JPS58129402A - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JPS58129402A
JPS58129402A JP1205682A JP1205682A JPS58129402A JP S58129402 A JPS58129402 A JP S58129402A JP 1205682 A JP1205682 A JP 1205682A JP 1205682 A JP1205682 A JP 1205682A JP S58129402 A JPS58129402 A JP S58129402A
Authority
JP
Japan
Prior art keywords
waveguide
optical
substrate
coupling
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1205682A
Other languages
Japanese (ja)
Inventor
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP1205682A priority Critical patent/JPS58129402A/en
Publication of JPS58129402A publication Critical patent/JPS58129402A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To easily conduct the optical coupling of an optical waveguide to optical fibers with high coupling efficiency by placing heating elements on the coupling ends of the waveguide formed on a substrate whose refractive index changes in accordance with temp. CONSTITUTION:Ti is thermally diffused in an LiNbO3 substrate 1 to form a plane or linear optical waveguide 2, and Ni-Cr heating electrodes 11 are placed on the coupling ends of the waveguide 2. An optical deflector or other optical functional element is generally placed on the substrate 1. By supplying electric currents to the electrodes 11 from power sources 12, the electrodes 11 generate heat to heat the substrate 1, and the refractive index of the heated parts is increased. Accordingly, by making the refractive index of the parts under the electrodes 11 almost equal to that of the waveguide 2 by temp. control, the apertures of the waveguide 2 at the coupling ends are equivalenty extended.

Description

【発明の詳細な説明】 この発明は、温度によって屈折率が変化する材料を利用
した先導波器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveguide device using a material whose refractive index changes depending on temperature.

光フアイバ通信その他の光応用の技術においては、光フ
ァイバと基板上に形成された光導波路とを高い結合効率
で光結合させることが必要とされている。ところが、基
板上に熱拡散などの方法によって形成された光導波路の
拡散長は数μm程度であり、光ファイバのコアの径と大
きさが異なるので、結合が困難で、結合効率が低いとい
う問題がある。第1図にその様子が示されている。基板
(1)上に形成された光導波路(2)の深さは数μm程
度であるが、光ファイバ(3)の、クラッド層(5)で
被覆されたコア(4)の径はこれよりもはるかに大きい
。したがって、光ファイバ(3)と光導波路(2)との
光結合において、そのセツティングが困難であるととも
に界分布から決定される結合効率も決して高くはない。
2. Description of the Related Art In optical fiber communication and other optical application technologies, it is necessary to optically couple an optical fiber and an optical waveguide formed on a substrate with high coupling efficiency. However, the diffusion length of an optical waveguide formed on a substrate by a method such as thermal diffusion is about several μm, and the diameter and size of the optical fiber core are different, making coupling difficult and causing problems such as low coupling efficiency. There is. This situation is shown in Figure 1. The depth of the optical waveguide (2) formed on the substrate (1) is approximately several μm, but the diameter of the core (4) of the optical fiber (3) covered with the cladding layer (5) is smaller than this. is also much larger. Therefore, in the optical coupling between the optical fiber (3) and the optical waveguide (2), it is difficult to set up the optical coupling, and the coupling efficiency determined from the field distribution is not high.

また両者が最適位置からずれると結合効率が急激に低下
する。
Moreover, when both are shifted from the optimum position, the coupling efficiency decreases rapidly.

この発明の目的は、基板上に形成された光導波路と光フ
ァイバとの光結合が容易でかつ高い結合効率を得ること
のできる光導波器を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical waveguide that allows easy optical coupling between an optical waveguide formed on a substrate and an optical fiber and provides high coupling efficiency.

この発明による光導波器は、湿度によって屈折率が変化
する基板上に形成された先導波路の結合端部上に発熱体
が設けられていることを特徴とする。発熱体に電流を流
して発熱させることにより、発熱体下における基板の屈
折率が変化して、先導波路の結合端部の開口が等価的に
大きくなる。このため、先導波路と光ファイバとの結合
が容易となり、また光導波路の開口が広くなるために先
導波路に入射する光も多くなり、結合効率が高められる
。また光ファイバと先導波路との位置関係が最適結合状
態から多少ずれても結合効率が急激に減少するというこ
ともない。先導波路としては、平面的な層状のものおよ
び線状のものいずれにも適用しうる。
The optical waveguide according to the present invention is characterized in that a heating element is provided on the coupling end of a guiding waveguide formed on a substrate whose refractive index changes depending on humidity. By passing a current through the heating element to generate heat, the refractive index of the substrate under the heating element changes, and the opening at the coupling end of the leading waveguide becomes equivalently larger. Therefore, coupling between the guide waveguide and the optical fiber becomes easier, and since the aperture of the optical waveguide becomes wider, more light enters the guide waveguide, increasing the coupling efficiency. Further, even if the positional relationship between the optical fiber and the guide waveguide deviates from the optimal coupling state, the coupling efficiency does not suddenly decrease. As the leading waveguide, both a planar layered waveguide and a linear waveguide can be applied.

以下、第2図および第3図を参照してこの発明の実施例
について詳述する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 2 and 3.

第2図において、ニオブ酸リチウム結晶(LlNbos
) illを基板として、この結晶(1)の表面」二に
チタン(T1)を熱拡散することにより、平面的なまた
は線状の光導波路(2)が形成されている。
In Figure 2, lithium niobate crystal (LlNbos
) ill as a substrate, a planar or linear optical waveguide (2) is formed by thermally diffusing titanium (T1) onto the surface of this crystal (1).

LiNbO3は温度によってその屈折率が線形に変化し
、その変化率は1℃の温度変化に対して10 のオーダ
である。この光導波路(21の結合端部上に、リフト・
オフ法によってNi−0℃発熱電極(11)が作製され
ている。発熱電極(11)は、光導波路(2)が線状の
場合にはその全中をおおうように、また平面状の場合に
は光を入射および出射させるべき箇所に適当な範囲たと
えば光ファイバ(3)のコア(4)の径と同程度の大き
さにわたって設けられる。基板(1)上には一般には、
光偏向器その他の光機能素子が組立てられる。
The refractive index of LiNbO3 changes linearly with temperature, and the rate of change is on the order of 10 2 for a temperature change of 1°C. On the coupling end of this optical waveguide (21), lift
A Ni-0° C. heating electrode (11) is produced by an off-method. When the optical waveguide (2) is linear, the heating electrode (11) is placed so as to cover the entire inside of the optical waveguide (2), and when the optical waveguide (2) is planar, the heating electrode (11) is placed in an appropriate area at the point where light should enter and exit, for example, an optical fiber (2). It is provided over a size comparable to the diameter of the core (4) in 3). Generally, on the substrate (1),
Optical deflectors and other optical functional elements are assembled.

発熱電極Cl1lに電源0りによって電流を流すと電極
fillが発熱して電極011下の基板(1)の温度が
高くなり、第3図に破線で示すように、この部分の屈折
率が高くなる。したがって、温度を制御して電極(11
)下の屈折率1が光導波路(2)の屈折率とほぼ等しく
なるようにすることにより、先導波路(2)の結合端部
における開口は等価的−陵りなる。
When a current is passed through the heating electrode Cl1l when the power is turned off, the electrode fill generates heat and the temperature of the substrate (1) under the electrode 011 increases, and the refractive index of this part increases as shown by the broken line in Figure 3. . Therefore, by controlling the temperature, the electrode (11
) by making the refractive index 1 of the optical waveguide (2) approximately equal to the refractive index of the optical waveguide (2), the aperture at the coupling end of the leading waveguide (2) becomes an equivalent curve.

先導波路(2)の電極(111下の部分の屈折率も多少
高くなるが、屈折率は連続的に変化しているがら、光の
導波にはほとんど影響ない。
The refractive index of the portion below the electrode (111) of the leading waveguide (2) also increases somewhat, but although the refractive index changes continuously, it hardly affects the waveguide of light.

光導波路(2)の結合端部における開口が広くなること
により1だとえ光導波路(2)の深さがミクロン・オー
ダであってもこの開口の大きさは光ファイバ(3)のコ
アの径に近づき、光ファイバとの光結合のセツティング
が容易となり、この開口に入射する光も多くなるので結
合効率が高められる。開口から入射した光は先導波路(
2)に導かれる。また、光ファイバ(3)と先導波路(
2)の開口との位置関係が、最適結合状態から多少ずれ
ても結合効率が急激に低下するということもない。発熱
電極ti11を光の入射がわにのみ設けてもよい。
By widening the aperture at the coupling end of the optical waveguide (2), even if the depth of the optical waveguide (2) is on the order of microns, the size of this aperture is larger than that of the core of the optical fiber (3). As the aperture approaches the diameter of the aperture, it becomes easier to set up optical coupling with the optical fiber, and more light enters the aperture, increasing the coupling efficiency. The light incident from the aperture passes through the leading wavepath (
2). In addition, the optical fiber (3) and the leading waveguide (
Even if the positional relationship with the aperture (2) deviates somewhat from the optimal coupling state, the coupling efficiency will not drop suddenly. The heating electrode ti11 may be provided only on the side where light is incident.

なお、上記実施例においては基板としてLlNbosが
用いられているが、温度によって屈折率が変化するもの
であれば、他の材料を用いることができるのは言うまで
もない。また先導波路もT1の拡散以外の方法で形成し
うるし、発熱体もN i −Or以外のものを採用しう
る。−
Although LlNbos is used as the substrate in the above embodiment, it goes without saying that other materials can be used as long as the refractive index changes depending on temperature. Further, the leading waveguide may be formed by a method other than the diffusion of T1, and the heating element may be formed from a material other than Ni-Or. −

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す構成図、第2図および第3図はこ
の発明の実施例を示す構成図であって、第2図は発熱電
極に通電し、ていない状態を、第3図は通電している状
態をそれぞれ示している。 fil ee@ L i N b 03基板、f21e
*e光導波路、13i 用光ファイバ、+41 用コア
、tu) 用発熱N極。 以  」二 特許出願人  立石電機株式会社
FIG. 1 is a block diagram showing a conventional example, and FIGS. 2 and 3 are block diagrams showing an embodiment of the present invention. indicates a energized state. fil ee@L i N b 03 board, f21e
*e optical waveguide, optical fiber for 13i, core for +41, heat generating N pole for tu). Patent applicant: Tateishi Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 温度によって屈折率が変化する基板上に形成された光導
波路の結合端部上に発熱体が設けられている先導波器。
A waveguide device in which a heating element is provided on the coupling end of an optical waveguide formed on a substrate whose refractive index changes depending on temperature.
JP1205682A 1982-01-27 1982-01-27 Optical waveguide Pending JPS58129402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205682A JPS58129402A (en) 1982-01-27 1982-01-27 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205682A JPS58129402A (en) 1982-01-27 1982-01-27 Optical waveguide

Publications (1)

Publication Number Publication Date
JPS58129402A true JPS58129402A (en) 1983-08-02

Family

ID=11794939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205682A Pending JPS58129402A (en) 1982-01-27 1982-01-27 Optical waveguide

Country Status (1)

Country Link
JP (1) JPS58129402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064530A (en) * 2005-08-30 2007-03-15 Toshiba Corp Heating cooker
US8440948B2 (en) 2005-08-30 2013-05-14 Kabushiki Kaisha Toshiba Heating cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064530A (en) * 2005-08-30 2007-03-15 Toshiba Corp Heating cooker
US8440948B2 (en) 2005-08-30 2013-05-14 Kabushiki Kaisha Toshiba Heating cooker

Similar Documents

Publication Publication Date Title
US4753505A (en) Optical thermooptic switch device
JP2000137256A (en) Thermo-optical switch
JPS61210321A (en) Optical element
US4737002A (en) Tunable optical directional couplers
US20060210232A1 (en) Planar waveguide-based variable optical attenuator
JPH0943644A (en) Silica optical circuit switch and method
JP3512712B2 (en) Thermo-optic switch, method of manufacturing the same, and method of changing optical line using the same
JP2007266260A (en) Optical semiconductor device having phase control function
JPS58129402A (en) Optical waveguide
JP2720950B2 (en) Method of manufacturing tapered waveguide
US5119384A (en) Optical wavelength converter and method of manufacturing the same
JP3568814B2 (en) Variable optical attenuator
JPH0434505A (en) Optical waveguide type device and production thereof
JPS5897028A (en) Optical waveguide switch
JP2003075788A (en) Optical device
JPS5858524A (en) Optical switch
EP1787163B1 (en) Optical switch
JP2020106608A (en) Optical signal processing device and method of manufacturing optical signal processing device
JPH04204523A (en) Optical waveguide device
JP2000241838A (en) Digital thermo-optic optical switch
JPS63256928A (en) Optical waveguide switch
JP2004325601A (en) Optical attenuator
JP3835205B2 (en) Thermo-optic effect type optical attenuator
JPH05164926A (en) Optical branching and coupling unit
JPS6156329A (en) Thermo-optical switch