JP2884945B2 - Method for manufacturing optical waveguide device - Google Patents

Method for manufacturing optical waveguide device

Info

Publication number
JP2884945B2
JP2884945B2 JP4255904A JP25590492A JP2884945B2 JP 2884945 B2 JP2884945 B2 JP 2884945B2 JP 4255904 A JP4255904 A JP 4255904A JP 25590492 A JP25590492 A JP 25590492A JP 2884945 B2 JP2884945 B2 JP 2884945B2
Authority
JP
Japan
Prior art keywords
optical waveguide
titanium
waveguide device
substrate
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4255904A
Other languages
Japanese (ja)
Other versions
JPH0682646A (en
Inventor
義信 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4255904A priority Critical patent/JP2884945B2/en
Publication of JPH0682646A publication Critical patent/JPH0682646A/en
Application granted granted Critical
Publication of JP2884945B2 publication Critical patent/JP2884945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光導波路デバイスを製
造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical waveguide device.

【0002】[0002]

【従来の技術】光導波路デバイスとしての光スイッチ,
光変調器,光分波器等は、ほぼ同様の方法によって製造
可能である。ここでは、光導波路スイッチを例にとって
説明する。
2. Description of the Related Art An optical switch as an optical waveguide device,
The optical modulator, the optical demultiplexer, and the like can be manufactured by substantially the same method. Here, an optical waveguide switch will be described as an example.

【0003】従来、光導波路スイッチは、以下の要領で
製造されていた。すなわち、ニオブ酸リチウム(LiN
3)の基板上にチタン(Ti)を導波路形状に形成
し、1000〜1200℃の温度で前記チタンを熱拡散
させる。次に、チタンの拡散されたニオブ酸リチウムの
基板表面に二酸化珪素(SiO2)膜を形成し、さらに
その上に電極としてCr/Pt/Au膜を形成する。次
に前記Cr/Pt/Au膜をエッチングして、チタンの
拡散された部分の上部のみに前記Cr/Pt/Au膜を
残すことによって光導波路スイッチを得るものである。
Conventionally, an optical waveguide switch has been manufactured in the following manner. That is, lithium niobate (LiN
b 3) titanium (Ti) is formed on the waveguide shape on a substrate of, the titanium is thermally diffused at a temperature of 1000 to 1200 ° C.. Next, a silicon dioxide (SiO 2 ) film is formed on the substrate surface of lithium niobate in which titanium is diffused, and a Cr / Pt / Au film is formed thereon as an electrode. Next, the Cr / Pt / Au film is etched to leave the Cr / Pt / Au film only above the portion where titanium is diffused, thereby obtaining an optical waveguide switch.

【0004】[0004]

【発明が解決しようとする課題】従来の光導波路デバイ
スでは、デバイス動作させるための電圧を電極に印加す
ると、チタン熱拡散工程時に入り込んだ水素イオンがイ
オン伝導により電極に移動して分極が生じ、印加した電
圧により生じた電界を打ち消すという現象が生じる。こ
のため、打ち消された電界を補うための電圧を印加する
必要があるが、電圧増加によりさらに分極が大きくな
り、結局、印加電圧が時間とともに増加するという問題
が生じていた。
In the conventional optical waveguide device, when a voltage for operating the device is applied to the electrode, hydrogen ions entering during the titanium thermal diffusion step move to the electrode by ionic conduction, and polarization occurs. A phenomenon occurs in which the electric field generated by the applied voltage is canceled. For this reason, it is necessary to apply a voltage for compensating for the canceled electric field, but the increase in the voltage further increases the polarization, and as a result, the applied voltage increases with time.

【0005】本発明の目的は、動作電圧が長期間変動し
ない光導波路デバイスの製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing an optical waveguide device whose operating voltage does not fluctuate for a long period of time.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る光導波路デバイスの製造方法は、電気
光学効果を有する基板に不純物を熱拡散させて光導波路
を作製する光導波路デバイスの製造方法であって、電気
光学効果を有する基板に不純物を熱拡散させた後に、ア
ルカリ金属塩で前記基板の表面をイオン交換処理するも
である。
In order to achieve the above object, a method of manufacturing an optical waveguide device according to the present invention is directed to a method of manufacturing an optical waveguide by thermally diffusing an impurity into a substrate having an electro-optic effect. a method for manufacturing, electrical
After thermal diffusion of impurities into the substrate having the optical effect,
The surface of the substrate is subjected to an ion exchange treatment with a alkali metal salt.
Than it is.

【0007】[0007]

【作用】熱拡散工程では、雰囲気中の水蒸気により水素
イオンが結晶中に入り込む。このため、水素イオンが結
晶中で可動イオンとなり、結晶に電界をかけると、この
可動イオンが電界に沿って移動し、分極が生じる。そこ
で、アルカリ金属塩でイオン交換を行うことにより、可
動イオンである水素イオンを結晶中からイオン交換反応
で取り出し、分極を抑えることができる。
In the thermal diffusion step, hydrogen ions enter the crystal due to water vapor in the atmosphere. For this reason, hydrogen ions become mobile ions in the crystal, and when an electric field is applied to the crystal, the mobile ions move along the electric field, causing polarization. Therefore, by performing ion exchange with an alkali metal salt, hydrogen ions, which are mobile ions, can be extracted from the crystal by an ion exchange reaction, and polarization can be suppressed.

【0008】[0008]

【実施例】以下、この発明の実施例を図に基づいて詳細
に説明する。図1は、本発明の一実施例を説明するため
の光導波路デバイスの構造を示す要部断面図であり、本
発明の方法を光導波路スイッチの製造に適用した場合を
示す。図1において、1は、ニオブ酸リチウム基板,2
は、この基板1の表面に線状にチタンを拡散して形成さ
れたチタン拡散層であって、光を伝播する光導波路を形
成している。3は、チタン拡散層2を保護するためにニ
オブ酸リチウム基板1の表面に形成された二酸化珪素膜
である。4は、電極でクロム(Cr),白金(Pt),
金(Au)で構成され、チタン拡散層2の上に位置し、
二酸化珪素膜3上に形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view of a main part showing a structure of an optical waveguide device for explaining an embodiment of the present invention, and shows a case where the method of the present invention is applied to the manufacture of an optical waveguide switch. In FIG. 1, 1 is a lithium niobate substrate, 2
Is a titanium diffusion layer formed by diffusing titanium linearly on the surface of the substrate 1 and forms an optical waveguide for transmitting light. Reference numeral 3 denotes a silicon dioxide film formed on the surface of the lithium niobate substrate 1 to protect the titanium diffusion layer 2. Reference numeral 4 denotes electrodes, such as chromium (Cr), platinum (Pt),
It is made of gold (Au) and is located on the titanium diffusion layer 2.
It is formed on silicon dioxide film 3.

【0009】以下に上記構成の光導波路デバイスを製造
する場合について具体的に説明する。まず、0.8mm
程度の厚さのニオブ酸リチウム基板1の表面に厚さ約1
0μm,幅約10μmでチタンを線状に形成する。つい
で、1080℃程度の水蒸気雰囲気中で前記チタンを熱
拡散し、光を伝播する光導波路を形成する。その後、該
ニオブ酸リチウム基板1を溶融硝酸リチウム中でイオン
交換を行うが、イオン交換として硝酸リチウムに限定す
るものではなく、アルカリ金属塩であればそれ以外の物
質でも使用できる。
Hereinafter, the case of manufacturing the optical waveguide device having the above configuration will be specifically described. First, 0.8mm
The thickness of the lithium niobate substrate 1 having a thickness of about 1
Titanium is linearly formed with a thickness of 0 μm and a width of about 10 μm. Next, the titanium is thermally diffused in a steam atmosphere at about 1080 ° C. to form an optical waveguide for transmitting light. Thereafter, the lithium niobate substrate 1 is subjected to ion exchange in molten lithium nitrate, but the ion exchange is not limited to lithium nitrate, and any other alkali metal salt can be used.

【0010】しかる後に、ニオブ酸リチウム基板1のチ
タンが拡散された表面全体に二酸化珪素膜3を約800
オングストローム形成し、さらに二酸化珪素膜3上でチ
タン拡散層2の真上にあたる位置に幅約10μm,厚さ
約0.6μmの電極膜をクロム0.2μm,白金0.2
μm,金0.2μmの構成で形成して、図示の構造の光
導波路デバイスを作製した。
Thereafter, a silicon dioxide film 3 is coated on the entire surface of the lithium niobate substrate 1 where titanium is diffused for about 800
Angstrom is formed, and an electrode film having a width of about 10 μm and a thickness of about 0.6 μm is formed on the silicon dioxide film 3 immediately above the titanium diffusion layer 2 with a thickness of 0.2 μm for chromium and 0.2 μm for platinum.
An optical waveguide device having the structure shown in FIG.

【0011】図2は、このようにして製造された本発明
の光導波路スイッチと従来例との加速試験前後でのスイ
ッチング電圧の変動を示している。ここで、横軸は、電
極に印加する電圧(V),縦軸は、光導波路からの光出
力(mW)を示してあり、曲線11は、加速試験前の本
発明の光導波路スイッチと、従来例のスイッチング電圧
との光出力の特性を表している。曲線13は、60℃雰
囲気で24時間電圧を印加して加速試験を行った後の、
従来例のスイッチング電圧と光出力の特性を表したもの
で、曲線12は、60℃雰囲気で24時間電圧を印加し
て加速試験を行った後の本発明のスイッチング電圧と光
出力の特性を表したものである。
FIG. 2 shows the fluctuation of the switching voltage between the optical waveguide switch of the present invention thus manufactured and the conventional example before and after the acceleration test. Here, the horizontal axis represents the voltage (V) applied to the electrode, the vertical axis represents the optical output (mW) from the optical waveguide, and the curve 11 represents the optical waveguide switch of the present invention before the acceleration test, 7 shows characteristics of a light output with respect to a switching voltage in a conventional example. Curve 13 is obtained by performing an acceleration test by applying a voltage in a 60 ° C. atmosphere for 24 hours.
The curve 12 shows the characteristics of the switching voltage and the light output of the present invention after applying the voltage in a 60 ° C. atmosphere for 24 hours to perform an acceleration test. It was done.

【0012】図2から明らかなように、従来例では、加
速試験後に光出力が最大となる電圧が12も変化してい
た。これに対し、チタンの熱拡散後に溶融硝酸リチウム
中でニオブ酸リチウム基板にイオン交換を実施した本発
明例ではチタンの熱拡散工程時に結晶中に入り込んだ可
動イオンである水素イオンをイオン交換反応によって取
り除くので、分極が発生せず、スイッチング電圧の変動
が抑えられ、曲線12のように加速試験後も3V程度の
変動に抑えられた。その結果、従来のものに比べて、ス
イッチング電圧の変動を大幅に改善することができた。
なお、上述した実施例ではイオン交換物質として、硝酸
リチウムを使用しているが、他のアルカリ金属塩を使用
することもできる。以上実施例では、光導波路スイッチ
の例について説明したが、他の光導波路デバイスについ
ても全く同じである。
As apparent from FIG. 2, in the conventional example, the voltage at which the light output becomes maximum after the acceleration test has changed by as much as 12. In contrast, in the present invention example in which ion exchange was performed on the lithium niobate substrate in molten lithium nitrate after the thermal diffusion of titanium, hydrogen ions, which are mobile ions that entered the crystal during the thermal diffusion step of titanium, were subjected to an ion exchange reaction. Since it was removed, polarization did not occur, and the fluctuation of the switching voltage was suppressed. As shown by the curve 12, the fluctuation was suppressed to about 3 V even after the acceleration test. As a result, the fluctuation of the switching voltage was significantly improved as compared with the conventional one.
In the above-described embodiment, lithium nitrate is used as the ion exchange material, but another alkali metal salt can be used. In the above embodiment, the example of the optical waveguide switch has been described, but the same applies to other optical waveguide devices.

【0013】[0013]

【発明の効果】以上詳述したように、本発明の方法によ
れば、チタンを熱拡散した後に、アルカリ金属塩でイオ
ン交換することにより、熱拡散によって結晶中に入り込
んだ可動イオンである水素イオンを取り除くので、イオ
ン伝導による分極が抑えられ、寿命,信頼性を大幅に向
上できる効果を有する。
As described above in detail, according to the method of the present invention, titanium is thermally diffused and then ion-exchanged with an alkali metal salt, whereby hydrogen, which is a mobile ion that has entered the crystal by thermal diffusion, is obtained. Since ions are removed, polarization due to ionic conduction is suppressed, and the life and reliability can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る製造方法の一実施例を説明するた
めの光導波路スイッチの構造を示す要部断面図である。
FIG. 1 is a cross-sectional view of a main part showing a structure of an optical waveguide switch for explaining an embodiment of a manufacturing method according to the present invention.

【図2】実施例により得られた光導波路スイッチと従来
例とを比較して示すもので、加速試験前後での光パワ
ー,スイッチング電圧特性図である。
FIG. 2 is a graph showing a comparison between an optical waveguide switch obtained according to an example and a conventional example, showing optical power and switching voltage characteristics before and after an acceleration test.

【符号の説明】[Explanation of symbols]

1 ニオブ酸リチウム基板(LiNbO3) 2 チタン拡散層 3 二酸化珪素膜(SiO2) 4 電極(Cr/Pt/Au) 11 加速試験前の光パワー,スイッチング電圧特性 12 加速試験後の本発明での光パワー,スイッチング
電圧特性 13 加速試験後の従来例の光パワー,スイッチング電
圧特性
DESCRIPTION OF SYMBOLS 1 Lithium niobate substrate (LiNbO 3 ) 2 Titanium diffusion layer 3 Silicon dioxide film (SiO 2 ) 4 Electrode (Cr / Pt / Au) 11 Optical power and switching voltage characteristics before acceleration test 12 In the present invention after acceleration test Optical power and switching voltage characteristics 13 Conventional optical power and switching voltage characteristics after accelerated test

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気光学効果を有する基板に不純物を熱
拡散させて光導波路を作製する光導波路デバイスの製造
方法であって、電気光学効果を有する基板に不純物を熱拡散させた後
に、アルカリ金属塩で前記基板の表面をイオン交換処理
する ことを特徴とする光導波路デバイスの製造方法。
1. A method of manufacturing an optical waveguide device in which an impurity is thermally diffused into a substrate having an electro-optic effect to produce an optical waveguide , wherein the impurity is thermally diffused into the substrate having an electro-optic effect.
Then, the surface of the substrate is subjected to ion exchange treatment with an alkali metal salt.
A method of manufacturing an optical waveguide device.
JP4255904A 1992-08-31 1992-08-31 Method for manufacturing optical waveguide device Expired - Fee Related JP2884945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4255904A JP2884945B2 (en) 1992-08-31 1992-08-31 Method for manufacturing optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4255904A JP2884945B2 (en) 1992-08-31 1992-08-31 Method for manufacturing optical waveguide device

Publications (2)

Publication Number Publication Date
JPH0682646A JPH0682646A (en) 1994-03-25
JP2884945B2 true JP2884945B2 (en) 1999-04-19

Family

ID=17285190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4255904A Expired - Fee Related JP2884945B2 (en) 1992-08-31 1992-08-31 Method for manufacturing optical waveguide device

Country Status (1)

Country Link
JP (1) JP2884945B2 (en)

Also Published As

Publication number Publication date
JPH0682646A (en) 1994-03-25

Similar Documents

Publication Publication Date Title
JPH0784228A (en) Dielectric optical waveguide device
JPH0452922B2 (en)
US6436614B1 (en) Method for the formation of a thin optical crystal layer overlying a low dielectric constant substrate
JP2884945B2 (en) Method for manufacturing optical waveguide device
US5521750A (en) Process for forming proton exchange layer and wavelength converting element
JP2000352700A (en) Optical waveguide device
JP2001133743A (en) Electrooptical element and its manufacturing method
JP3021888B2 (en) Optical waveguide functional element and method of manufacturing the same
JP4137680B2 (en) Manufacturing method of light control element
JP3213619B2 (en) Method for manufacturing optical waveguide device and optical waveguide device
JPH05215927A (en) Optical integrated circuit and its production
JP7564563B2 (en) Laser chip and its manufacturing method
US7394588B2 (en) Wavelength converter structure and method for preparing the same
JPS59181318A (en) Manufacture of optical waveguide
JPS63250611A (en) Production of light guide
JP2503880B2 (en) Light control device manufacturing method
JP3932242B2 (en) Method for forming optical waveguide element
JPH03249626A (en) Optical ic element
JP2003215379A (en) Method for producing optical waveguide element
JP2890781B2 (en) Fabrication method of optical waveguide
JPH10301069A (en) Production of waveguide type optical control element
JP3549374B2 (en) Manufacturing method of polarization diffraction element
KR100234915B1 (en) Integrated optical device and method of fabricating the same
US20080106785A1 (en) Segmenting Method For Preparing A Periodically Poled Structure
JPH1114850A (en) Manufacture of optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees