
WO1999050651A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Pattern inspection device
US6509564B1 (en) 1998-04-20 2003-01-21 Hitachi, Ltd. Workpiece holder, semiconductor fabricating apparatus, semiconductor inspecting apparatus, circuit pattern inspecting apparatus, charged particle beam application apparatus, calibrating substrate, workpiece holding method, circuit pattern inspecting method, and charged particle beam application method
US6768113B2 (en) 1998-04-20 2004-07-27 Hitachi, Ltd. Workpiece holder, semiconductor fabricating apparatus, semiconductor inspecting apparatus, circuit pattern inspecting apparatus, charged particle beam application apparatus, calibrating substrate, workpiece holding method, circuit pattern inspecting method, and charged particle beam application method
WO2001033603A1 (en) * 1999-10-29 2001-05-10 Hitachi, Ltd. Electron beam apparatus
US6864482B2 (en) 1999-10-29 2005-03-08 Hitachi, Ltd. Electron beam apparatus
US7491933B2 (en) 1999-10-29 2009-02-17 Hitachi, Ltd. Electron beam apparatus
EP2587515A1 (en) 2000-06-27 2013-05-01 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
EP2365512A2 (en) 2000-06-27 2011-09-14 Ebara Corporation Inspection system by charged particle beam
US7518383B2 (en) 2005-04-25 2009-04-14 Hitachi High-Technologies Corporation Inspection apparatus and inspection method using electron beam
US7999565B2 (en) 2005-04-25 2011-08-16 Hitachi High-Technologies Corporation Inspection apparatus and inspection method using electron beam
US7462828B2 (en) 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
US8153969B2 (en) 2005-04-28 2012-04-10 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
JP2007227192A (en) * 2006-02-24 2007-09-06 Hitachi High-Technologies Corp Sample holding device and charged particle beam device
US7772567B2 (en) 2006-02-24 2010-08-10 Hitachi High-Technologies Corporation Specimen holding device and charged particle beam device
US8086022B2 (en) 2007-07-25 2011-12-27 Hitachi High-Technologies Corporation Electron beam inspection system and an image generation method for an electron beam inspection system
JP2009192345A (en) * 2008-02-14 2009-08-27 Hitachi High-Technologies Corp Visual inspection method and inspection device
US8086021B2 (en) 2008-02-15 2011-12-27 Hitachi High-Technologies Corporation Appearance inspection apparatus with scanning electron microscope and image data processing method using scanning electron microscope
JP2009016360A (en) * 2008-10-20 2009-01-22 Hitachi Ltd Inspection method and device using electron beam
JP4548537B2 (en) * 2008-10-20 2010-09-22 株式会社日立製作所 Inspection method and inspection apparatus using electron beam
JP2009245953A (en) * 2009-07-28 2009-10-22 Hitachi Ltd Inspection method using electron beam, and inspection device
JP4702472B2 (en) * 2009-07-28 2011-06-15 株式会社日立製作所 Inspection method and inspection apparatus using electron beam
JP2010257994A (en) * 2010-08-11 2010-11-11 Hitachi Ltd Inspection method and inspection device using electron beam
WO2015104959A1 (en) * 2014-01-09 2015-07-16 株式会社日立ハイテクノロジーズ Charged particle beam device
JP2015130309A (en) * 2014-01-09 2015-07-16 株式会社日立ハイテクノロジーズ Charged particle beam device
US9679740B2 (en) 2014-01-09 2017-06-13 Hitachi High-Technologies Corporation Charged particle beam device
US10424459B2 (en) 2014-01-09 2019-09-24 Hitachi High-Technologies Corporation Charged particle beam device
JP2019537228A (en) * 2016-12-07 2019-12-19 ケーエルエー コーポレイション Aberration correction method and system in electron beam system
JP2022058942A (en) * 2016-12-07 2022-04-12 ケーエルエー コーポレイション Electron optical system
JP2018029089A (en) * 2017-11-30 2018-02-22 株式会社日立ハイテクノロジーズ Charged particle beam device

Also Published As

Publication number Publication date
JP2821153B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JPH02142045A (en) Scan type electron microscope and similar device thereof
US7544937B2 (en) Charged particle beam device for high spatial resolution and multiple perspective imaging
US6674075B2 (en) Charged particle beam apparatus and method for inspecting samples
US6903337B2 (en) Examining system for the particle-optical imaging of an object, deflector for charged particles as well as method for the operation of the same
JP2000133194A5 (en)
US8759761B2 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
US7135677B2 (en) Beam guiding arrangement, imaging method, electron microscopy system and electron lithography system
US7851755B2 (en) Apparatus for detecting backscattered electrons in a beam apparatus
US6232601B1 (en) Dynamically compensated objective lens-detection device and method
JP3006581B2 (en) Charged particle beam application equipment
JP3862344B2 (en) Electrostatic lens
JP3031378B2 (en) Charged particle beam application equipment
JP3139484B2 (en) Charged particle beam microscopy
US20110139978A1 (en) Charged particle beam device, method of operating a charged particle beam device
JP3225961B2 (en) Charged particle beam application equipment
JP2993873B2 (en) Charged particle beam application equipment and electron beam application equipment
JP3137115B2 (en) Charged particle beam microscopy method and charged particle beam application device
JP2993873B6 (en) Charged particle beam application device and electron beam application device
JP2001256914A (en) Charged particle beam application device
JPH0864163A (en) Charged particle beam device
JPH0349142A (en) Scanning type electron microscope and similar device thereof
US7855364B2 (en) Projection electronic microscope for reducing geometric aberration and space charge effect
JP2000182557A (en) Charged particle beam device
JPH09274881A (en) Scanning electron microscope
JPH09274880A (en) Beam separator and scanning electron microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11