JP2000182557A - Charged particle beam device - Google Patents
Charged particle beam deviceInfo
- Publication number
- JP2000182557A JP2000182557A JP10354138A JP35413898A JP2000182557A JP 2000182557 A JP2000182557 A JP 2000182557A JP 10354138 A JP10354138 A JP 10354138A JP 35413898 A JP35413898 A JP 35413898A JP 2000182557 A JP2000182557 A JP 2000182557A
- Authority
- JP
- Japan
- Prior art keywords
- charged particle
- sample
- objective lens
- electrode
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 116
- 238000010884 ion-beam technique Methods 0.000 claims description 19
- 230000007246 mechanism Effects 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 abstract description 28
- 230000004044 response Effects 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101710121996 Hexon protein p72 Proteins 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 101710091439 Major capsid protein 1 Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Landscapes
- Tests Of Electronic Circuits (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、荷電粒子線の照射
に起因して発生する二次荷電粒子を高効率で検出するこ
とができる荷電粒子線装置に係り、特にイオンビーム照
射装置のように、試料と対物レンズの間に二次荷電粒子
検出器を配置する必要性の高い装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus capable of detecting secondary charged particles generated by charged particle beam irradiation with high efficiency, and more particularly to an ion beam irradiation apparatus such as an ion beam irradiation apparatus. The present invention relates to an apparatus that requires a secondary charged particle detector between a sample and an objective lens.
【0002】[0002]
【従来の技術】近年、電子ビームやイオンビームが工業
面で多岐にわたり積極的に応用されている。特に最近、
液体金属イオン源等を用いた集束イオンビーム(FI
B)装置は、大電流でかつ微細ビームが得られるので、
半導体デバイス配線修正装置,不良解析装置,TEM/
SEMの試料作製装置などの加工機として広く利用され
ている。2. Description of the Related Art In recent years, electron beams and ion beams have been actively applied in a variety of industries. Especially recently,
Focused ion beam (FI) using a liquid metal ion source
B) Since the device can obtain a high current and a fine beam,
Semiconductor device wiring repair equipment, failure analysis equipment, TEM /
It is widely used as a processing machine such as an SEM sample preparation device.
【0003】また、半導体製造プロセスにおけるリソグ
ラフィーやイオン注入,エッチングなどをマスクを使用
せず(マスクレス)に行える特徴を活かした装置の開発
が進んでいる。更に、イオンビームを試料表面に照射
し、スパッタリングにより弾き出された二次イオンを分
析する、所謂、二次イオン質量分析方法にFIBを適用
すると、その試料表面のサブミクロン領域の成分分析が
可能となる。以上のようにFIB技術は、多岐にわたり
応用され、今後、益々市場の拡大が期待される。これら
装置の荷電粒子検出器として、FIB装置の検出器は、
電子・イオン粒子を適宜切替えて検出することが必要で
あるため、検出器としてMCP(マイクロ・チャンネル
・プレート)が一般的に用いられている。一方、電子線
応用装置の検出器は、シンチレータとホトマルを組み合
わせた検出器が主流であるが、増幅率,暗電流,応答速
度がホトマルと変らず、それでいてコンパクトでホトマ
ルを介することなく電気信号として真空中から直接取出
せることから、MCPも広く利用されている。[0003] Further, there has been developed an apparatus utilizing a feature that lithography, ion implantation, etching, and the like in a semiconductor manufacturing process can be performed without using a mask (maskless). Furthermore, when FIB is applied to the so-called secondary ion mass spectrometry, which irradiates the sample surface with an ion beam and analyzes secondary ions ejected by sputtering, component analysis in the submicron region of the sample surface becomes possible. Become. As described above, FIB technology is applied in a wide variety of fields, and the market is expected to further expand in the future. As the charged particle detector of these devices, the detector of the FIB device is
Since it is necessary to switch the electron and ion particles appropriately for detection, an MCP (micro channel plate) is generally used as a detector. On the other hand, detectors for electron beam applied devices are mainly detectors that combine a scintillator and a photomultiplier, but the amplification factor, dark current, and response speed are the same as those of a photomultiplier, but they are compact and generate electrical signals without passing through the photomultiplier. MCPs are also widely used because they can be taken out directly from a vacuum.
【0004】このMCPは、マイクロチューブ状の電子
増倍管が多数集合した薄い板状の構造で、一次ビームで
発生した二次荷電粒子をMCP前段電圧で引込むように
して使われる。この引込み電圧で加速された二次荷電粒
子は、マイクロチューブ状の電子増倍管と衝突して電子
を多数発生する。この電子を、更に段間電圧と呼ばれる
電圧で加速しながら雪崩的に電子を増幅し、増幅された
電子を受ける電極がMCPの末端に設けられ、電流とし
て検出する。これがMCPの動作原理である。The MCP has a thin plate-like structure in which a large number of microtube-shaped electron multipliers are assembled, and is used so that secondary charged particles generated by a primary beam are attracted by an MCP pre-stage voltage. The secondary charged particles accelerated by the pull-in voltage collide with a microtube-shaped electron multiplier and generate many electrons. The electrons are further amplified in an avalanche manner while being accelerated by a voltage called an interstage voltage, and an electrode for receiving the amplified electrons is provided at the end of the MCP and detected as a current. This is the principle of operation of the MCP.
【0005】[0005]
【発明が解決しようとする課題】本発明は、二次荷電粒
子の検出効率を向上するために、以下のような問題を解
決するものである。SUMMARY OF THE INVENTION The present invention solves the following problems in order to improve the detection efficiency of secondary charged particles.
【0006】荷電粒子線装置の1つであるイオンビーム
照射装置は、一般的に対物レンズの下(試料側)に二次
荷電粒子検出器が配置される。これは以下に示す理由に
よる。[0006] In an ion beam irradiation apparatus, which is one of charged particle beam apparatuses, a secondary charged particle detector is generally arranged below an objective lens (on the sample side). This is for the following reason.
【0007】イオンビーム照射装置には一般的に静電型
電子レンズが用いられる。これは電子に比べて質量の大
きなイオンに対し、屈折力の弱い磁界型電子レンズは不
向きだからである。In general, an electrostatic electron lens is used for an ion beam irradiation apparatus. This is because a magnetic field type electron lens having a low refractive power is not suitable for ions having a larger mass than electrons.
【0008】この静電型電子レンズは複数枚の電極が荷
電粒子線の光軸方向に積層して形成され、ある電極には
強い電位がかけられる。この強い電位はレンズ中を通過
しようとする二次荷電粒子を吸引、或いは反発し、静電
型電子レンズ内の二次荷電粒子の通過を阻止するように
作用してしまう。そのため、二次荷電粒子検出器を対物
レンズ上(荷電粒子源側)に配置することは事実上困難
である。このような事情によりイオンビーム照射装置で
は、対物レンズと試料の間に検出器が配置されるが、以
下のような問題を有している。This electrostatic electron lens is formed by laminating a plurality of electrodes in the direction of the optical axis of a charged particle beam, and a certain potential is applied to a certain electrode. This strong potential attracts or repels the secondary charged particles trying to pass through the lens, and acts to prevent the passage of the secondary charged particles in the electrostatic electron lens. Therefore, it is practically difficult to dispose the secondary charged particle detector on the objective lens (on the charged particle source side). Under such circumstances, in the ion beam irradiation apparatus, the detector is arranged between the objective lens and the sample, but has the following problems.
【0009】静電型電子レンズは、レンズを構成する電
極に電圧が印加されるため、その印加電圧によっては、
二次荷電粒子を対物レンズ上に巻き上げてしまうという
問題がある。In the electrostatic electron lens, since a voltage is applied to the electrodes constituting the lens, depending on the applied voltage,
There is a problem that the secondary charged particles are wound up on the objective lens.
【0010】このような弊害をなくすため、試料と対物
レンズ間の距離を離すと、対物レンズの焦点距離が長く
なり、レンズ収差(特に色収差)とレンズ倍率が増加す
る。このため、最小ビーム径が大きくなり、装置の解像
度が悪くなるという問題がある。If the distance between the sample and the objective lens is increased in order to eliminate such adverse effects, the focal length of the objective lens increases, and the lens aberration (particularly, chromatic aberration) and the lens magnification increase. For this reason, there is a problem that the minimum beam diameter increases and the resolution of the device deteriorates.
【0011】一方、二次荷電粒子を検出するための検出
器の1つであるシンチレータ検出器は、二次電子引込み
電圧を最大10kV程度まで印加して検出効率を上げる
ことができる。しかし断面観察を行う場合、断面深部か
ら二次荷電粒子が、検出器の引込み電圧が作用する領域
(試料上面)まで出てこない。これはシンチレータ検出
器に限る問題ではなく、MCPを採用する検出器でも同
様である。On the other hand, a scintillator detector, which is one of the detectors for detecting secondary charged particles, can increase the detection efficiency by applying a secondary electron attraction voltage of up to about 10 kV. However, when cross-section observation is performed, secondary charged particles do not come out of the depth of the cross-section to the region where the pull-in voltage of the detector acts (the upper surface of the sample). This is not a problem limited to the scintillator detector, and the same applies to a detector employing the MCP.
【0012】また、MCP検出器の場合、シンチレータ
と違って二次荷電粒子の引込み電圧と検出器の増幅率に
最適条件があって、引込み電圧を不用意に高くすること
ができない。よって、十分な引込み電圧を印加できない
という問題がある。Further, in the case of the MCP detector, unlike the scintillator, there are optimum conditions for the voltage of the secondary charged particles and the amplification factor of the detector, so that the voltage cannot be increased carelessly. Therefore, there is a problem that a sufficient pull-in voltage cannot be applied.
【0013】本発明は特に二次荷電粒子を対物レンズの
下で検出する装置において上記検出効率を低下する要因
を解消し得る荷電粒子線装置を提供することを目的とす
る。[0013] It is an object of the present invention to provide a charged particle beam apparatus which can eliminate the above-mentioned factors which lower the detection efficiency in an apparatus for detecting secondary charged particles under an objective lens.
【0014】[0014]
【課題を解決するための手段】本発明では、上記目的を
達成するために、荷電粒子源と、該荷電粒子源から放出
される荷電粒子線を集束して試料に照射するための対物
レンズと、前記試料に対する前記荷電粒子線の照射に起
因して発生する二次荷電粒子を検出する二次荷電粒子検
出器を備えた荷電粒子線装置において、前記試料に、前
記二次荷電粒子検出器で検出される二次荷電粒子の極性
と同じ極性の電圧を印加する第1の電圧印加手段と、前
記対物レンズの下部に配置される電極、或いは前記対物
レンズを構成する電極に、前記二次荷電粒子の極性と同
じ極性の電圧を印加する第2の電圧印加手段を備え、前
記二次荷電粒子検出器は、前記二次荷電粒子を吸引する
吸引機構を有し、前記試料と対物レンズの間に配置され
ることを特徴とする荷電粒子線装置を提供するものであ
る。According to the present invention, in order to achieve the above object, a charged particle source and an objective lens for focusing a charged particle beam emitted from the charged particle source and irradiating the sample with a focused particle beam are provided. In a charged particle beam device equipped with a secondary charged particle detector that detects secondary charged particles generated due to irradiation of the charged particle beam on the sample, the sample, the secondary charged particle detector A first voltage applying means for applying a voltage having the same polarity as the polarity of the secondary charged particles to be detected; and an electrode disposed below the objective lens or an electrode constituting the objective lens, A second voltage applying unit that applies a voltage having the same polarity as the polarity of the particles; the secondary charged particle detector includes a suction mechanism that suctions the secondary charged particles; Characterized by being arranged in It is to provide a charged particle beam device.
【0015】このような構成によれば、試料から発生す
る二次荷電粒子を二次荷電粒子検出器まで効率良く導く
ことができる。上記構成によれば、対物レンズの下部に
配置される電極、或いは対物レンズを構成する電極と、
試料にはそれぞれ、試料で発生する荷電粒子と同じ極性
の電圧が印加される。According to such a configuration, the secondary charged particles generated from the sample can be efficiently guided to the secondary charged particle detector. According to the above configuration, an electrode disposed below the objective lens, or an electrode configuring the objective lens,
A voltage having the same polarity as the charged particles generated in the sample is applied to each of the samples.
【0016】このような状態を作り出すことによって、
試料で発生した二次荷電粒子が対物レンズ開口に引き込
まれることもなく、また試料の帯電などの影響により、
試料に二次荷電粒子が引き込まれるというようなことも
なくなる。即ち二次荷電粒子発生源から、二次荷電粒子
検出器に至るまで一連の通路ができることになり、これ
によって二次荷電粒子検出器の検出効率が向上する。By creating such a state,
The secondary charged particles generated in the sample are not drawn into the aperture of the objective lens.
The secondary charged particles are not attracted to the sample. That is, a series of passages are formed from the secondary charged particle generation source to the secondary charged particle detector, thereby improving the detection efficiency of the secondary charged particle detector.
【0017】また、本発明では、上記目的を達成するた
めに、荷電粒子源と、該荷電粒子源から放出される荷電
粒子を集束して試料に照射するための対物レンズを備え
た荷電粒子線装置において、前記試料に対する荷電粒子
線の照射に起因して発生する二次荷電粒子を加速する加
速電極と、該加速電極によって加速された前記二次荷電
粒子を、前記対物レンズと前記試料との間に配置される
二次荷電粒子検出器に偏向する磁場偏向器を備えたこと
を特徴とする荷電粒子線装置を提供する。In order to achieve the above object, the present invention provides a charged particle beam having a charged particle source and an objective lens for focusing charged particles emitted from the charged particle source and irradiating the charged sample with a sample. In the apparatus, an accelerating electrode for accelerating secondary charged particles generated due to irradiation of the sample with a charged particle beam, and the secondary charged particles accelerated by the accelerating electrode, the objective lens and the sample A charged particle beam device comprising a magnetic field deflector that deflects a secondary charged particle detector disposed therebetween.
【0018】このような構成によれば、試料と加速電極
間の電位差によって、二次荷電粒子を加速することがで
き、この加速した状態の二次荷電粒子を磁場偏向器に偏
向することで、高い加速電圧を維持したまま、二次荷電
粒子検出器に二次荷電粒子を導入することが可能にな
る。特にMCP検出器の場合、引込み電圧の最適条件を
崩さずとも、高加速状態で二次荷電粒子を二次荷電粒子
検出器に導入することができる。According to such a configuration, the secondary charged particles can be accelerated by the potential difference between the sample and the accelerating electrode, and the accelerated secondary charged particles are deflected by the magnetic field deflector, It is possible to introduce secondary charged particles into the secondary charged particle detector while maintaining a high acceleration voltage. In particular, in the case of the MCP detector, the secondary charged particles can be introduced into the secondary charged particle detector in a highly accelerated state without breaking the optimum conditions of the pull-in voltage.
【0019】また、磁場偏向器が発生する磁場は、試料
で発生した二次荷電粒子が対物レンズ開口方向に引き込
まれるという弊害を解消することもできる。The magnetic field generated by the magnetic field deflector can also eliminate the adverse effect that secondary charged particles generated in the sample are drawn in the direction of the objective lens opening.
【0020】特に絶縁物試料では、表面が加速電極の影
響で分極して正、或いは負の電荷を帯びる。これは、断
面深部の二次電子を効率良く試料表面に導くように作用
し、表面に出た二次荷電粒子は、取込電極の作用を強く
受けて二次荷電粒子検出器に向かうことはなく取込電極
の方に向かうので、一旦所望の加速電圧に加速させた状
態で、二次荷電粒子検出器に導入することができる。In particular, the surface of an insulator sample is polarized under the influence of the accelerating electrode and has a positive or negative charge. This works to efficiently guide the secondary electrons in the deep section to the sample surface, and the secondary charged particles that have come out of the surface are strongly affected by the intake electrode and go to the secondary charged particle detector. Therefore, it can be introduced into the secondary charged particle detector in a state where it has been once accelerated to a desired acceleration voltage.
【0021】なお、試料に、二次荷電粒子検出器で検出
される二次荷電粒子の極性と同じ極性の電圧を印加し、
対物レンズの下部に配置される電極、或いは対物レンズ
を構成する電極に、二次荷電粒子の極性と同じ極性の電
圧を印加すると共に、上記加速電極と磁場偏向器を採用
することで、二次荷電粒子の検出効率がより一層高まる
ことは言うまでもない。A voltage having the same polarity as that of the secondary charged particles detected by the secondary charged particle detector is applied to the sample,
By applying a voltage having the same polarity as the polarity of the secondary charged particles to an electrode disposed below the objective lens or an electrode constituting the objective lens, and employing the acceleration electrode and the magnetic field deflector, the secondary Needless to say, the efficiency of detecting charged particles is further improved.
【0022】[0022]
【発明の実施の形態】一般に、電子又はイオンビームの
照射で発生する二次電子のエネルギー分布は、図1に示
すような完全に一致しないがほぼ等しい分布で、約4e
Vにピークを持ち50eV程度まで拡がる。また、この
分布は、個体試料に照射する電子のエネルギー、個体試
料の種類に依存しない。また、発生する二次電子の放出
方向は、面の垂直方向を起点とした角度に対しCOS則
(図2)に従い強度が変化し、上記エネルギーがこれに
重畳している。DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, the energy distribution of secondary electrons generated by irradiation of an electron or ion beam is not completely coincident as shown in FIG.
It has a peak at V and extends to about 50 eV. Further, this distribution does not depend on the energy of the electrons irradiating the individual sample or the type of the individual sample. The emission direction of the generated secondary electrons changes in intensity according to the COS rule (FIG. 2) with respect to the angle starting from the direction perpendicular to the surface, and the above energy is superimposed on this.
【0023】従って、良い二次電子の検出効率を得るに
は、二次電子発生点近傍に数eV程度の検出器への引込
み電圧が必要である。しかし、検出器と二次電子発生点
の間にGND電位の部分がある場合などは、検出器の引
込み電圧がGND電位で邪魔されて、二次電子発生点近
傍まで大きな検出器への引込み電圧を維持して発生させ
ることが困難になる。Therefore, in order to obtain good secondary electron detection efficiency, a pull-in voltage to the detector of about several eV is required near the secondary electron generation point. However, when there is a portion of the GND potential between the detector and the secondary electron generation point, the pull-in voltage of the detector is obstructed by the GND potential, and a large drop-in voltage to the detector near the secondary electron generation point. And it is difficult to generate.
【0024】したがって、装置の検出効率は、検出器の
取付位置や二次電子発生点の回りの構造に強く依存して
変る。更に、GND電位に邪魔されることのない構造で
あっても、二次電子発生点から検出器が放れると、検出
効率は、境界条件に依存するが距離の2乗に反比例して
悪くなる。Therefore, the detection efficiency of the apparatus changes strongly depending on the mounting position of the detector and the structure around the secondary electron generation point. Furthermore, even if the structure is not disturbed by the GND potential, if the detector is released from the secondary electron generation point, the detection efficiency depends on the boundary condition but becomes worse in inverse proportion to the square of the distance. .
【0025】集束イオンビーム装置の場合について、図
3に示し説明する。The case of a focused ion beam apparatus will be described with reference to FIG.
【0026】Ga液体金属イオン源1から引出されたイ
オンビーム2は、30kVに加速されビーム制限アパー
チャ3を通過して対物レンズ4で集束して試料5を照射
する。このイオンビームは、試料を面状に走査するよう
偏向制御6され偏向器7で走査する。このとき試料5か
ら発生した二次電子8は、検出器9で検出され増幅し、
偏向制御6の偏向信号と同期して検出器9の検出信号を
輝度変調してCRT10に表示する。The ion beam 2 extracted from the Ga liquid metal ion source 1 is accelerated to 30 kV, passes through a beam limiting aperture 3, is focused by an objective lens 4, and irradiates a sample 5. The ion beam is controlled by a deflection control 6 so as to scan the sample in a plane, and is scanned by a deflector 7. At this time, the secondary electrons 8 generated from the sample 5 are detected by the detector 9 and amplified,
The detection signal of the detector 9 is luminance-modulated in synchronization with the deflection signal of the deflection control 6 and displayed on the CRT 10.
【0027】イオンビームは、電子ビームと違いスパッ
タ作用が大きいので微細加工に利用できる。そのため、
イオンビーム装置は加工機として使われる。Since an ion beam has a large sputtering effect unlike an electron beam, it can be used for fine processing. for that reason,
The ion beam device is used as a processing machine.
【0028】加工試料が絶縁物個体の場合、絶縁物を精
度良く加工するには、加工中に試料の帯電を抑える必要
がある。このため、積極的に低加速の電子線を加工位置
に照射して試料の帯電を抑える。この場合、電子像では
照射電子と二次電子信号が混入してしまうので、二次イ
オン像で加工場所の確認や加工結果について観察する。In the case where the processed sample is an individual insulator, it is necessary to suppress the charging of the sample during the processing in order to accurately process the insulator. For this reason, the processing position is positively irradiated with a low-acceleration electron beam to suppress charging of the sample. In this case, in the electron image, the irradiation electron and the secondary electron signal are mixed, so the processing location is confirmed and the processing result is observed in the secondary ion image.
【0029】また、検出器として蛍光板を用いた物であ
れば、蛍光板がイオンで汚染されたりスッパタ破壊され
るので蛍光板の発光効率が悪くなるので、蛍光板は、検
出器の発光体として使用できない。このため、引込み電
圧の切換でイオンと電子を選択検出できるMCPが用い
られる。Further, if a fluorescent plate is used as the detector, the fluorescent plate is contaminated with ions or destroyed by sputtering, so that the luminous efficiency of the fluorescent plate deteriorates. Therefore, the fluorescent plate cannot be used as a light emitter of the detector. For this reason, an MCP that can selectively detect ions and electrons by switching the pull-in voltage is used.
【0030】一方、二次電子の検出には、検出器か蛍光
板を用いた物でもMCPを用いた物でも問題なく検出す
ることができる。On the other hand, secondary electrons can be detected without any problem using a detector or a fluorescent plate or using an MCP.
【0031】図4にMCPを用いた従来検出器の実施例
を示す。FIG. 4 shows an embodiment of a conventional detector using an MCP.
【0032】二次電子8検出面にMCP11を用い、そ
の後段に蛍光板12を設けた。二次電子8は、MCP1
1の入射面に印加された電圧で引き込まれMCP11と
衝突し、衝突を繰り返しながら通過する。MCP11で
数を増して通過した電子13は、シンチレータ電圧で加
速されて蛍光板12に照射する。シンチレータとの衝突
で電子13は、光に変換されて、この光をライトガイド
14で真空外に取出す。An MCP 11 was used for the secondary electron 8 detection surface, and a fluorescent plate 12 was provided at the subsequent stage. The secondary electrons 8 are MCP1
The light is drawn by the voltage applied to the light-incident surface 1 and collides with the MCP 11, and passes while repeating the collision. The electrons 13 that have passed through the MCP 11 in an increased number are accelerated by the scintillator voltage and irradiate the fluorescent screen 12. The electrons 13 are converted into light by collision with the scintillator, and the light is extracted outside the vacuum by the light guide 14.
【0033】光は、ホトマル15で検出され、更に、増
幅してまた電気信号に戻す。この実施例の検出器の構成
では、ビーム電流が1pAであってもMCP1段で充分
明るい信号を取出すことができる。The light is detected by the photomultiplier 15 and further amplified and returned to an electric signal. In the configuration of the detector of this embodiment, a sufficiently bright signal can be taken out in one stage of the MCP even if the beam current is 1 pA.
【0034】また、本構成で、MCPの増幅率を最適に
するには、MCPの前面電圧を<1kVにする必要があ
る。しかし、この電圧では二次電子の引込み電圧が低く
高いエネルギーの粒子や方向が検出器と反対方向に飛出
た粒子などは検出できない。つまり、MCPに印加する
電圧には、MCPの増幅率と検出効率のトレードオフ関
係のため二次電子検出の最適値があり、この意味におい
て検出効率が制限を受ける。In this configuration, in order to optimize the amplification factor of the MCP, the front voltage of the MCP needs to be <1 kV. However, at this voltage, particles with a low secondary electron pull-in voltage and high energy, and particles whose direction jumps in the opposite direction to the detector cannot be detected. That is, the voltage applied to the MCP has an optimum value for secondary electron detection due to the trade-off relationship between the amplification factor of the MCP and the detection efficiency, and the detection efficiency is limited in this sense.
【0035】また、MCPには、MCPの中央に穴の開
いたアニュアルタイプがあり、イオンビームを邪魔する
こなく対物レンズ直下に付けることができる。この場
合、ビーム入射点に近く低い引込み電圧でも高い検出効
率を得ることができる。しかし、近年、ビームの微細化
が進みレンズワーキング距離をできるだけ短くして焦点
距離の短いレンズを用いてビームを絞るようになってき
た。この場合、対物レンズ直下にMCPを取付けること
が困難になってきた点も問題点の1つである。Further, there is an MCP having an annual type in which a hole is formed in the center of the MCP, and the MCP can be attached directly below the objective lens without disturbing the ion beam. In this case, high detection efficiency can be obtained even at a low pull-in voltage close to the beam incident point. However, in recent years, the beam has been miniaturized, and the lens working distance has been shortened as much as possible to narrow the beam using a lens having a short focal length. In this case, one of the problems is that it has become difficult to mount the MCP directly below the objective lens.
【0036】本検出器からMCPを排除した検出器は、
半導体試料などの部分的に帯電するような試料の断面観
察でも比較的鮮明な像を得ることができるが、蛍光板に
6〜9kVの電圧を印加する必要がある。A detector in which the MCP is excluded from the present detector is as follows:
Although a relatively clear image can be obtained even when a cross section of a sample such as a semiconductor sample that is partially charged is observed, it is necessary to apply a voltage of 6 to 9 kV to the fluorescent plate.
【0037】また、特に半導体試料は、絶縁物と金属配
線の層状構造からなるので、断面観察の場合、絶縁層に
チャージが溜り易く、電子照射では−に帯電、イオン照
射では+に帯電する。このため、断面の金属層と絶縁層
に電位の違う部分が生じ、0電位部は明るく、+帯電部
や−帯電部は暗くなり電位コントラストが生じ像の明暗
が大きくなる。In particular, since the semiconductor sample has a layered structure of an insulator and a metal wiring, charges are likely to accumulate in the insulating layer when observing a cross section, and are charged negatively by electron irradiation and positively charged by ion irradiation. For this reason, a portion having a different potential is generated between the metal layer and the insulating layer in the cross section, the 0 potential portion is bright, the + charged portion and the -charged portion are darkened, a potential contrast occurs, and the brightness of the image is increased.
【0038】また、断面深部からの二次電子は、+に帯
電した部分にトラップされ易くなる。このような状況下
では二次電子が、試料表面に出ることがなく検出効率が
極端に減少してしまう。Further, secondary electrons from a deep portion of the cross section are easily trapped in a portion charged to +. Under such circumstances, secondary electrons do not emerge on the sample surface, and the detection efficiency is extremely reduced.
【0039】これらの問題点を解決したのが本発明であ
る。本発明の実施例を図5に示し説明する。The present invention has solved these problems. An embodiment of the present invention will be described with reference to FIG.
【0040】積極的に個体深部で発生した二次電子を試
料表面に取り出すため、自発的に二次電子が試料表面に
出る機構16を設けた。これには、個体試料を乗せるス
テージ18とステージと個体試料を同電位にする機構を
設けた。また、対物レンズ4には、静電レンズとしてア
インツェルレンズを用いて試料側のレンズ電極41に電
圧を印加できる機構を設けた。A mechanism 16 for spontaneously emitting secondary electrons to the surface of the sample was provided in order to actively take out the secondary electrons generated in the deep part of the individual to the surface of the sample. For this, a stage 18 on which an individual sample was placed and a mechanism for setting the stage and the individual sample to the same potential were provided. The objective lens 4 was provided with a mechanism capable of applying a voltage to the lens electrode 41 on the sample side using an Einzel lens as an electrostatic lens.
【0041】ステージ18に−20Vを印加し更にレン
ズ電極41に−50V印加した。また、対物レンズ直下
に二次電子を引込むための電極17を設け、この電極1
7に+50V印加した。更に、この引込み電極17とビ
ーム入射方向と垂直の磁場を発生するコイル19を設け
た。A voltage of −20 V was applied to the stage 18 and a voltage of −50 V was applied to the lens electrode 41. An electrode 17 for drawing secondary electrons is provided directly below the objective lens.
7 was applied with +50 V. Further, a coil 19 for generating a magnetic field perpendicular to the direction of incidence of the beam was provided.
【0042】このコイル19に流す電流は、前記引込み
電極17に印加される電圧に応じて調整され、ちょうど
引込み電極17で引き込まれた二次電子がMCP検出器
方向に導かれるように調整した。The current flowing through the coil 19 was adjusted in accordance with the voltage applied to the pull-in electrode 17 so that the secondary electrons just drawn in by the pull-in electrode 17 were guided toward the MCP detector.
【0043】これにより、二次電子は、試料が正に帯電
している場合であっても二次電子が試料に戻ることな
く、引込み電極に引き込まれて磁場で曲げられ、検出電
圧の低いMCPを用いても検出効率を落とすことなく検
出することができた。As a result, even when the sample is positively charged, the secondary electrons are drawn into the lead-in electrode and bent by the magnetic field without returning to the sample, so that the MCP having a low detection voltage is used. Could be detected without lowering the detection efficiency.
【0044】また、負に帯電する試料の場合であって
も、通常であれば二次電子発生点近傍のGND電位に二
次電子が引き込まれて検出が困難になるのであるが、本
発明では、二次電子発生点の近傍に引込み電極があり、
また、二次電子発生点近傍にはGND電位がないことか
ら、二次電子は、確実に引込み電極に導かれたうえ磁場
で曲げられ、検出電圧の低いMCPを用いても検出効率
を落とすことなく検出することができた。Further, even in the case of a negatively charged sample, secondary electrons are usually attracted to the GND potential near the secondary electron generation point, making detection difficult. , There is a pull-in electrode near the secondary electron generation point,
In addition, since there is no GND potential near the secondary electron generation point, the secondary electrons are reliably guided to the lead-in electrode and are bent by the magnetic field, so that the detection efficiency is reduced even if an MCP having a low detection voltage is used. Could be detected.
【0045】これら機構の組み合わせは、選択的であ
り、選択することによりより簡便な機構で検出効率を上
げることができる。The combination of these mechanisms is selective, and the selection can increase the detection efficiency with a simpler mechanism.
【0046】また、引込み電極17でエネルギーを整え
られた二次電子が図6に示すように、磁場B部20で特
定の軌道を描いて検出器9に導かれるようにすることも
できる。Also, as shown in FIG. 6, the secondary electrons whose energy has been adjusted by the pull-in electrode 17 can be guided to the detector 9 by drawing a specific orbit in the magnetic field B section 20.
【0047】また、図7に示すようにすると、電場E部
21を用いて特定の軌道を描いて検出器9に向かうよう
にすることができる。In addition, as shown in FIG. 7, it is possible to draw a specific trajectory toward the detector 9 using the electric field E unit 21.
【0048】磁場による荷電粒子の曲がり易さは、エネ
ルギーと荷電粒子の質量の積の√に反比例する。このた
め、30kVのGaイオンを例にすると、同じ曲率半径
の曲がりを作る磁場は、Gaイオンでは10eVの電子
の約19600倍になる。このため、対物レンズ直下に
二次電子を曲げるために磁場を発生させても、一次ビー
ムに与える影響はない。The ease with which a charged particle bends due to a magnetic field is inversely proportional to 積 of the product of the energy and the mass of the charged particle. Thus, for example, in the case of Ga ions of 30 kV, the magnetic field for forming a bend having the same radius of curvature is about 19,600 times that of 10 eV electrons for Ga ions. Therefore, even if a magnetic field is generated to bend secondary electrons just below the objective lens, there is no effect on the primary beam.
【0049】また、電場による荷電粒子の曲がり易さ
は、荷電粒子のエネルギーに比例するので、50eV程
度の二次電子と30kVの一次ビームの場合、二次電子
を制御できる程度の電圧ではGaイオンに作用する力
は、二次電子の3000分1であるので、一次ビームに
は殆ど影響を受けない。Also, the ease with which the charged particles bend due to the electric field is proportional to the energy of the charged particles. Therefore, in the case of a secondary beam of about 50 eV and a primary beam of 30 kV, Ga ions are used at a voltage that can control the secondary electrons. Is approximately 3000 times smaller than the secondary electrons, and is hardly affected by the primary beam.
【0050】つまり、一次ビームが30kVのGaイオ
ンビームの場合、二次電子を制御する程度の電圧や磁場
であれば影響を受けずに検出効率を上げることができ
る。これら、原理的効果を利用して、以下のような効果
が得られる。That is, when the primary beam is a Ga ion beam of 30 kV, the detection efficiency can be increased without being affected by a voltage or a magnetic field that is sufficient to control the secondary electrons. The following effects can be obtained by utilizing these principle effects.
【0051】検出器の他に、試料に負電圧(−Vs )を
試料と対向する面に電極を設け同様に負電圧(−Vobj
)を印加する。この電極は、対物レンズを構成する一
部でもよい。ただし、0<Vs <Vobj にする。In addition to the detector, a negative voltage (-Vs) is applied to the sample, and an electrode is provided on the surface facing the sample, similarly to the negative voltage (-Vobj).
) Is applied. This electrode may be a part of an objective lens. However, 0 <Vs <Vobj.
【0052】この場合、一次ビームの照射で発生した二
次電子は、試料に帯電がなければ試料に戻ることなく、
また、対物レンズに吸収されることもない。つまりこの
状況では、二次電子発生部の近傍には二次電子が流れ込
むような電位勾配がない。In this case, the secondary electrons generated by the irradiation of the primary beam do not return to the sample unless the sample is charged.
Also, there is no absorption by the objective lens. In other words, in this situation, there is no potential gradient near the secondary electron generating portion where secondary electrons flow.
【0053】このためGND側に二次電子が流れるが検
出器があれば、二次電子は検出器の引込み電圧の作用を
受けて進行方向を変えて検出器で検出される。この方法
は構成が単純であり、対物と試料の距離を短くすること
ができる。また、検出器を対物レンズと試料の間に設置
しても検出効率を落とすことなく行うことができる。更
にまた、対物レンズ直下に、二次電子の取込電極を取付
け+電圧を印加する。この電極で二次電子のエネルギー
を整えたうえ一次ビームと垂直方向の磁場を加え、二次
電子の進行方向を曲げる。このときの進行方向は、検出
器の引込み電圧が強く作用する領域に進むようにする。
これには、二次電子の曲がる軌道を最適状態にするため
取込電圧に応じて磁場強度を調整するようにした。For this reason, secondary electrons flow on the GND side, but if there is a detector, the secondary electrons change their traveling direction under the action of the pull-in voltage of the detector and are detected by the detector. This method has a simple configuration and can reduce the distance between the objective and the sample. Even if the detector is placed between the objective lens and the sample, the detection can be performed without lowering the detection efficiency. Furthermore, an electrode for taking in secondary electrons is attached immediately below the objective lens, and a voltage is applied. The energy of secondary electrons is adjusted by this electrode, and a magnetic field perpendicular to the primary beam is applied to bend the traveling direction of the secondary electrons. The traveling direction at this time is set so as to proceed to a region where the pull-in voltage of the detector acts strongly.
For this purpose, the magnetic field strength is adjusted according to the take-in voltage in order to optimize the bending trajectory of the secondary electrons.
【0054】この場合、絶縁物試料の表面は取込電圧の
影響で分極して+帯びる。この影響で断面深部の二次電
子は試料表面に導かれ、更に取込電極の作用を強く受け
て検出器に向かうことなく、試料から上方の取込電極へ
向かう。この過程で電子は、取込電圧まで加速される。
この後、磁場が及ぶ領域に入ると検出器の作用の及ぶ範
囲まで曲げて取出すように磁場を加える。In this case, the surface of the insulator sample is polarized and positively affected by the voltage applied. Due to this effect, the secondary electrons in the deep section are guided to the sample surface, and are strongly influenced by the capture electrode, and travel from the sample to the upper capture electrode without going to the detector. In this process, the electrons are accelerated to the take-in voltage.
Thereafter, a magnetic field is applied so as to bend and extract to the extent of the action of the detector when entering the area where the magnetic field reaches.
【0055】MCPを用いることによって問題になって
いた、荷電粒子の検出効率の低下を回避することができ
る。By using the MCP, it is possible to avoid the problem of reduced charged particle detection efficiency, which has been a problem.
【0056】以上のことをまとめると、MCP検出器を
もちいても、試料とMCPの距離が離れていても、断面
加工(深穴)底部まで引込み電圧が届かない状況下の荷
電粒子(信号)であっても、充分良い検出効率を得るこ
とができる。また、MCP以外の検出器であっても同じ
手段で検出効率を上げることができる。To summarize the above, charged particles (signals) under conditions where the drawing voltage does not reach the bottom of the cross-section (deep hole) even if the MCP detector is used and the distance between the sample and the MCP is large However, sufficient detection efficiency can be obtained. Further, even with a detector other than the MCP, the detection efficiency can be increased by the same means.
【0057】[0057]
【発明の効果】本発明によれば、特に試料と対物レンズ
の間に二次荷電粒子検出器を配置する方式の荷電粒子線
装置において、二次荷電粒子を高効率に検出することが
可能になる。According to the present invention, it is possible to detect secondary charged particles with high efficiency, particularly in a charged particle beam apparatus in which a secondary charged particle detector is arranged between a sample and an objective lens. Become.
【図面の簡単な説明】[Brief description of the drawings]
【図1】二次電子エネルギー分布。FIG. 1 shows secondary electron energy distribution.
【図2】放出電子のCOS則。FIG. 2 is a COS rule of emitted electrons.
【図3】集束イオンビーム装置。FIG. 3 is a focused ion beam apparatus.
【図4】従来検出器の実施例。FIG. 4 is an embodiment of a conventional detector.
【図5】本発明の実施例。FIG. 5 shows an embodiment of the present invention.
【図6】その他の実施例。FIG. 6 shows another embodiment.
【図7】その他の実施例。FIG. 7 shows another embodiment.
【符号の説明】 1…イオン源、2…イオンビーム、3…ビーム制限アパ
ーチャ、4…対物レンズ、5…試料、6…偏向制御、7
…偏向器、8…二次電子、9…検出器、10…CRT、
11…MCP、12…蛍光板、13…電子、14…ライ
トガイド、15…ホトマル、16…自発的に二次電子が
表面に出る機構、17…引込み電極、18…ステージ、
19…コイル、20…磁場B部、21…電場E部。[Description of Signs] 1 ... Ion source, 2 ... Ion beam, 3 ... Beam limiting aperture, 4 ... Objective lens, 5 ... Sample, 6 ... Deflection control, 7
... deflector, 8 ... secondary electron, 9 ... detector, 10 ... CRT,
11: MCP, 12: Fluorescent plate, 13: Electron, 14: Light guide, 15: Photomaru, 16: Mechanism of spontaneous emission of secondary electrons to the surface, 17: Drop-in electrode, 18: Stage,
19: coil, 20: magnetic field B part, 21: electric field E part.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G032 AA00 AB20 AF08 5C033 NN01 NP01 5C034 AA02 AA09 5F004 BA11 CB05 DB00 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G032 AA00 AB20 AF08 5C033 NN01 NP01 5C034 AA02 AA09 5F004 BA11 CB05 DB00
Claims (9)
る荷電粒子線を集束して試料に照射するための対物レン
ズと、前記試料に対する前記荷電粒子線の照射に起因し
て発生する二次荷電粒子を検出する二次荷電粒子検出器
を備えた荷電粒子線装置において、前記試料に、前記二
次荷電粒子検出器で検出される二次荷電粒子の極性と同
じ極性の電圧を印加する第1の電圧印加手段と、前記対
物レンズの下部に配置される電極、或いは前記対物レン
ズを構成する電極に、前記二次荷電粒子の極性と同じ極
性の電圧を印加する第2の電圧印加手段を備え、前記二
次荷電粒子検出器は、前記二次荷電粒子を吸引する吸引
機構を有し、前記試料と対物レンズの間に配置されるこ
とを特徴とする荷電粒子線装置。1. A charged particle source, an objective lens for converging a charged particle beam emitted from the charged particle source and irradiating the sample with a charged particle beam, and an objective lens generated by the irradiation of the sample with the charged particle beam In a charged particle beam device provided with a secondary charged particle detector for detecting secondary charged particles, a voltage having the same polarity as the polarity of the secondary charged particles detected by the secondary charged particle detector is applied to the sample. And a second voltage applying means for applying a voltage having the same polarity as the polarity of the secondary charged particles to an electrode disposed below the objective lens or an electrode constituting the objective lens. Means, wherein the secondary charged particle detector has a suction mechanism for sucking the secondary charged particles, and is disposed between the sample and the objective lens.
型電子レンズであることを特徴とする荷電粒子線装置。2. A charged particle beam apparatus according to claim 1, wherein said objective lens is an electrostatic electron lens.
ンビームであることを特徴とする荷電粒子線装置。3. A charged particle beam apparatus according to claim 2, wherein said charged particle beam is an ion beam.
に配置される電極或いは前記対物レンズを構成する電極
と、前記試料との間に、二次荷電粒子を加速するための
加速電極を配置し、当該加速された二次荷電粒子を前記
二次荷電粒子検出器に偏向する磁界形偏向器を備えたこ
とを特徴とする荷電粒子線装置。4. An accelerating electrode for accelerating secondary charged particles according to claim 2, wherein an electrode arranged under the objective lens or an electrode constituting the objective lens and the sample are arranged. And a magnetic field deflector for deflecting the accelerated secondary charged particles to the secondary charged particle detector.
器はチャンネルプレートを含むことを特徴とする荷電粒
子線装置。5. The charged particle beam apparatus according to claim 4, wherein said secondary charged particle detector includes a channel plate.
印加手段によって印加される電圧より、前記第2の電圧
印加手段によって印加される電圧を大きくすることを特
徴とする荷電粒子線装置。6. A charged particle beam apparatus according to claim 1, wherein a voltage applied by said second voltage applying means is higher than a voltage applied by said first voltage applying means. .
る荷電粒子を集束して試料に照射するための対物レンズ
を備えた荷電粒子線装置において、 前記試料に対する荷電粒子線の照射に起因して発生する
二次荷電粒子を加速する加速電極と、該加速電極によっ
て加速された前記二次荷電粒子を、前記対物レンズと前
記試料との間に配置される二次荷電粒子検出器に偏向す
る磁場偏向器を備えたことを特徴とする荷電粒子線装
置。7. A charged particle beam apparatus comprising: a charged particle source; and an objective lens for focusing charged particles emitted from the charged particle source and irradiating the charged particle beam to a sample. An accelerating electrode for accelerating secondary charged particles generated due to the accelerating electrode, the secondary charged particles accelerated by the accelerating electrode, a secondary charged particle detector disposed between the objective lens and the sample A charged particle beam device comprising a magnetic field deflector for deflecting.
器はチャンネルプレートを含むことを特徴とする荷電粒
子線装置。8. A charged particle beam apparatus according to claim 7, wherein said secondary charged particle detector includes a channel plate.
型電子レンズであることを特徴とする荷電粒子線装置。9. A charged particle beam apparatus according to claim 7, wherein said objective lens is an electrostatic electron lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10354138A JP2000182557A (en) | 1998-12-14 | 1998-12-14 | Charged particle beam device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10354138A JP2000182557A (en) | 1998-12-14 | 1998-12-14 | Charged particle beam device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000182557A true JP2000182557A (en) | 2000-06-30 |
Family
ID=18435553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10354138A Pending JP2000182557A (en) | 1998-12-14 | 1998-12-14 | Charged particle beam device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000182557A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008076099A (en) * | 2006-09-19 | 2008-04-03 | Ricoh Co Ltd | Measuring method of surface potential distribution, measuring device of surface potential, measuring device of photoreceptor electrostatic latent image, latent image carrier, and image forming device |
JP2009092663A (en) * | 2008-10-20 | 2009-04-30 | Ricoh Co Ltd | Surface charge distribution measuring method and device |
-
1998
- 1998-12-14 JP JP10354138A patent/JP2000182557A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008076099A (en) * | 2006-09-19 | 2008-04-03 | Ricoh Co Ltd | Measuring method of surface potential distribution, measuring device of surface potential, measuring device of photoreceptor electrostatic latent image, latent image carrier, and image forming device |
JP2009092663A (en) * | 2008-10-20 | 2009-04-30 | Ricoh Co Ltd | Surface charge distribution measuring method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2919170B2 (en) | Scanning electron microscope | |
JP3774953B2 (en) | Scanning electron microscope | |
EP2002459B1 (en) | Improved detector for charged particle beam instrument | |
US8319192B2 (en) | Charged particle apparatus | |
EP1022766B1 (en) | Particle beam apparatus | |
EP1028452A2 (en) | Scanning electron microscope | |
US20040051041A1 (en) | Scanning electron microscope | |
JP4176159B2 (en) | Environmentally controlled SEM using magnetic field for improved secondary electron detection | |
US8759761B2 (en) | Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus | |
JP3966350B2 (en) | Scanning electron microscope | |
US7034297B2 (en) | Method and system for use in the monitoring of samples with a charged particle beam | |
WO2006018840A2 (en) | Electron microscope array for inspection and lithography | |
US7851755B2 (en) | Apparatus for detecting backscattered electrons in a beam apparatus | |
US6184525B1 (en) | Environmental SEM with a multiple fields for improved secondary electron detection | |
JP2000182557A (en) | Charged particle beam device | |
JPH11242941A (en) | Scanning electron microscope | |
JP3494152B2 (en) | Scanning electron microscope | |
KR100711198B1 (en) | Scanning electron microscope | |
JP4179390B2 (en) | Scanning electron microscope | |
JP4179369B2 (en) | Scanning electron microscope | |
JP3992021B2 (en) | Scanning electron microscope | |
JP3494208B2 (en) | Scanning electron microscope | |
JP3814968B2 (en) | Inspection device | |
JP3753048B2 (en) | Secondary electron detector | |
JP5501545B2 (en) | Electron beam to neutralize sample through lens for focused ion beam system |