JP2815140B2 - Temperature controlled optical waveguide - Google Patents

Temperature controlled optical waveguide

Info

Publication number
JP2815140B2
JP2815140B2 JP62136778A JP13677887A JP2815140B2 JP 2815140 B2 JP2815140 B2 JP 2815140B2 JP 62136778 A JP62136778 A JP 62136778A JP 13677887 A JP13677887 A JP 13677887A JP 2815140 B2 JP2815140 B2 JP 2815140B2
Authority
JP
Japan
Prior art keywords
optical waveguide
heater
temperature
waveguide
controlled optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62136778A
Other languages
Japanese (ja)
Other versions
JPS63300217A (en
Inventor
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15183297&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2815140(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62136778A priority Critical patent/JP2815140B2/en
Publication of JPS63300217A publication Critical patent/JPS63300217A/en
Application granted granted Critical
Publication of JP2815140B2 publication Critical patent/JP2815140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔概要〕 温度制御方式の光導波路において、低電力制御のため
に、少なくともヒータが低熱伝導率の層で被覆されてい
る。 〔産業上の利用分野〕 本発明は光導波路に係り、とくに温度変化による屈折
率の変化を利用する光導波路に関する。 〔従来の技術〕 石英ガラス等の基板に、例えばチタン(Ti)を拡散あ
るいはイオン交換法により導入することにより形成され
た導波路を用いる,いわゆるガラス導波路は,一般に,
導波路またはその近傍に温度変化を与えることにより生
じた屈折率の変化に基づく光路長の変化を利用する。こ
の光導波路を用いて,温度によって制御される,例え
ば,光スイッチが構成される。上記の温度変化を与える
ために,導波路上またはその近傍に,これに沿ってヒー
タが設けられている。 〔発明が解決しようとする問題点〕 上記の光スイッチのヒータは,導波路の上に堆積され
た金または銅の薄膜から成る。通常,このヒータは空気
に直接触れる構造であるために,発生した熱が導波路の
加熱に,効率的に用いられない。その結果,所要の温度
変化を生じさせるために,大きな電力を必要とし,か
つ,ヒータ自身は過熱により空気酸化を受け,劣化する
ために,短寿命であるという問題があった。 〔問題点を解決するための手段〕 上記従来の温度制御方式の光導波路における問題点
は、基板表面に形成された光導波路と、該光導波路の上
で且つその近傍に形成された金属薄膜からなるヒータと
を有する温度制御型光導波路において、少なくとも該ヒ
ータ上に電気的絶縁性の熱抵抗層を形成し、該熱抵抗層
は該光導波路と同程度の数μmないし10μm程度の厚さ
を有するSiO2の層であることを特徴とする温度制御型光
導波路により解決される。 〔作用〕 温度制御方式の導波路型光スイッチにおいて、少なく
ともヒータを熱抵抗層で被覆することよって、低制御電
力化と長寿命化された光スイッチを提供可能とした。 〔実施例〕 第2図は比較のために示した従来の温度制御方式の光
導波路の原理的構造図である。石英ガラス等の基板1に
は、チタン等を拡散あるいはイオン交換等の方法を用い
て導入することにより光導波路2が形成されている。基
板1における光導波路2が形成されている表面には,光
導波路2より僅かに屈折率の低い物質,通常,基板1の
石英と同質の二酸化珪素(SiO2)から成る,厚さ4μm
程度のバッファ層3が形成されている。 さらに、バッファ層3の上には、例えば、幅数μm,厚
さ数1000Åの金(Au)薄膜から成るヒータ4が、光導波
路2の直上もしくは光導波路2の近傍に設けられてい
る。図において、41および42は、それぞれ,ヒータ4の
リード線部分および端子部分である。ヒータ4を通電過
熱することにより、基板1の導波路部分の温度を上昇さ
せる。その結果,この導波路部分の屈折率が変化し,導
波路の実効光路長が変化する。この光導波路を,例え
ば,マッハツェンダ型導波路に構成し,光スイッチとし
てしようすることができる。 第1図は本発明の温度制御型光導波路の構造を示す断
面図である。図において,第2図におけると同一部分に
は同一符合を付してある。 図示のように,本発明の光導波路においては、ヒータ
4が設けられている基板1の表面に,熱抵抗層となる保
護層5が形成されている。保護層5は、基板1の光導波
路2の部分と同等の,または,より低い熱伝導性を有
し,例えば,光導波路2の深さと同程度の数μmないし
10μm程度の厚さを有するSiO2層であって,通常の化学
気相堆積(CVD)法,あるいはその他の薄膜技術を用い
て形成される。 第2図に示す従来の光導波路においては、ヒータ4か
ら発生する熱の大半は,直接大気中に放散されていた
が,上記の保護層5を導入することにより,少なくとも
半分は光導波路2の側に流れ,その温度上昇に寄与す
る。その結果,従来,光導波路2の部分において所定の
屈折率変化を生じさせるためにヒータ4の温度を,例え
ば100℃となるように電力供給する必要があったもの
が,本発明の光導波路においては、同じ屈折率変化を生
じさせるためには,ヒータ4温度を室温より高々20℃程
度上昇させれば足りることになる。 上記のように、本発明の温度制御型光導波路によれ
ば、従来の光導波路に比して低電力動作が可能となる。
さらに,ヒータ4は,その動作温度が低下され,また,
保護層5によって大気と遮断されているので,長寿命化
が達成される。 〔発明の効果〕 本発明によれば,低電力・長寿命の温度制御型光導波
路を提供することができる効果がある。
DETAILED DESCRIPTION OF THE INVENTION [Overview] In a temperature controlled optical waveguide, at least a heater is coated with a layer having a low thermal conductivity for low power control. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide, and more particularly, to an optical waveguide utilizing a change in refractive index due to a change in temperature. [Prior Art] A so-called glass waveguide generally uses a waveguide formed by introducing titanium (Ti) into a substrate such as quartz glass by diffusion or ion exchange.
A change in optical path length based on a change in refractive index caused by applying a temperature change to the waveguide or its vicinity is used. Using this optical waveguide, for example, an optical switch controlled by temperature is configured. In order to provide the above-mentioned temperature change, a heater is provided on or near the waveguide along the waveguide. [Problems to be Solved by the Invention] The heater of the above optical switch is made of a thin film of gold or copper deposited on the waveguide. Normally, since the heater has a structure in which it comes into direct contact with air, the generated heat is not efficiently used for heating the waveguide. As a result, there has been a problem that a large amount of electric power is required to cause a required temperature change, and the heater itself is subjected to air oxidation due to overheating and deteriorates, so that the heater has a short life. [Means for Solving the Problems] The problem in the above-mentioned conventional temperature-controlled optical waveguide is that the optical waveguide formed on the substrate surface and the metal thin film formed on and in the vicinity of the optical waveguide. In a temperature control type optical waveguide having a heater, an electrically insulating heat resistance layer is formed on at least the heater, and the heat resistance layer has a thickness of about several μm to about 10 μm, which is about the same as that of the optical waveguide. The problem is solved by a temperature controlled optical waveguide characterized in that it is a layer of SiO2 having. [Operation] In a waveguide type optical switch of a temperature control system, it is possible to provide an optical switch having low control power and a long life by covering at least a heater with a heat resistance layer. Embodiment FIG. 2 is a principle structural diagram of a conventional temperature-controlled optical waveguide shown for comparison. An optical waveguide 2 is formed on a substrate 1 made of quartz glass or the like by introducing titanium or the like using a method such as diffusion or ion exchange. On the surface of the substrate 1 on which the optical waveguide 2 is formed, a material having a slightly lower refractive index than the optical waveguide 2, usually made of silicon dioxide (SiO 2) of the same quality as quartz of the substrate 1, having a thickness of 4 μm
Buffer layer 3 is formed. Further, a heater 4 made of, for example, a gold (Au) thin film having a width of several μm and a thickness of several thousand degrees is provided on the buffer layer 3 immediately above the optical waveguide 2 or in the vicinity of the optical waveguide 2. In the figure, 41 and 42 are a lead wire portion and a terminal portion of the heater 4, respectively. By heating and heating the heater 4, the temperature of the waveguide portion of the substrate 1 is increased. As a result, the refractive index of the waveguide changes, and the effective optical path length of the waveguide changes. This optical waveguide can be configured as, for example, a Mach-Zehnder type waveguide and used as an optical switch. FIG. 1 is a sectional view showing the structure of a temperature controlled optical waveguide according to the present invention. In the figure, the same parts as those in FIG. 2 are denoted by the same reference numerals. As shown in the figure, in the optical waveguide of the present invention, a protective layer 5 serving as a heat resistance layer is formed on the surface of the substrate 1 on which the heater 4 is provided. The protective layer 5 has the same or lower thermal conductivity as the portion of the optical waveguide 2 of the substrate 1, and is, for example, several μm to the same depth as the optical waveguide 2.
It is a SiO2 layer having a thickness of about 10 μm and is formed by using a normal chemical vapor deposition (CVD) method or other thin film technology. In the conventional optical waveguide shown in FIG. 2, most of the heat generated from the heater 4 is directly dissipated into the atmosphere. Flows to the side and contributes to the temperature rise. As a result, conventionally, it was necessary to supply electric power so that the temperature of the heater 4 was set to, for example, 100 ° C. in order to cause a predetermined refractive index change in the optical waveguide 2. In order to produce the same change in the refractive index, it is sufficient to raise the temperature of the heater 4 by about 20 ° C. higher than room temperature. As described above, according to the temperature control type optical waveguide of the present invention, lower power operation can be performed as compared with the conventional optical waveguide.
Further, the operating temperature of the heater 4 is reduced, and
Since the air is shielded from the atmosphere by the protective layer 5, a long life is achieved. [Effects of the Invention] According to the present invention, there is an effect that a temperature-controlled optical waveguide with low power and long life can be provided.

【図面の簡単な説明】 第1図は本発明に係る温度制御型の光導波路の構造を示
す断面図、 第2図は比較のために示した従来の温度制御型の光導波
路の原理的構造図である。 図において,1は基板,2は先導波路,3はバッファ層,4はヒ
ータ,5は保護層,41および42は,それぞれ,ヒータ4の
リード線部分および端子部分である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing the structure of a temperature-controlled optical waveguide according to the present invention, and FIG. 2 is a principle structure of a conventional temperature-controlled optical waveguide shown for comparison. FIG. In the figure, 1 is a substrate, 2 is a waveguide, 3 is a buffer layer, 4 is a heater, 5 is a protective layer, and 41 and 42 are a lead wire portion and a terminal portion of the heater 4, respectively.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−93036(JP,A) 特開 昭58−55914(JP,A) 特開 昭62−38431(JP,A) 実開 昭54−57041(JP,U) 実開 昭58−180533(JP,U)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-58-93036 (JP, A)                 JP-A-58-55914 (JP, A)                 JP-A-62-38431 (JP, A)                 Actual opening 1979-57041 (JP, U)                 58-180533 (JP, U)

Claims (1)

(57)【特許請求の範囲】 1.基板表面に形成された光導波路と、 該光導波路の上で且つその近傍に形成された金属薄膜か
らなるヒータとを有する温度制御型光導波路において、 少なくとも該ヒータ上に電気的絶縁性の熱抵抗層を形成
し、 該熱抵抗層を該光導波路と同程度の数μmないし10μm
程度の厚さを有するSiO2の層であることを特徴とする温
度制御型光導波路。
(57) [Claims] In a temperature control type optical waveguide having an optical waveguide formed on a substrate surface and a heater made of a metal thin film formed on and in the vicinity of the optical waveguide, at least an electrically insulating thermal resistance is provided on the heater. A layer having a thickness of several μm to 10 μm, which is about the same as that of the optical waveguide.
A temperature-controlled optical waveguide, characterized in that it is a SiO2 layer having a thickness of the order of magnitude.
JP62136778A 1987-05-29 1987-05-29 Temperature controlled optical waveguide Expired - Lifetime JP2815140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136778A JP2815140B2 (en) 1987-05-29 1987-05-29 Temperature controlled optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136778A JP2815140B2 (en) 1987-05-29 1987-05-29 Temperature controlled optical waveguide

Publications (2)

Publication Number Publication Date
JPS63300217A JPS63300217A (en) 1988-12-07
JP2815140B2 true JP2815140B2 (en) 1998-10-27

Family

ID=15183297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136778A Expired - Lifetime JP2815140B2 (en) 1987-05-29 1987-05-29 Temperature controlled optical waveguide

Country Status (1)

Country Link
JP (1) JP2815140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634925A (en) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457041U (en) * 1977-09-28 1979-04-20
JPS5893036A (en) * 1981-11-30 1983-06-02 Ricoh Co Ltd Light branching device

Also Published As

Publication number Publication date
JPS63300217A (en) 1988-12-07

Similar Documents

Publication Publication Date Title
KR0160600B1 (en) Platinum temperature sensor
JPH05129733A (en) Sub-mount type laser
JPS6136616B2 (en)
JP2815140B2 (en) Temperature controlled optical waveguide
JPH0478122A (en) Anode bonding method
JP2687362B2 (en) Optical switching element
JP4899393B2 (en) Waveguide-type variable optical attenuator
US4413160A (en) Ribbon-type loudspeaker
JPH08128889A (en) Infrared sensor
JPH0196548A (en) Sensor element
JPS58102144A (en) Gas sensor
JP4074368B2 (en) Heat generation type thin film element sensor and manufacturing method thereof
JPS60254102A (en) Manufacture of optical circuit element
JPH06102227A (en) Structure of ambience gas sensor
JPH0599758A (en) Manufacturing of platinum temperature sensor using zirconia base plate
JPS5811112B2 (en) substrate
JPS5970951A (en) Gas sensitive element
JPS5897028A (en) Optical waveguide switch
JP2884945B2 (en) Method for manufacturing optical waveguide device
JPS62187050A (en) Manufacture of thermal head
JP2853289B2 (en) RTD
JP2004021249A (en) Thermooptic optical switch
JP3965060B2 (en) Manufacturing method of waveguide type optical component with thin film heater
JP2002503805A (en) Sensor with thin film design
JPH03160332A (en) Thermometric resistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term