JP3549374B2 - Manufacturing method of polarization diffraction element - Google Patents

Manufacturing method of polarization diffraction element Download PDF

Info

Publication number
JP3549374B2
JP3549374B2 JP26292597A JP26292597A JP3549374B2 JP 3549374 B2 JP3549374 B2 JP 3549374B2 JP 26292597 A JP26292597 A JP 26292597A JP 26292597 A JP26292597 A JP 26292597A JP 3549374 B2 JP3549374 B2 JP 3549374B2
Authority
JP
Japan
Prior art keywords
crystal
diffraction element
polarization diffraction
proton exchange
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26292597A
Other languages
Japanese (ja)
Other versions
JPH1184120A (en
Inventor
直樹 花島
透 木練
栄樹 小室
英明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP26292597A priority Critical patent/JP3549374B2/en
Publication of JPH1184120A publication Critical patent/JPH1184120A/en
Application granted granted Critical
Publication of JP3549374B2 publication Critical patent/JP3549374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光記録や光情報処理等の光の偏光を利用する分野において使用される、入射偏光によってその回折特性が異なる偏光回折素子の製造方法に関する。
【0002】
【従来の技術】
プリズム等による高価で大型な偏光素子に対し、特開平6−27322に開示されているように小型化や低価格化に有利な異方性結晶を用いた回折格子型の偏光回折素子が提案されている。この素子はニオブ酸リチウム結晶表面にプロトン交換を行いその屈折率変化の異方性を利用して、ある偏光成分をほとんど透過させる一方、それとは直角な方向の偏光のほとんどを回折させる機能を有している。
イオン交換領域を有する偏光回折素子の回折特性は、プロトン交換による屈折率変化(△n)とその交換深さ(d)及び、図1のように位相調整方法として溝を用いる場合には溝深さ(g)によって決まり、ある波長(λ)の一つの偏光が完全に回折されるためには、イオン交換領域と非交換領域の光路差が波長の半整数倍であればよく、その偏光方向に対する結晶基板の屈折率をn、空気の屈折率を1とし、mを整数として次式に従うことを要する:
【数1】
△nd−(n−1)g=(m+1/2)λ
従って前記回折条件は使用する光の波長に依存する。通常、前記結晶中へプロトン交換した場合、異常光に対する屈折率変化は△ne=0.13程度及び常光に対する屈折率変化は△no=−0.04程度であり、通常使用される波長が500nm以上の光に対しては、少なくとも一つの偏光成分を完全に回折させるために必要なイオン交換領域の深さは1μm以上となる。
【0003】
このプロトン交換を施した偏光回折素子は大きな屈折率変化が得られる反面、この素子にはイオン交換領域の結晶性が劣化してしまうという問題がある。例えば文献「A.Campari et al. “Strain in and surface damage induced by proton exchange in Y‐cut LiNbO3”,J.Appl.Phys.,Vol.58,No.12,pp.4521,1985」には、ニオブ酸リチウム結晶のYカット基板に0.2μm(2,000オングストロ−ム)以上の深さのイオン交換を行うと結晶表面にクラック等が生じることが記載されており、イオン交換領域の深さが大きくなると結晶表面に微細なクラックが多数が発生し、プロトン交換の再現性の劣化や透過する光の散乱損失が増加してしまうという問題が指摘されている。
この問題に対し、プロトン交換を行う領域に予め金属を熱拡散することが提案されている(特開平2−12105)。この方法は十分な熱拡散を行うために1050℃で7〜8時間もの時間を必要とし、昇降温の時間を含めるとほぼまる一日を費やすことになり、極めて生産効率が悪いという欠点があった。
【0004】
【発明が解決しようとする課題】
この発明の目的は、生産効率の悪い金属の熱拡散による方法等を行わずに、イオン交換を行う前に結晶基板の表面や更に内部の歪みを除去する前処理を行うことで、イオン交換によって生じるクラックの発生を抑え、生産性や再現性のよい偏光回折素子の製造を可能にすることにある。またその結果、クラックのない低損失な偏光回折素子を得ることが可能となる。
【0005】
【課題を解決するための手段】
一般にニオブ酸リチウムなどの光学結晶では、表面の研磨などにより生じる加工変質層及び加工歪みや結晶中のプロトン濃度及び組成の変動などによるバラツキが存在するため、光導波路デバイスのような結晶基板の表面近傍を用いるものでは、これらがデバイス特性に大きな影響を及ぼすと言われている。これは偏光回折素子の場合も同様であって、プロトン交換は結晶格子を変形させることから結晶自身に内在する歪みがクラック発生に大きく影響してしまうことは避けられない。
この発明はプロトン交換によって生じるクラックを防止するために、プロトン交換前に結晶基板に前処理を行うことにより結晶表面や内部の歪みを除去することを特徴とし、例えば熱処理により結晶の歪みの緩和することやエッチングにより結晶の歪みの緩和や加工変質層の除去し得ることも特徴とする。
【0006】
この発明において異方性結晶としてはニオブ酸リチウム、タンタル酸リチウム及びその固融体等が用いられる。これらを用いた場合、イオン交換としてはプロトン交換が一般的であり、加熱溶融した安息香酸やピロリン酸にこの結晶基板を浸漬することでプロトン交換が行なわれる。例えば図1又は2のようにニオブ酸リチウム基板を1を一定間隔でプロトン交換してプロトン交換領域2を形成する。安息香酸を用いた場合には偏波消光比を高めるための位相調整の手段として図2に示すように酸化ニオブなど誘電体膜による位相調整膜4を付与したり、ピロリン酸を用いた場合には図1に示すようにフッ酸によるプロトン交換領域の選択エッチングによって位相調整溝3を形成することにより位相調整を行うなどの方法がとられる。
前記結晶基板は一軸異方性をもち、偏光素子として機能させるために通常その光学軸が基板表面の面内に含まれるような結晶基板が用いられ、この一軸結晶板は面方位の違いによりXカット又はYカットと名づけられる。この発明はXカット及びYカットの結晶基板の双方に適用することができる。結晶品質は基板内でのサブグレインの有無や不純物の含有量によって、通常の光学用途として用いられる高価な高品質タイプと結晶の均一性が劣る安価な低級タイプに分類されるが、この発明による方法を用いれば結晶の品質によらずに再現性のよいプロトン交換が可能になり、そのためかかる安価な結晶基板を用いても高品質のイオン交換領域を形成することができるので、その結果安価な偏光回折素子を作製することが可能になる。
【0007】
この発明の偏光回折素子は以下の工程で作成される:
1)まずニオブ酸リチウム等の単結晶を作成する。
2)単結晶から基板を切り出しウェハーを作成する。
3)ウェハーを研磨する。本工程で加工歪みが発生すると考えられる。
4)ウェハーに歪みを除去するための前処理を施す。
5)フォトリソグラフィーの技術を用い、またウェハーを安息香酸等に浸漬して格子状にプロトン交換領域を形成する。
6)誘電体膜付与や選択エッチングにより偏光回折素子の位相調整を行なう。
通常上記3)の工程と5)の工程との間においては結晶表面の酸洗等は行なわれない。しかし、この発明は3)と5)の工程の間で前記前処理を行なうことにより、プロトン交換直前に結晶表面や内部の歪みを除去する点に特徴がある。この発明の前処理を施した場合にはその後プロトン交換してもクラック等の欠陥がほとんど生じないため、懸念される結晶の組成変動が起きていないことがわかる。
【0008】
プロトン交換前に行う熱処理方法としては、結晶表面や内部の歪みを除去するためには300℃以上で1時間以上の加熱を行うことが好ましいが、この処理によって酸素やリチウムの外拡散などの結晶品質の劣化が生しない範囲で条件が決められる。またこの熱処理はキュリー温度を上限として行なわれ、ニオブ酸リチウムの結晶の場合は約1200℃である。また例えばニオブ酸リチウムのリチウムが外拡散する不都合を避ける場合には約900℃以下で加熱処理を行なう。熱処理雰囲気は大気中、乾燥酸素中又は湿潤空気中など使用する結晶品質に応じて適切に決められる。また加熱処理は薬品を用いないため薬品による成分溶出等による組成変動のおそれがないという利点もある。
一方、エッチング処理方法としては、酸、アルカリ溶液による湿式や反応性イオンエッチング(RlE)などの乾式方法があり、いずれの方法も結晶表面や内部の歪みを除去するという目的に適えば可能である。酸としては、例えば、フッ酸、硝酸、リン酸、有機酸、それらの混合物等、アルカリとしては、例えば、水酸化ナトリウムや水酸化カリウム等、乾式方法としては、例えば、アルゴンや塩素系ガス等を用いることができる。
【0009】
【実施例】
実施例1
この発明の偏光回折素子(その構造を図1に示す)を作製する方法の一例として熱処理による結晶表面の歪み緩和を行った。まずXカットニオブ酸リチウム基板1を700℃で1時間アニール処理を行ったあと、表面にイオン交換のマスクとして一定間隔(50μm)の格子状のタンタルマスクパターンを通常のフォトリソグラフィのテクニックで形成する。その後230℃のピロリン酸中に2時間浸漬し深さ2.4μmのプロトン交換領域2を形成した後、フッ酸によりプロトン交換領域の表面層をエッチング除去して位相調整溝3を形成し同時にタンタルマスクを溶融し、所望の素子を作製した。またプロトン交換前に熱処理を行わなかったものを比較試料とした。図4に示すように比較試料は格子に垂直な方向に微細なクラックが多数発生しているのに対し、この実施例のプロトン交換後の素子表面の様子は図3に示すように微細クラックが大幅に減少していることがわかる。また、この偏光回折素子に反射防止膜を施した後に、λ=780nmにおける透過率(±1次光と0次光の和を入射光量で除したもの)を測定すると、処理を行なわなかった場合にその透過率は40%以下であるのに対し、この実施例のものは前記クラックの減少に伴う散乱損失の低下によってこの透過率が80%以上と大きく改善した。
実施例2
また、実施例1と同じ結晶基板を50%のフッ化水素酸に20分浸漬して結晶表面をエッチングした後に、実施例1と同様に230℃で2時間のピロリン酸によるプロトン交換を行った場合にも、この偏光回折素子の表面は図3とほぼ同様の表面となり、かかる処理を行なわなかったものに比べ微細クラックが大幅に減少した。かかるエッチング処理により結晶内部及び表面の歪みが十分に除去されていることがわかる。
【0010】
【発明の効果】
この発明においては、プロトン交換時において結晶内部及び表面の歪みが十分に除去されているため、プロトン交換後のクラックの発生が抑制され、低損失な偏光回折素子が再現性よく作製できる。また結晶の品質によらずに再現性のよいプロトン交換が可能になり、そのため結晶の均一性が劣る安価な結晶基板を用いても高品質のイオン交換領域を形成することができるので、その結果安価な偏光回折素子を作製することが可能になる。
【図面の簡単な説明】
【図1】偏光回折素子の概略図である。
【図2】偏光回折素子の他の例の概略図である。
【図3】この発明による偏光回折素子の表面写真である。
【図4】前処理を行なわない偏光回折素子の表面写真である。
【符号の説明】
1 ニオブ酸リチウム基板
2 プロトン交換領域
3 位相調整溝
4 位相調整膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a polarization diffraction element used in the field of utilizing the polarization of light, such as optical recording and optical information processing, whose diffraction characteristics differ depending on the incident polarization.
[0002]
[Prior art]
For an expensive and large polarizing element using a prism or the like, a diffraction grating type polarizing diffraction element using an anisotropic crystal which is advantageous for miniaturization and cost reduction has been proposed as disclosed in JP-A-6-27322. ing. This element has the function of exchanging protons on the surface of lithium niobate crystal and utilizing the anisotropy of the change in the refractive index to transmit most of a certain polarized light component, while diffracting most of the polarized light in a direction perpendicular to that. are doing.
The diffraction characteristics of a polarization diffraction element having an ion exchange region include a refractive index change (Δn) due to proton exchange and its exchange depth (d), and a groove depth when a groove is used as a phase adjustment method as shown in FIG. In order for one polarized light of a certain wavelength (λ) to be completely diffracted, the optical path difference between the ion-exchange region and the non-exchange region should be a half integral multiple of the wavelength. Where n is the refractive index of the crystal substrate, 1 is the refractive index of air, and m is an integer with respect to
(Equation 1)
Δnd− (n−1) g = (m + /) λ
Therefore, the diffraction condition depends on the wavelength of the light used. Usually, when protons are exchanged into the crystal, the change in the refractive index for extraordinary light is about △ ne = 0.13 and the change in the refractive index for ordinary light is about −no = −0.04, and the wavelength normally used is 500 nm. With respect to the above light, the depth of the ion exchange region required to completely diffract at least one polarization component is 1 μm or more.
[0003]
Although a large refractive index change can be obtained in the polarization diffraction element subjected to the proton exchange, this element has a problem that the crystallinity of the ion exchange region is deteriorated. For example, in the document "A. Campari et al.," Strain in and surface damage induced by proton exchange in Y-cut LiNbO3 ", J. Appl. Phys., Vol. 58, No. 12, p. It is described that when ion exchange of a depth of 0.2 μm (2,000 angstroms) or more is performed on a lithium niobate crystal Y-cut substrate, cracks or the like occur on the crystal surface. It has been pointed out that when the particle size becomes large, many fine cracks are generated on the crystal surface, and the reproducibility of proton exchange deteriorates and the scattering loss of transmitted light increases.
To solve this problem, it has been proposed to thermally diffuse a metal in advance into a region where proton exchange is performed (Japanese Patent Laid-Open No. 2-12105). This method requires as long as 7 to 8 hours at 1050 ° C. in order to perform sufficient heat diffusion, and it takes almost a whole day when the time for raising and lowering the temperature is included, resulting in extremely low production efficiency. Was.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to perform a pretreatment for removing the entire surface of the crystal substrate and further distortion inside the crystal substrate before performing the ion exchange without performing a method based on thermal diffusion of a metal having a low production efficiency. An object of the present invention is to suppress the generation of cracks caused by the above, and to manufacture a polarization diffraction element with good productivity and reproducibility. As a result, it is possible to obtain a low-loss cracking-free polarization diffraction element.
[0005]
[Means for Solving the Problems]
In general, an optical crystal such as lithium niobate has an affected layer caused by polishing of the surface and a variation due to a processing strain, a change in a proton concentration and a composition in the crystal, and the like. It is said that these have a great effect on device characteristics when using the neighborhood. This is the same in the case of the polarization diffraction element. Since the proton exchange deforms the crystal lattice, it is inevitable that the distortion inherent in the crystal itself greatly affects the crack generation.
The present invention is characterized in that, in order to prevent cracks caused by proton exchange, the crystal substrate is subjected to a pre-treatment before the proton exchange to remove the crystal surface and internal strains. It is also characterized by the fact that crystal distortion can be relaxed and the affected layer can be removed by etching.
[0006]
In the present invention, as the anisotropic crystal, lithium niobate, lithium tantalate and a solid melt thereof are used. When these are used, proton exchange is generally used as ion exchange, and proton exchange is performed by immersing the crystal substrate in benzoic acid or pyrophosphoric acid that has been heated and melted. For example, as shown in FIG. 1 or 2, a proton exchange region 2 is formed by proton-exchanging a lithium niobate substrate 1 at regular intervals. When benzoic acid is used, a phase adjusting film 4 made of a dielectric film such as niobium oxide is applied as shown in FIG. 2 as a phase adjusting means for increasing the polarization extinction ratio, or when pyrophosphoric acid is used. As shown in FIG. 1, a method of performing phase adjustment by forming a phase adjustment groove 3 by selective etching of a proton exchange region with hydrofluoric acid is used.
The crystal substrate has a uniaxial anisotropy, and a crystal substrate whose optical axis is included in the plane of the substrate surface is usually used in order to function as a polarizing element. It is named cut or Y-cut. The present invention can be applied to both X-cut and Y-cut crystal substrates. Crystal quality is classified into expensive high-quality type used for ordinary optical applications and inexpensive low-grade type with poor crystal uniformity according to the presence or absence of sub-grains and the content of impurities in the substrate. The method enables proton exchange with good reproducibility regardless of the quality of the crystal, so that a high-quality ion exchange region can be formed even by using such an inexpensive crystal substrate. It becomes possible to produce a polarization diffraction element.
[0007]
The polarization diffraction element of the present invention is made by the following steps:
1) First, a single crystal such as lithium niobate is prepared.
2) Cut a substrate from the single crystal to create a wafer.
3) Polish the wafer. It is considered that processing distortion occurs in this step.
4) Pre-treat the wafer to remove distortion.
5) Using a photolithography technique, the wafer is immersed in benzoic acid or the like to form a proton exchange region in a lattice.
6) The phase of the polarization diffraction element is adjusted by applying a dielectric film or by selective etching.
Usually, between the step 3) and the step 5), pickling of the crystal surface is not performed. However, the present invention is characterized in that the pretreatment is performed between the steps 3) and 5) to remove distortions on the crystal surface and inside immediately before proton exchange. When the pretreatment according to the present invention is performed, defects such as cracks hardly occur even when proton exchange is performed thereafter, and it can be seen that there is no fear of a fluctuation in the composition of the crystal.
[0008]
As a heat treatment method performed before proton exchange, it is preferable to perform heating at 300 ° C. or more for 1 hour or more in order to remove crystal surface and internal strains. The conditions are determined within a range where quality deterioration does not occur. This heat treatment is performed with the Curie temperature as the upper limit, and is about 1200 ° C. in the case of lithium niobate crystals. Further, for example, in order to avoid the disadvantage that lithium niobate is diffused out, the heat treatment is performed at about 900 ° C. or less. The heat treatment atmosphere is appropriately determined depending on the crystal quality used, such as in the air, in dry oxygen, or in humid air. In addition, since the heat treatment does not use a chemical, there is also an advantage that there is no possibility of a composition change due to elution of components due to the chemical.
On the other hand, as an etching method, there are a wet method using an acid or alkali solution and a dry method such as reactive ion etching (RIE), and any method can be used as long as it is suitable for the purpose of removing crystal surface and internal strain. . Examples of the acid include hydrofluoric acid, nitric acid, phosphoric acid, organic acids, and mixtures thereof. Examples of the alkali include sodium hydroxide and potassium hydroxide. Examples of the dry method include argon and chlorine-based gas. Can be used.
[0009]
【Example】
Example 1
As an example of a method for manufacturing the polarization diffraction element of the present invention (the structure of which is shown in FIG. 1), the strain on the crystal surface was relaxed by heat treatment. First, the X-cut lithium niobate substrate 1 is annealed at 700 ° C. for 1 hour, and then a lattice-like tantalum mask pattern at a constant interval (50 μm) is formed on the surface as a mask for ion exchange by ordinary photolithographic techniques. . After immersion in pyrophosphoric acid at 230 ° C. for 2 hours to form a proton exchange region 2 having a depth of 2.4 μm, the surface layer of the proton exchange region was etched away with hydrofluoric acid to form a phase adjusting groove 3 and at the same time tantalum. The mask was melted to produce a desired device. In addition, a sample that was not heat-treated before proton exchange was used as a comparative sample. As shown in FIG. 4, in the comparative sample, many fine cracks were generated in the direction perpendicular to the lattice. On the other hand, the state of the element surface after proton exchange in this example was as shown in FIG. It can be seen that it has been greatly reduced. Further, when the transmittance at λ = 780 nm (the sum of ± first-order light and zero-order light divided by the incident light amount) is measured after applying an antireflection film to the polarization diffraction element, no processing is performed. The transmittance was 40% or less, whereas the transmittance of this embodiment was greatly improved to 80% or more due to a decrease in scattering loss accompanying the decrease in cracks.
Example 2
The same crystal substrate as in Example 1 was immersed in 50% hydrofluoric acid for 20 minutes to etch the crystal surface, and then subjected to proton exchange with pyrophosphoric acid at 230 ° C. for 2 hours in the same manner as in Example 1. Also in this case, the surface of this polarization diffraction element was almost the same as that shown in FIG. 3, and the number of fine cracks was significantly reduced as compared with the case where no such treatment was performed. It can be seen that the distortion inside and on the surface of the crystal was sufficiently removed by such an etching treatment.
[0010]
【The invention's effect】
In the present invention, since the distortion inside the crystal and the surface during the proton exchange are sufficiently removed, the occurrence of cracks after the proton exchange is suppressed, and a low-loss polarization diffraction element can be manufactured with good reproducibility. In addition, proton exchange with good reproducibility becomes possible regardless of the quality of the crystal, so that a high-quality ion exchange region can be formed even by using an inexpensive crystal substrate having poor crystal uniformity. An inexpensive polarization diffraction element can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic view of a polarization diffraction element.
FIG. 2 is a schematic view of another example of the polarization diffraction element.
FIG. 3 is a surface photograph of a polarization diffraction element according to the present invention.
FIG. 4 is a photograph of the surface of a polarization diffraction element without pretreatment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium niobate substrate 2 Proton exchange area 3 Phase adjustment groove 4 Phase adjustment film

Claims (3)

異方性結晶表面に格子状のイオン交換領域を設けた偏光回折素子の製造方法において、イオン交換を行う前に、前記異方性結晶表面の全面に対して、前記異方性結晶中の歪みを除去する前処理を行うことを特徴とする偏光回折素子の製造方法。The method of manufacturing a polarization diffraction element in the anisotropic crystal surface provided with a lattice-like ion exchange region, before the ion exchange, the entire surface of the front Symbol anisotropic crystal surface, in the anisotropic crystal A method for manufacturing a polarization diffraction element, comprising performing a pretreatment for removing distortion. 前記前処理が加熱処理である請求項1に記載の偏光回折素子の製造方法。The method for manufacturing a polarization diffraction element according to claim 1, wherein the pretreatment is a heat treatment. 前記前処理がエッチング処理である請求項1に記載の偏光回折素子の製造方法。The method for manufacturing a polarization diffraction element according to claim 1, wherein the pretreatment is an etching treatment.
JP26292597A 1997-09-11 1997-09-11 Manufacturing method of polarization diffraction element Expired - Fee Related JP3549374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26292597A JP3549374B2 (en) 1997-09-11 1997-09-11 Manufacturing method of polarization diffraction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26292597A JP3549374B2 (en) 1997-09-11 1997-09-11 Manufacturing method of polarization diffraction element

Publications (2)

Publication Number Publication Date
JPH1184120A JPH1184120A (en) 1999-03-26
JP3549374B2 true JP3549374B2 (en) 2004-08-04

Family

ID=17382503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26292597A Expired - Fee Related JP3549374B2 (en) 1997-09-11 1997-09-11 Manufacturing method of polarization diffraction element

Country Status (1)

Country Link
JP (1) JP3549374B2 (en)

Also Published As

Publication number Publication date
JPH1184120A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
US5029988A (en) Birefringence diffraction grating type polarizer
JPH1073722A (en) Polarizing optical element and its production
US20110123163A1 (en) Stable Lithium Niobate Waveguides, And Methods Of Making And Using Same
JP2574594B2 (en) Optical waveguide device and manufacturing method thereof
JP3549374B2 (en) Manufacturing method of polarization diffraction element
JP4665162B2 (en) Optical element and manufacturing method thereof
CA2369673C (en) A method for fabricating an optical waveguide device
JP2882234B2 (en) Method of manufacturing polarization splitting element and optical information processing device
JP4137680B2 (en) Manufacturing method of light control element
JP2606525B2 (en) Optical waveguide device and manufacturing method thereof
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JP2958408B2 (en) Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same
JPH06174908A (en) Production of waveguide type diffraction grating
JP2001264554A (en) Optical device
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element
JP3347771B2 (en) Method for forming proton exchange layer
JPH05289131A (en) Waveguide type shg element having partial polarization inversion structure and its production
JP3932242B2 (en) Method for forming optical waveguide element
JP2007213100A (en) Optical waveguide device
JPH06289345A (en) Optical waveguide element
RU2044337C1 (en) Method of forming periodical domain structure in potassium-titanium-phosphate crystal for nonlinear transforming of laser radiation frequency
JPH06281829A (en) Single mode optical waveguide
JP2012118353A (en) Polarization optical element for uv light
JPH0682646A (en) Production of optical waveguide device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees