JPH0634925A - Optical waveguide circuit device - Google Patents

Optical waveguide circuit device

Info

Publication number
JPH0634925A
JPH0634925A JP4192079A JP19207992A JPH0634925A JP H0634925 A JPH0634925 A JP H0634925A JP 4192079 A JP4192079 A JP 4192079A JP 19207992 A JP19207992 A JP 19207992A JP H0634925 A JPH0634925 A JP H0634925A
Authority
JP
Japan
Prior art keywords
film
heater
optical waveguide
thin film
film heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4192079A
Other languages
Japanese (ja)
Inventor
Kazuyuki Moriwaki
和幸 森脇
Yasuyuki Inoue
靖之 井上
Masao Kawachi
正夫 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4192079A priority Critical patent/JPH0634925A/en
Publication of JPH0634925A publication Critical patent/JPH0634925A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • G02F1/0113Glass-based, e.g. silica-based, optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Abstract

PURPOSE:To provide long-term reliability and to enable the simple adjustment of a resistance value to be conducted by specifying the material of a thin-film heater as a phase shifter which is disposed on the clad layer of an optical waveguide and finely adjusts the optical path length of an optical waveguide. CONSTITUTION:This optical waveguide circuit device has a substrate 1, a core part 2 which is provided on this substrate, the clad layer 3 which covers this core part 2 and the thin-film heater 4 which is disposed on the clad layer 3 of this optical waveguide and finely adjusts the optical path length of a part of the optical waveguide. A Ta2N film is used as the thin-film heater 4 serving as the phase shifter. This thin-film heater is preferably coated with a protective film 6 which is at least one layer among SiO2 films, Si3N4 and Ta2O5 films. Further, the resistance value of this thin-film heater 4 is preferably regulated to a desired value by heating by means of an electric oven, etc., or by energization to the thin-film heater itself after the film formation. As a result, the long-term stability of the resistance value of the thin-film heater is obtd. and the service life thereof is prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に光導波路を配
設した光導波回路装置に関し、より詳細には、光導波路
の光路長を調整できる位相シフタとしての薄膜ヒータを
有する光導波回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide circuit device in which an optical waveguide is arranged on a substrate, and more specifically, an optical waveguide circuit having a thin film heater as a phase shifter capable of adjusting the optical path length of the optical waveguide. It relates to the device.

【0002】[0002]

【従来の技術】従来、基板上に製作される単一モード光
導波路、特にシリコン基板上に製作可能な石英系ガラス
単一モード光導波路は、光ファイバーとの整合性の優れ
た導波路型光部品の実現手段として期待され、各種部品
の研究例がある。例えば、河内正夫:「石英系光導波路
と集積光部品への応用」、光学、18(1989)68
1−686.を挙げることができる。
2. Description of the Related Art Conventionally, a single-mode optical waveguide manufactured on a substrate, particularly a silica-based glass single-mode optical waveguide manufactured on a silicon substrate, is a waveguide type optical component excellent in compatibility with an optical fiber. It is expected as a means to realize, and there are research examples of various parts. For example, Masao Kawauchi: “Applications to silica-based optical waveguides and integrated optical components”, Optics, 18 (1989) 68.
1-686. Can be mentioned.

【0003】上記光回路部品のなかでも特に、石英系ガ
ラス単一モード光導波路により構成される導波路型光干
渉計は、光分波器、光スイッチ等の部品として、期待が
高い。この導波路型光干渉計の構成には、導波路中の伝
播光の位相を調整する機能を具備した位相シフタが必要
である。通常、この位相シフタとしては、熱光学効果を
利用するための薄膜ヒータが用いられる。以下にこの位
相シフタの構造とその動作原理について記す。
Among the above optical circuit parts, a waveguide type optical interferometer composed of a silica glass single mode optical waveguide is particularly expected as a part of an optical demultiplexer, an optical switch and the like. The configuration of this waveguide type optical interferometer requires a phase shifter having a function of adjusting the phase of the propagating light in the waveguide. Usually, a thin film heater for utilizing the thermo-optic effect is used as the phase shifter. The structure of this phase shifter and its operating principle are described below.

【0004】図1に、位相シフタを有する一般的な石英
系ガラス導波路の概略構成例を示す。図1の(a)は、
上記光導波路の平面図であり、図1の(b)は、図1の
A−A′線に沿った拡大断面図である。符号1はシリコ
ン基板、2は石英系ガラスからなるコア部、3はコア部
2を覆う石英系ガラスからなるクラッド層、4はコア部
2の上部のクラッド層3の上面に形成された位相シフタ
としてのCr膜からなる薄膜ヒータ、5aおよび5bは
薄膜ヒータ4へ給電するための電極パッド部、6はヒー
タ薄膜保護膜である。なお、電極パッド部5aおよび5
bへの電気配線ワイヤと給電電源の図示を省略する。
FIG. 1 shows a schematic configuration example of a general silica glass waveguide having a phase shifter. FIG. 1 (a) shows
It is a top view of the said optical waveguide, and FIG.1 (b) is an expanded sectional view which followed the AA 'line of FIG. Reference numeral 1 is a silicon substrate, 2 is a core portion made of silica glass, 3 is a cladding layer made of silica glass covering the core portion 4, and 4 is a phase shifter formed on the upper surface of the cladding layer 3 above the core portion 2. The thin film heaters 5a and 5b made of a Cr film are electrode pad portions for supplying power to the thin film heater 4, and 6 is a heater thin film protective film. The electrode pad portions 5a and 5
Illustration of an electric wiring wire and a power supply for b is omitted.

【0005】以上のような構成において、薄膜ヒータ4
に通電し、クラッド層3を介してコア部2を加熱する
と、熱光学効果により、加熱された部分のコア部2の屈
折率が増加し、薄膜ヒータ4下部の実効的な屈折率が変
化し、伝播光の位相を変化させることができる。具体的
に説明すると、石英系ガラスの屈折率nの温度変化(Δ
n/ΔT)は10-5 1/℃であるため、例えば5mm
の長さ(ΔL)にわたり、光導波路の温度上昇(ΔT)
を15℃起こせば、光路長の変化(Δn×ΔL)は0.
75μmとなり、これは波長1.5μmの伝播光の半波
長の位相シフトを起こしたことに相当する。このような
薄膜ヒータを用いた位相シフタによれば、光路長を外部
制御できることから、いろいろな導波型光回路部品への
応用がなされている。
In the above structure, the thin film heater 4
When the core portion 2 is heated through the clad layer 3 due to the thermo-optical effect, the refractive index of the heated core portion 2 increases, and the effective refractive index of the lower portion of the thin film heater 4 changes. , The phase of propagating light can be changed. More specifically, the temperature change of the refractive index n of the silica-based glass (Δ
n / ΔT) is 10 −5 1 / ° C., so 5 mm, for example
Temperature rise (ΔT) of optical waveguide over the length (ΔL)
At 15 ° C., the change in optical path length (Δn × ΔL) is 0.
It becomes 75 μm, which corresponds to a half-wave phase shift of the propagating light having a wavelength of 1.5 μm. Since the phase shifter using such a thin film heater can control the optical path length externally, it is applied to various waveguide type optical circuit components.

【0006】上記薄膜ヒータには実用上長期の信頼性が
要求されるが、従来用いられてきたCr膜では、少なく
とも1年以上という長期通電での安定性がなく、断線発
生の確率が無視できない程度に高いという問題点があっ
た。
Although the thin film heater is required to have long-term reliability in practical use, the Cr film which has been conventionally used is not stable for a long-time energization of at least one year or more, and the probability of occurrence of disconnection cannot be ignored. There was a problem that it was high.

【0007】また、断線に至らないまでも、酸化などの
材料変質が起こると、薄膜ヒータの抵抗が変化し、位相
シフタ量が経時的に変化してゆくため、部品の利用形態
によっては使用不可能となる。この点でも、Cr膜では
長期的な抵抗変化を無視できないという問題点があっ
た。
Even if the wire is not broken, the resistance of the thin-film heater changes and the amount of the phase shifter changes with time when the material is deteriorated such as oxidation. Therefore, it may not be used depending on the usage of the part. It will be possible. In this respect as well, the Cr film has a problem that a long-term resistance change cannot be ignored.

【0008】さらに別の問題点として、以下の点があ
る。
Still another problem is as follows.

【0009】一般にヒータ薄膜の抵抗値は、製造工程の
ばらつきによって、完全には一定値にならない。所望の
一定抵抗値を示す薄膜ヒータを得るために、製造工程を
やり直すことは、時間とコストがかかり困難である。こ
のため成膜後に簡単に抵抗値を調整できる方法が必要で
あるが、Cr膜では抵抗値調整をすれば必ず寿命などに
悪影響がでるという問題点もあった。
Generally, the resistance value of the heater thin film is not completely constant due to variations in the manufacturing process. It is time consuming, costly and difficult to redo the manufacturing process to obtain a thin film heater having a desired constant resistance value. For this reason, there is a need for a method capable of easily adjusting the resistance value after film formation, but there is also a problem in that the resistance value is always adversely affected by adjusting the resistance value of the Cr film.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明の目的
は、上述のような問題点を解決し、長期信頼性があり、
かつ簡便な抵抗値調整が可能な薄膜ヒータを備えた光導
波回路装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to solve the above problems and to provide long-term reliability.
Another object of the present invention is to provide an optical waveguide circuit device including a thin film heater capable of easily adjusting the resistance value.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光導波路装置は、位相シフタとしての薄膜
ヒータとして、Ta2 N膜を用いることを特徴とする。
In order to achieve the above object, the optical waveguide device of the present invention is characterized by using a Ta 2 N film as a thin film heater as a phase shifter.

【0012】また、薄膜ヒータは、保護膜SiO2 、S
34 、Ta25 膜の少なくとも一層で覆われてい
てもよい。
Further, the thin film heater has a protective film made of SiO 2 , S.
It may be covered with at least one layer of i 3 N 4 and Ta 2 O 5 films.

【0013】さらに、薄膜ヒータは、成膜後に、電気炉
などによる加熱、または薄膜ヒータ自体への通電による
加熱によって、抵抗値を所望の一定値に調整されたもの
でもよい。
Further, the thin film heater may be one whose resistance value is adjusted to a desired constant value by heating by an electric furnace or the like, or heating by energizing the thin film heater itself after film formation.

【0014】[0014]

【作用】本発明によれば、位相シフタとしての薄膜ヒー
タとしてTa2 N膜を用いることにより、1年以上の長
期的な薄膜ヒータの抵抗値安定性が得られ、また薄膜ヒ
ータ断線に至る寿命も長くなるため、薄膜ヒータを配設
した光導波回路装置の信頼性が大きく向上する。また、
SiO2 、Si34 、Ta25 などの保護膜で覆わ
れたTa2 N膜を用いることにより、薄膜ヒータの寿命
をさらに長くすることができる。
According to the present invention, by using the Ta 2 N film as the thin film heater as the phase shifter, long-term resistance value stability of the thin film heater can be obtained for one year or more, and the life until the thin film heater is broken. Since the length becomes longer, the reliability of the optical waveguide circuit device provided with the thin film heater is greatly improved. Also,
By using a Ta 2 N film covered with a protective film such as SiO 2 , Si 3 N 4 or Ta 2 O 5 , the life of the thin film heater can be further extended.

【0015】本発明によれば、Ta2 N成膜後に熱処理
を行うことにより、寿命の低下などの悪影響が発生する
ことなく、薄膜ヒータの抵抗値を予め定められた一定値
に調整することが可能で、光導波回路装置の製造歩留り
が大幅に向上する。また、薄膜ヒータに対する熱処理が
通電によるものである場合には、薄膜ヒータ部分のみを
局部的に加熱できるので、光導波回路装置の全体の加熱
が不要となる。
According to the present invention, by performing the heat treatment after the Ta 2 N film formation, it is possible to adjust the resistance value of the thin film heater to a predetermined constant value without adversely affecting the life. This is possible, and the manufacturing yield of the optical waveguide circuit device is significantly improved. Further, when the heat treatment to the thin film heater is performed by energization, only the thin film heater portion can be locally heated, so that it is not necessary to heat the entire optical waveguide circuit device.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0017】(実施例1)図1を参照して本発明の一実
施例の構成を説明する。図1の薄膜ヒータ4として、T
2 N膜を用いた。図1の構成の光導波路の構造の諸元
は、種々に定めることができるが、ここでは、以下の通
りに定めた。すなわち、シリコン基板1の厚さは0.7
mm、クラッド層3の厚さは50μm、コア部2の断面
寸法は8μm×8μm、コア部とクラッド層間の比屈折
率差は0.25%とした。
(Embodiment 1) The construction of an embodiment of the present invention will be described with reference to FIG. As the thin film heater 4 of FIG.
An a 2 N film was used. The specifications of the structure of the optical waveguide having the configuration of FIG. 1 can be variously determined, but here, they are determined as follows. That is, the thickness of the silicon substrate 1 is 0.7.
mm, the thickness of the cladding layer 3 was 50 μm, the cross-sectional dimension of the core portion 2 was 8 μm × 8 μm, and the relative refractive index difference between the core portion and the cladding layer was 0.25%.

【0018】またTa2 N膜は、公知の反応性スパッタ
法を用いて成膜した。このときの代表的な製造条件を以
下に記す。すなわち窒素ガス分圧は1×10-4Tor
r、窒素とアルゴンガス混合全ガス圧は2×10-2To
rr、RFパワー50W、基板温度300℃である。こ
のとき成膜速度は10nm/minであり、通常300
nm厚さに成膜した。Ta2 N膜のパターン加工は、フ
ォトリソグラフィによって製作したレジストパターンを
マスクとして、SF6 ガスを用いた反応性イオンエッチ
ング法によって加工した。エッチング時のRFパワーは
100W、SF6ガス流量は20sccmであった。こ
こでのTa2 N膜の加工寸法は50μm幅で長さ4mm
である。図1の電極5aおよび5bには300nm厚さ
のAu膜を用いた。Au膜とTa2 N膜の密着性向上の
ため、20nm厚さのCr膜をAuとTa2 N膜の間に
成膜した。
The Ta 2 N film was formed by using a known reactive sputtering method. Typical manufacturing conditions at this time are described below. That is, the partial pressure of nitrogen gas is 1 × 10 −4 Tor.
r, mixed gas of nitrogen and argon gas Total gas pressure is 2 × 10 -2 To
rr, RF power 50 W, substrate temperature 300 ° C. At this time, the film formation rate is 10 nm / min, and is usually 300 nm.
The film was formed to a thickness of nm. The patterning of the Ta 2 N film was carried out by a reactive ion etching method using SF 6 gas, using a resist pattern manufactured by photolithography as a mask. The RF power during etching was 100 W, and the SF 6 gas flow rate was 20 sccm. The processing dimensions of the Ta 2 N film here are 50 μm width and 4 mm length.
Is. An Au film having a thickness of 300 nm was used for the electrodes 5a and 5b in FIG. In order to improve the adhesion between the Au film and the Ta 2 N film, a 20 nm thick Cr film was formed between the Au film and the Ta 2 N film.

【0019】上記Ta2 N膜の抵抗率ρは200〜25
0μΩm、抵抗率の温度変化TCRは−40〜−150
ppm/℃であった。比較のために製作した同じパター
ンのCr膜(従来例)は、ρ=80μΩm、TCR=1
00ppm/℃であった。
The resistivity ρ of the Ta 2 N film is 200 to 25.
0 μΩm, temperature change of resistivity TCR is -40 to -150
It was ppm / ° C. The Cr film of the same pattern manufactured for comparison (conventional example) has ρ = 80 μΩm and TCR = 1.
It was 00 ppm / ° C.

【0020】図1の保護膜6を形成しない状態で、Cr
膜とTa2 N膜との抵抗値安定性を調べた結果を図2に
示す。図2では、Cr膜とTa2 N膜のそれぞれについ
て図1の電極5aおよび5b間に6Wのパワーを印加し
続けた時の、薄膜ヒータ4の抵抗値の経時変化を比較し
ている。図2から明らかなように、Ta2 N膜はCr膜
に比べて約10倍の断線寿命となっている。
With the protective film 6 of FIG. 1 not formed, Cr
The results of examining the resistance stability of the film and the Ta 2 N film are shown in FIG. FIG. 2 compares changes with time of the resistance value of the thin film heater 4 when a power of 6 W is continuously applied between the electrodes 5a and 5b of FIG. 1 for each of the Cr film and the Ta 2 N film. As is clear from FIG. 2, the Ta 2 N film has a disconnection life about 10 times that of the Cr film.

【0021】なお通常、光導波路中を伝播する波長1.
3μm光の光路長を、半波長ずらせるためのヒータ薄膜
への印加パワーは0.5W程度であり、図2の印加パワ
ー6Wという値は、光スイッチングなどの用途に用いる
場合のヒータパワーに比べて非常に大きい。すなわち図
2の特性は、ヒータ薄膜の加速寿命試験の結果となって
いる。
Normally, the wavelength of 1.
The applied power to the heater thin film for shifting the optical path length of 3 μm light by half a wavelength is about 0.5 W, and the value of 6 W applied power in FIG. 2 is compared to the heater power when used for applications such as optical switching. Very big. That is, the characteristics of FIG. 2 are the results of the accelerated life test of the heater thin film.

【0022】次に、図1の保護膜6として、2μm厚の
SiO2 膜を形成した場合、Cr膜とTa2 N膜との断
線寿命は、保護膜のない場合に比べてさらに差が大きく
なり、図3に示すように10W印加の場合で1000倍
以上となっている。6Wのパワーでの比較では、図4に
示すように、Ta2 N膜の抵抗値経時変化がCr膜に比
べて極めて小さい。図4において、例えば5%抵抗値が
変化するまでの時間を比較すると、Ta2 N膜の方がC
r膜の場合に比べて100倍長い。すなわちTa2 N膜
の方がCr膜より、同じパワーを印加しても材料変質が
少なく安定であることがわかった。
Next, when a 2 μm thick SiO 2 film is formed as the protective film 6 in FIG. 1, the disconnection life between the Cr film and the Ta 2 N film has a larger difference than that in the case without the protective film. That is, as shown in FIG. 3, it is 1000 times or more when 10 W is applied. In the comparison with the power of 6 W, as shown in FIG. 4, the change with time of the resistance value of the Ta 2 N film is extremely smaller than that of the Cr film. In FIG. 4, for example, comparing the time until the resistance value changes by 5%, the Ta 2 N film is more C
It is 100 times longer than that of the r film. That is, it was found that the Ta 2 N film was more stable than the Cr film even when the same power was applied, with less material deterioration.

【0023】図1の保護膜6として、2μm厚のSi3
4 膜、または2μm厚のTa25 膜を用いた場合
も、図3および図4と同様の特性が得られた。
As the protective film 6 shown in FIG. 1, Si 3 having a thickness of 2 μm is used.
When the N 4 film or the Ta 2 O 5 film having a thickness of 2 μm was used, the same characteristics as those in FIGS. 3 and 4 were obtained.

【0024】以上のように、薄膜ヒータとして、Ta2
N膜の方がCr膜より断線寿命が極めて長く、抵抗値の
経時変化も小さく、長期信頼性に優れていることがわか
った。
As described above, as a thin film heater, Ta 2
It was found that the N film has a much longer life of disconnection than the Cr film, the change in resistance value over time is small, and the long-term reliability is excellent.

【0025】(実施例2)本発明の第2の実施例として
2×2熱光学スイッチ回路装置を製作した。図5の
(a)に平面図、図5の(b)に断面図を示す。図5に
おいて7aおよび7bは方向性結合器、8は第1光入力
ポート、9は第2光入力ポート、10は第1光出力ポー
ト、11は第2光出力ポートである。図5の薄膜ヒータ
4aおよび4bとしてはTa2 N膜を用いた。Ta2
膜の製作条件や、ヒータ形状などは実施例1と同じとし
た。
(Embodiment 2) As a second embodiment of the present invention, a 2 × 2 thermo-optical switch circuit device was manufactured. FIG. 5A shows a plan view and FIG. 5B shows a sectional view. In FIG. 5, 7a and 7b are directional couplers, 8 is a first optical input port, 9 is a second optical input port, 10 is a first optical output port, and 11 is a second optical output port. A Ta 2 N film was used as the thin film heaters 4a and 4b in FIG. Ta 2 N
The manufacturing conditions of the film and the heater shape were the same as in Example 1.

【0026】図5の薄膜ヒータ4に印加された電力を変
えて、光スイッチング特性を調べると、図6のような2
×2光スイッチングの基本的な特性が得られた。図6
は、図5の第1入力ポート8から光が入力されている
時、第2出力ポート11から出力される光パワーの変化
を、ヒータ電力を変えて測定したもので、第2出力ポー
ト11からの光出力は第1出力ポート10からの光パワ
ーとの比で示されている。図6に示されるように、Ta
2 N膜を薄膜ヒータとして用いた場合、2×2熱光学ス
イッチ回路として十分な光スイッチング特性が得られる
ことがわかった。
When the electric power applied to the thin film heater 4 in FIG. 5 is changed and the optical switching characteristics are examined, it is found that the optical switching characteristics shown in FIG.
The basic characteristics of × 2 optical switching were obtained. Figure 6
Is a change in optical power output from the second output port 11 when light is input from the first input port 8 in FIG. The optical output of is indicated by the ratio with the optical power from the first output port 10. As shown in FIG.
It has been found that when the 2 N film is used as a thin film heater, sufficient optical switching characteristics can be obtained as a 2 × 2 thermo-optical switch circuit.

【0027】(実施例3)本発明の第3の実施例として
熱処理された薄膜ヒータを有する光導波回路装置を製作
した。すなわち、図1に示した薄膜ヒータとしてTa2
N膜を形成後、以下の条件で熱処理を行った。図1に示
される光導波回路装置を、空気雰囲気の電気炉中に、5
00℃以下の一定温度で30分間保持した後取り出し
た。なお、このとき、Ta2 N膜の製作条件やヒータ形
状などは、実施例1と同じとした。図7に示されるよう
に熱処理温度が高くなると、熱処理後におけるTa2
膜の抵抗率は大きくなる。このとき、熱処理温度が50
0℃以下であれば、Ta2 N膜の断線寿命に関しては変
化がなかった。熱処理温度が500℃を越えると、Ta
の酸化が起こってヒータ抵抗値が急上昇し、同時に断線
寿命も大幅に短くなった。従って、熱処理温度500℃
以下であれば、ヒータの信頼性を低下させることなく、
抵抗値の調節が可能であることがわかった。
Example 3 An optical waveguide circuit device having a heat-treated thin film heater was manufactured as a third example of the present invention. That, Ta 2 as a thin film heater shown in FIG. 1
After forming the N film, heat treatment was performed under the following conditions. The optical waveguide circuit device shown in FIG.
It was taken out after being kept at a constant temperature of 00 ° C. or lower for 30 minutes. At this time, the manufacturing conditions of the Ta 2 N film, the heater shape, and the like were the same as in Example 1. As shown in FIG. 7, when the heat treatment temperature is increased, Ta 2 N after heat treatment is increased.
The resistivity of the film increases. At this time, the heat treatment temperature is 50
If the temperature was 0 ° C. or lower, there was no change in the breaking life of the Ta 2 N film. If the heat treatment temperature exceeds 500 ° C, Ta
Oxidation of the heater caused the resistance of the heater to rise rapidly, and at the same time, the life of the wire breakage was greatly shortened. Therefore, heat treatment temperature 500 ℃
If the following, without reducing the reliability of the heater,
It was found that the resistance value can be adjusted.

【0028】図1の薄膜ヒータパターンを100個形成
した後、その薄膜ヒータ抵抗値を調べると±7%の範囲
でのばらつきがあった。そこで平均的に所望の値よりも
10%低い抵抗値になるよう考慮して薄膜ヒータパター
ンを形成後、その抵抗値を測定した結果、製造工程によ
って起こるばらつきにより、所望の抵抗値と±2%以上
異なっている場合、図7の特性に従って所望の抵抗値に
なる熱処理温度で熱処理を行った。この結果、ヒータ抵
抗値のばらつきは±2%以下にできた。
When 100 thin film heater patterns shown in FIG. 1 were formed and the thin film heater resistance values were examined, there was a variation in the range of ± 7%. Therefore, the thin film heater pattern was formed considering the resistance value to be 10% lower than the desired value on average, and the resistance value was measured. If they differ from each other as described above, the heat treatment was performed at a heat treatment temperature at which a desired resistance value was obtained according to the characteristics of FIG. As a result, the variation in the heater resistance value was ± 2% or less.

【0029】(実施例4)本発明の第4の実施例として
通電熱処理された薄膜ヒータを有する光導波回路装置を
製作した。すなわち、図1に示した薄膜ヒータ4として
Ta2 N膜を形成後、以下の条件で通電熱処理を行っ
た。すなわち、図1に示される光導波回路装置の電極5
aおよび5b間に一定電力を10分間印加し、このヒー
タ電力によってTa2 N膜ヒータ4の温度を上昇させ
た。なおこの時のTa2 N膜の製作条件やヒータ形状な
どは、実施例1と同じとした。ヒータに通電した時のヒ
ータ温度を測定すると、8W印加時で500℃となって
いた。このヒータ温度に対して通電後のヒータ抵抗の変
化を調べると、図7と同じであった。またヒータ温度が
500℃以下であれば、ヒータの断線寿命も変化なかっ
た。従って実施例3と同様に、ヒータ温度が500℃と
なるヒータ電力以下で通電熱処理を行えば、ヒータの寿
命を低下させることなく、ヒータ抵抗値の調節が可能で
あった。実施例3の場合と異なり、本実施例の方法では
同じ基板上の個々のヒータ膜を別々の条件で熱処理で
き、同一基板内の個々の薄膜ヒータそれぞれの抵抗値を
調整できた。
(Embodiment 4) As a fourth embodiment of the present invention, an optical waveguide circuit device having a thin film heater which has been subjected to an electric current heat treatment was manufactured. That is, after forming a Ta 2 N film as the thin film heater 4 shown in FIG. 1, an energization heat treatment was performed under the following conditions. That is, the electrode 5 of the optical waveguide circuit device shown in FIG.
A constant power was applied between a and 5b for 10 minutes, and the temperature of the Ta 2 N film heater 4 was raised by this heater power. At this time, the Ta 2 N film manufacturing conditions and heater shape were the same as in Example 1. When the heater temperature was measured when the heater was energized, it was 500 ° C. when 8 W was applied. When the change in the heater resistance after energization with respect to this heater temperature was examined, it was the same as in FIG. 7. If the heater temperature was 500 ° C. or lower, the heater burnout life did not change. Therefore, as in Example 3, if the energization heat treatment was performed at a heater power of not more than 500 ° C., the heater resistance value could be adjusted without shortening the life of the heater. Unlike the case of Example 3, according to the method of this example, each heater film on the same substrate can be heat-treated under different conditions, and the resistance value of each thin film heater in the same substrate can be adjusted.

【0030】実施例3と同様の方法を行うことにより、
通電熱処理の場合でも、ヒータ抵抗値のばらつきを±2
%以内にすることができた。
By performing the same method as in Example 3,
Even in the case of electric heat treatment, the variation in the heater resistance value is ± 2
Could be within%.

【0031】[0031]

【発明の効果】以上説明したように、本発明では、光導
波路の光路長を調整するための薄膜ヒータとしてTa2
N膜を用いることによって、従来使用されてきたCr膜
に比べて、寿命を大幅に延ばし、抵抗値の経時変化も小
さくでき、これによって本薄膜ヒータを有する光導波回
路装置の信頼性を大幅に改善することができる。このT
2 N膜による光導波路の位相シフタとしての特性も十
分であった。
As described above, in the present invention, Ta 2 is used as the thin film heater for adjusting the optical path length of the optical waveguide.
By using the N film, the life can be significantly extended and the resistance value can be less changed with time as compared with the Cr film which has been conventionally used, and thus the reliability of the optical waveguide circuit device having the thin film heater can be greatly improved. Can be improved. This T
Characteristics of the phase shifter of the optical waveguide by a 2 N film was also sufficient.

【0032】また薄膜ヒータとしてTa2 N膜を用いる
ことにより、電気炉などによる熱処理により、またはヒ
ータ膜への直接通電熱処理により、寿命を低下させるこ
となく、薄膜ヒータ抵抗値の調節が可能で、各ヒータ抵
抗値のばらつきを小さくできる。
Further, by using a Ta 2 N film as the thin film heater, it is possible to adjust the resistance value of the thin film heater without shortening the life, by heat treatment in an electric furnace or by heat treatment for directly energizing the heater film. It is possible to reduce variations in the resistance value of each heater.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)および(b)は、本発明の第1の実施例
の構成を示すもので、(a)は平面構成図、(b)は
(a)のA−A′線に沿う断面構成図である。
1A and 1B show a configuration of a first embodiment of the present invention, in which FIG. 1A is a plan configuration diagram, and FIG. 1B is a line AA ′ in FIG. FIG.

【図2】ヒータ電力6W印加時のヒータ抵抗変化を、図
1の保護膜を用いないCr膜とTa2 N膜で比較した特
性図である。
FIG. 2 is a characteristic diagram comparing a change in heater resistance when a heater power of 6 W is applied between a Cr film without a protective film and a Ta 2 N film in FIG.

【図3】ヒータ電力10W印加時のヒータ抵抗変化を、
図1の保護膜を2μm厚SiO2 として用いたCr膜と
Ta2 N膜で比較した特性図である。
FIG. 3 shows a change in heater resistance when a heater power of 10 W is applied,
FIG. 3 is a characteristic diagram comparing a Cr film and a Ta 2 N film using the protective film of FIG. 1 as a 2 μm thick SiO 2 film.

【図4】ヒータ電力6W印加時のヒータ抵抗変化を、図
1の保護膜を2μm厚SiO2として用いたCr膜とT
2 N膜で比較した特性図である。
[4] The heater resistance change at the time the heater power 6W applied, Cr film and T using the protective film of Figure 1 as a 2μm thick SiO 2
It is a characteristic diagram comparing with a 2 N film.

【図5】本発明の第2の実施例としての2×2熱光学ス
イッチの構成を示すもので、(a)は平面図、(b)は
(a)のB−B′線に沿う断面図である。
5A and 5B show a configuration of a 2 × 2 thermo-optical switch as a second embodiment of the present invention, in which FIG. 5A is a plan view and FIG. 5B is a sectional view taken along line BB ′ in FIG. It is a figure.

【図6】図5に示した2×2熱光学スイッチの特性を示
す特性図である。
FIG. 6 is a characteristic diagram showing characteristics of the 2 × 2 thermo-optical switch shown in FIG.

【図7】薄膜ヒータの熱処理温度による、熱処理後のヒ
ータ抵抗値変化を示す特性図である。
FIG. 7 is a characteristic diagram showing a change in heater resistance value after heat treatment depending on a heat treatment temperature of a thin film heater.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 光導波路コア部 2a,2b 光導波路コア部 3 クラッド層 4 薄膜ヒータ 4a,4b 薄膜ヒータ 5a,5b 電極パッド 6 ヒータ薄膜保護膜 7a,7b 方向性結合器 8 第1光入力ポート 9 第2光入力ポート 10 第1光出力ポート 11 第2光出力ポート 1 Silicon Substrate 2 Optical Waveguide Core Part 2a, 2b Optical Waveguide Core Part 3 Cladding Layer 4 Thin Film Heater 4a, 4b Thin Film Heater 5a, 5b Electrode Pad 6 Heater Thin Film Protective Film 7a, 7b Directional Coupler 8 First Optical Input Port 9 Second optical input port 10 First optical output port 11 Second optical output port

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、 該基板上に設けられたコア部と該コア部を覆うクラッド
層を有する光導波路と、 該光導波路のクラッド層上に配設され、かつ前記光導波
路の一部分の光路長を微調整する薄膜ヒータとを含む光
導波回路装置において、 前記薄膜ヒータはTa2 N膜であることを特徴とする光
導波回路装置。
1. A substrate, an optical waveguide having a core portion provided on the substrate and a cladding layer covering the core portion, and a portion of the optical waveguide disposed on the cladding layer of the optical waveguide. An optical waveguide circuit device including a thin film heater for finely adjusting an optical path length, wherein the thin film heater is a Ta 2 N film.
【請求項2】 前記薄膜ヒータの上に該薄膜ヒータを覆
うSiO2 膜,Ta25 膜およびSi34 膜のうち
少なくとも一層の保護膜が形成されていることを特徴と
する請求項1記載の光導波回路装置。
2. A protective film of at least one of a SiO 2 film, a Ta 2 O 5 film and a Si 3 N 4 film which covers the thin film heater is formed on the thin film heater. 1. The optical waveguide circuit device according to 1.
【請求項3】 前記光導波路上に配設された前記薄膜ヒ
ータは500℃以下の温度での配設後の熱処理が施され
たものであることを特徴とする請求項1記載の光導波回
路装置。
3. The optical waveguide circuit according to claim 1, wherein the thin film heater disposed on the optical waveguide is heat-treated after being disposed at a temperature of 500 ° C. or less. apparatus.
【請求項4】 前記光導波路上に配設された前記薄膜ヒ
ータは、該薄膜ヒータへの通電による配設後の熱処理が
施されたものであることを特徴とする請求項1記載の光
導波回路装置。
4. The optical waveguide according to claim 1, wherein the thin film heater provided on the optical waveguide is heat-treated after being provided by energizing the thin film heater. Circuit device.
JP4192079A 1992-07-20 1992-07-20 Optical waveguide circuit device Pending JPH0634925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4192079A JPH0634925A (en) 1992-07-20 1992-07-20 Optical waveguide circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4192079A JPH0634925A (en) 1992-07-20 1992-07-20 Optical waveguide circuit device

Publications (1)

Publication Number Publication Date
JPH0634925A true JPH0634925A (en) 1994-02-10

Family

ID=16285293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4192079A Pending JPH0634925A (en) 1992-07-20 1992-07-20 Optical waveguide circuit device

Country Status (1)

Country Link
JP (1) JPH0634925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335862B2 (en) 2003-05-30 2008-02-26 Nec Corporation Resistance heater having a thin-line-shaped resistor
JP2011048384A (en) * 2010-10-04 2011-03-10 Fujikura Ltd Optical component with thermo-optical effect

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785251A (en) * 1980-11-18 1982-05-27 Ricoh Co Ltd Manufacture of thin-film hybrid integrated circuit
JPS5893036A (en) * 1981-11-30 1983-06-02 Ricoh Co Ltd Light branching device
JPS6127264A (en) * 1984-07-18 1986-02-06 Alps Electric Co Ltd Formation of thermal head
JPS61241735A (en) * 1985-04-19 1986-10-28 Seiko Instr & Electronics Ltd Optical switch
JPS62119517A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Thermooptical element
JPS63104031A (en) * 1986-10-21 1988-05-09 Brother Ind Ltd Optical function device
JPS63300217A (en) * 1987-05-29 1988-12-07 Fujitsu Ltd Temperature control type light guide
JPS6429815A (en) * 1987-07-24 1989-01-31 Fujitsu Ltd Optical switching element
JPH01158413A (en) * 1987-09-29 1989-06-21 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide device
JPH03258561A (en) * 1990-03-08 1991-11-18 Fuji Xerox Co Ltd Adjusting method of thermal head resistance value

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785251A (en) * 1980-11-18 1982-05-27 Ricoh Co Ltd Manufacture of thin-film hybrid integrated circuit
JPS5893036A (en) * 1981-11-30 1983-06-02 Ricoh Co Ltd Light branching device
JPS6127264A (en) * 1984-07-18 1986-02-06 Alps Electric Co Ltd Formation of thermal head
JPS61241735A (en) * 1985-04-19 1986-10-28 Seiko Instr & Electronics Ltd Optical switch
JPS62119517A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Thermooptical element
JPS63104031A (en) * 1986-10-21 1988-05-09 Brother Ind Ltd Optical function device
JPS63300217A (en) * 1987-05-29 1988-12-07 Fujitsu Ltd Temperature control type light guide
JPS6429815A (en) * 1987-07-24 1989-01-31 Fujitsu Ltd Optical switching element
JPH01158413A (en) * 1987-09-29 1989-06-21 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide device
JPH03258561A (en) * 1990-03-08 1991-11-18 Fuji Xerox Co Ltd Adjusting method of thermal head resistance value

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335862B2 (en) 2003-05-30 2008-02-26 Nec Corporation Resistance heater having a thin-line-shaped resistor
JP2011048384A (en) * 2010-10-04 2011-03-10 Fujikura Ltd Optical component with thermo-optical effect

Similar Documents

Publication Publication Date Title
US5418868A (en) Thermally activated optical switch
US4904037A (en) Waveguide type optical device with thermal compensation layers
JP2599488B2 (en) Method for adjusting characteristics of optical waveguide circuit and optical waveguide circuit used in the method
US7356221B2 (en) Coupled optical waveguide resonators with heaters for thermo-optic control of wavelength and compound filter shape
US6377716B1 (en) Optical intensity modulator and switch comprising the same
US6823094B2 (en) Interferometer and its fabrication method
US6760499B2 (en) Birefringence compensated integrated optical switching or modulation device
US4737002A (en) Tunable optical directional couplers
US6366730B1 (en) Tunable optical waveguides
JPH0634925A (en) Optical waveguide circuit device
JP3573332B2 (en) Interferometric thermo-optical components
JP3691823B2 (en) Optical circuit device and method for controlling optical circuit device
JPH0954291A (en) Optical phase shifter and optical switch using the same
JP3800039B2 (en) Thermo-optic optical attenuator
JP3077719B2 (en) Thermo-optic phase shifter
JP3843762B2 (en) Waveguide type optical component with thin film heater and manufacturing method thereof
JP3835205B2 (en) Thermo-optic effect type optical attenuator
JP3965060B2 (en) Manufacturing method of waveguide type optical component with thin film heater
Takato et al. Silica-based single-mode waveguides and their applications to integrated-optic devices
JP2002221631A (en) Method for manufacturing interference device optical circuit
JP3459040B2 (en) Polymer thermo-optical waveguide device
JPH06222403A (en) Directional coupling type optical waveguide
JP4424455B2 (en) Manufacturing method of optical waveguide circuit
JPH0442103A (en) Optical waveguide device
JP2004279993A (en) Heat optical phase shifter