JPS63300217A - Temperature control type light guide - Google Patents

Temperature control type light guide

Info

Publication number
JPS63300217A
JPS63300217A JP13677887A JP13677887A JPS63300217A JP S63300217 A JPS63300217 A JP S63300217A JP 13677887 A JP13677887 A JP 13677887A JP 13677887 A JP13677887 A JP 13677887A JP S63300217 A JPS63300217 A JP S63300217A
Authority
JP
Japan
Prior art keywords
light guide
heater
layer
temp
entire surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13677887A
Other languages
Japanese (ja)
Other versions
JP2815140B2 (en
Inventor
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15183297&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS63300217(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62136778A priority Critical patent/JP2815140B2/en
Publication of JPS63300217A publication Critical patent/JPS63300217A/en
Application granted granted Critical
Publication of JP2815140B2 publication Critical patent/JP2815140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To lower electric power consumption and to prolong the life of the titled light guide by forming the light guide in the central part on the surface layer of a quartz substrate, covering the entire surface including this light guide with a buffer layer, providing a heater 4 facing the light guide thereon and constituting a protective layer of a low heat conductive material at the time of covering the entire surface with the protective layer. CONSTITUTION:The light guide 2 is formed to several-10mum at the center in the surface layer part of the substrate 1 consisting of quartz glass or the like by diffusion or ion exchange of Ti and the entire surface including this light guide is covered with the SiO2 buffer layer 3 of about 4mum thickness. The heater 4 having nearly the same size as the size of the light guide 2 is provided thereon so as to face the light guide and the SiO2 layer 5 having low heat conductivity is deposited over the entire surface inclusive of said heater while the thickness thereof is adjusted to about the same size as the depth of the light guide 2. Then, the heater 4 is merely required to increase the temp. by 20 deg.C at the most at the time of energizing the heater 4 to increase the temp. of the light guide 2. The electric power consumption of the temp. control type light guide is thus decreased and since the temp. is shut off by the protective layer 5, the longer life is obtd.

Description

【発明の詳細な説明】 〔概要〕 温度制御方式の光導波路において、低電力制御’Blの
ために、少なくともヒータが低熱伝導率の層で被覆され
ている。
DETAILED DESCRIPTION OF THE INVENTION [Summary] In a temperature-controlled optical waveguide, at least the heater is coated with a layer of low thermal conductivity for low power control 'Bl.

〔産業上の利用分野〕[Industrial application field]

本発明は光導波路に係り、とくに温度変化による屈折率
の変化を利用する先導波路に関する。
The present invention relates to an optical waveguide, and particularly to a guiding waveguide that utilizes changes in refractive index due to temperature changes.

〔従来の技術〕[Conventional technology]

石英ガラス等の基板に9例えばチタン(Ti)を拡散あ
るいはイオン交換法により導入することにより形成され
た導波路を用いる。いわゆるガラス導波路は、一般に、
導波路またはその近傍に温度変化を与えることにより生
じた屈折率の変化に基づく光路長の変化を利用する。こ
の先導波路を用いて、温度によって制御される1例えば
、光スィッチが構成される。上記の温度変化を与えるた
めに、導波路上またはその近傍に、これに沿ってヒータ
が設けられている。
A waveguide formed by introducing titanium (Ti), for example, into a substrate such as quartz glass by diffusion or ion exchange is used. The so-called glass waveguide is generally
It utilizes the change in optical path length based on the change in refractive index caused by applying a temperature change to the waveguide or its vicinity. This guide wavepath is used to construct a temperature-controlled optical switch, for example. In order to provide the above-mentioned temperature change, a heater is provided on or near the waveguide along the waveguide.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の光スィッチのヒータは、導波路の上に堆積された
金または銅の薄膜から成る。通常、このヒータは空気に
直接触れる構造であるために1発生した熱が導波路の加
熱に、効率的に用いられない。その結果、所要の温度変
化を生じさせるために、大きな電力を必要とし、かつ、
ヒータ自身は過熱により空気酸化を受け、劣化するため
に、短寿命であるとういう問題があった。
The heater of the optical switch described above consists of a thin film of gold or copper deposited on top of the waveguide. Normally, since this heater has a structure in which it comes into direct contact with air, the heat generated is not efficiently used for heating the waveguide. As a result, large amounts of power are required to produce the required temperature changes, and
The heater itself suffers from air oxidation due to overheating and deteriorates, resulting in a short lifespan.

(問題点を解決するための手段〕 上記従来の温度制御方式の光導波路における問題点は、
基板表面に形成された光導波路と、光導波路の上または
下または近傍に形成されたヒータと、少なくともヒータ
上に形成された電気的絶縁性の熱抵抗層とを有すること
を特徴とする本発明の光導波路により解決される。
(Means for solving the problems) The problems with the conventional temperature-controlled optical waveguide described above are as follows:
The present invention is characterized by having an optical waveguide formed on the surface of a substrate, a heater formed above, below, or near the optical waveguide, and an electrically insulating heat resistance layer formed at least on the heater. This problem is solved by optical waveguide.

〔作用〕[Effect]

温度制御方式の導波路型光スイッチにおいて。 In temperature-controlled waveguide optical switches.

少なくともヒータを熱抵抗層で被覆することよって、低
制御電力化と長寿命化された光スィッチを提供可能とし
た。
By covering at least the heater with a heat resistance layer, it is possible to provide an optical switch with lower control power and longer life.

〔実施例〕〔Example〕

、第2図は比較のために示した従来の温度制御方式の光
導波路の原理的構造図である。石英ガラス等の基板1に
は、チタン等を拡散あるいはイオン交換等の方法を用い
て導入することにより光導波路2が形成されている。基
板1における光導波路2が形成されている表面には、光
導波路2より僅かに屈折率の低い物質1通常、基板1の
石英と同質の二酸化珪素(Si02)から成る。厚さ4
μm程度のバッファ層3が形成されている。
, FIG. 2 is a diagram showing the principle structure of a conventional temperature-controlled optical waveguide for comparison. An optical waveguide 2 is formed by introducing titanium or the like into a substrate 1 made of quartz glass or the like using a method such as diffusion or ion exchange. On the surface of the substrate 1 on which the optical waveguide 2 is formed, a material 1 having a slightly lower refractive index than the optical waveguide 2 is usually made of silicon dioxide (Si02), which is the same as the quartz of the substrate 1. thickness 4
A buffer layer 3 having a thickness of approximately μm is formed.

さらに、バッファN3の上には1例えば1幅数μ鴎、厚
さ数1000人の金(Au)薄膜から成るヒータ4が、
光導波路2の直上もしくは光導波路2の近傍に設けられ
ている。図において141および42は1それぞれ、ヒ
ータ4のリード線部分および端子部分である。ヒータ4
を通電過熱することにより、基板lの導波路部分の温度
を上昇させる。その結果、この導波路部分の屈折率が変
化し、導波路の実効光路長が変化する。この先導波路を
2例えば、マツハツエンダ型導波路に構成し、光スィッ
チとして使用することができる。
Further, on top of the buffer N3, there is a heater 4 made of a gold (Au) thin film, for example, several microns wide and several thousand thick.
It is provided directly above the optical waveguide 2 or in the vicinity of the optical waveguide 2. In the figure, 141 and 42 are a lead wire portion and a terminal portion of the heater 4, respectively. Heater 4
By applying current and heating, the temperature of the waveguide portion of the substrate 1 is increased. As a result, the refractive index of this waveguide portion changes, and the effective optical path length of the waveguide changes. This guide waveguide can be constructed into a Matsuhatsu-Enda type waveguide, for example, and used as an optical switch.

第1図は本発明の温度制御型光導波路の構造を示す断面
図である。図において、第2図におけると同一部分には
同一符号を付しである。
FIG. 1 is a sectional view showing the structure of the temperature-controlled optical waveguide of the present invention. In the figure, the same parts as in FIG. 2 are given the same reference numerals.

図示のように1本発明の光導波路においては。As shown in the figure, in one optical waveguide of the present invention.

ヒータ4が設けられている基板1の表面に、熱抵抗層と
なる保護層5が形成されている。保護層5は、基板lの
光導波路2の部分と同等の、または。
A protective layer 5 serving as a heat resistance layer is formed on the surface of the substrate 1 on which the heater 4 is provided. The protective layer 5 is equivalent to the portion of the optical waveguide 2 of the substrate l, or.

より低い熱伝導性を有し1例えば、先導波路2の深さと
同程度の数μmないし108℃程度の厚さを有するSi
02層であって1通常の化学気相堆積(CVD)法、あ
るいはその他の薄膜技術を用いて形成される。
Si having lower thermal conductivity 1, for example, has a thickness of several μm to about 108° C., which is about the same depth as the leading waveguide 2.
02 layer 1 is formed using conventional chemical vapor deposition (CVD) or other thin film techniques.

第2図に示す従来の光導波路においては、ヒータ4から
発生する熱の大半は、直接大気中に放散されていたが、
上記の保護層5を導入することにより、少なくとも半分
は光導波路2の側に流れ。
In the conventional optical waveguide shown in FIG. 2, most of the heat generated from the heater 4 was directly dissipated into the atmosphere.
By introducing the above protective layer 5, at least half of the light flows to the optical waveguide 2 side.

その温度上昇に寄与する。その結果、従来、光導波路2
の部分において所定の屈折率変化を生じさせるためにヒ
ータ4の温度を9例えば100℃となるように電力供給
する必要があったものが1本発明の先導波路においては
、同じ屈折率変化を生じさせるためには、ヒータ4温度
を室温より高々20℃程度上昇させれば足りることにな
る。
contributes to the temperature rise. As a result, conventionally, the optical waveguide 2
In order to cause a predetermined change in the refractive index in the part, it was necessary to supply power so that the temperature of the heater 4 would be 9, for example, 100°C. In order to do so, it is sufficient to raise the temperature of the heater 4 by at most 20° C. above room temperature.

上記のように3本発明の温度制御型光導波路によれば、
従来の先導波路に比して低電力動作が可能となる。さら
に、ヒータ4は、その動作温度が低下され、また、保護
層5によって大気と遮断されているので、長寿命化が達
成される。
As mentioned above, according to the temperature-controlled optical waveguide of the present invention,
Lower power operation is possible compared to conventional leading waveguides. Further, since the operating temperature of the heater 4 is lowered and it is isolated from the atmosphere by the protective layer 5, a longer life is achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低電力・長寿命の温度側fIII型光
導波路を提供することができる効果がある。
According to the present invention, it is possible to provide a low-power, long-life, temperature-side fIII type optical waveguide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る温度制御型の光導波路の構造を示
す断面図。 第2図は比較のために示した従来の温度制御型率− の専波路梨毒=オ乎零の原理的構造図である。 図において。 1は基板。 2は先導波路。 3はバッファ層。 4はヒータ。 5は保護層。 41および42は、それぞれ、ヒータ4のリード線部分
および端子部分 である。 従−釆の尤体彼シ譬 猶2霞
FIG. 1 is a sectional view showing the structure of a temperature-controlled optical waveguide according to the present invention. FIG. 2 is a diagram showing the principle structure of a conventional temperature-controlled rate sensor for comparison. In fig. 1 is the board. 2 is the leading wave path. 3 is the buffer layer. 4 is a heater. 5 is a protective layer. 41 and 42 are a lead wire portion and a terminal portion of the heater 4, respectively. Follow - the meaning of the pot Heshi parable 2 Kasumi

Claims (1)

【特許請求の範囲】 基板表面に形成された光導波路と、 該光導波路の上または下または近傍に形成されたヒータ
と、 少なくとも該ヒータ上に形成された電気的絶縁性の熱抵
抗層 とから成ることを特徴とする温度制御型光導波路。
[Scope of Claims] An optical waveguide formed on the surface of a substrate, a heater formed above, below, or near the optical waveguide, and an electrically insulating heat resistance layer formed at least on the heater. A temperature-controlled optical waveguide characterized by:
JP62136778A 1987-05-29 1987-05-29 Temperature controlled optical waveguide Expired - Lifetime JP2815140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136778A JP2815140B2 (en) 1987-05-29 1987-05-29 Temperature controlled optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136778A JP2815140B2 (en) 1987-05-29 1987-05-29 Temperature controlled optical waveguide

Publications (2)

Publication Number Publication Date
JPS63300217A true JPS63300217A (en) 1988-12-07
JP2815140B2 JP2815140B2 (en) 1998-10-27

Family

ID=15183297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136778A Expired - Lifetime JP2815140B2 (en) 1987-05-29 1987-05-29 Temperature controlled optical waveguide

Country Status (1)

Country Link
JP (1) JP2815140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634925A (en) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457041U (en) * 1977-09-28 1979-04-20
JPS5893036A (en) * 1981-11-30 1983-06-02 Ricoh Co Ltd Light branching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457041U (en) * 1977-09-28 1979-04-20
JPS5893036A (en) * 1981-11-30 1983-06-02 Ricoh Co Ltd Light branching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634925A (en) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit device

Also Published As

Publication number Publication date
JP2815140B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JPS6155792B2 (en)
JP2020009719A (en) Light-emitting device and light source device
KR100326046B1 (en) Thermo-optic switch and method of forming the same
CN114249292A (en) MEMS infrared light source and manufacturing method thereof
JPS63300217A (en) Temperature control type light guide
JP2687362B2 (en) Optical switching element
JP4899393B2 (en) Waveguide-type variable optical attenuator
US4413160A (en) Ribbon-type loudspeaker
JP5282910B2 (en) Optical phase shifter
JPH1151893A (en) Contact combustion type gas sensor
JP2000091692A (en) Optical element mounting part structure
JPH0640847U (en) Infrared light source for microscopic infrared analyzer
JPH06103287B2 (en) Sensor element
JPS58102144A (en) Gas sensor
JPH06214128A (en) Optical waveguide circuit
JP7338657B2 (en) phase shifter
CN220340507U (en) Photoelectric waveguide device integrated with heating element and photoelectric device
JP4233731B2 (en) Substrate type optical device
JPS5897028A (en) Optical waveguide switch
JPS60254102A (en) Manufacture of optical circuit element
JPS62220850A (en) Atmosphere detector
JPS5970951A (en) Gas sensitive element
JPS58129402A (en) Optical waveguide
JP2004021249A (en) Thermooptic optical switch
JP2001147335A (en) Optical waveguide element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term