JP2574594B2 - Optical waveguide device and manufacturing method thereof - Google Patents
Optical waveguide device and manufacturing method thereofInfo
- Publication number
- JP2574594B2 JP2574594B2 JP4133248A JP13324892A JP2574594B2 JP 2574594 B2 JP2574594 B2 JP 2574594B2 JP 4133248 A JP4133248 A JP 4133248A JP 13324892 A JP13324892 A JP 13324892A JP 2574594 B2 JP2574594 B2 JP 2574594B2
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- film
- optical
- silicon
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光導波路を使った光強
度変調,光スイッチング,偏波面制御,伝搬モード制御
などを行う各種の光導波路素子とその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various optical waveguide devices for performing light intensity modulation, optical switching, polarization plane control, propagation mode control, and the like using an optical waveguide, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年、広帯域信号を伝送する媒体として
光通信機器に使用される光導波路素子の要望が高くなっ
てきた。2. Description of the Related Art In recent years, there has been an increasing demand for an optical waveguide device used in optical communication equipment as a medium for transmitting a broadband signal.
【0003】従来、光導波路素子たとえば、光変調器,
光スイッチ,光偏波面制御素子,光伝搬モード制御素子
などは、ニオブ酸リチウムまたはタンタル酸リチウムな
どの電気光学効果を有する誘電体単結晶に単一モード伝
搬の光導波路を形成し、その形状を工夫するとともに電
極を適当な形で設け、電気光学効果により光導波路通過
光を制御して行っている。光導波路の作製は、金属、た
とえばチタンを蒸着し高温で熱拡散することにより、拡
散部分の屈折率を他の部分よりも少し高くすることによ
って、光を閉じこめるようにしている。あるいは、所定
部分に金属マスクをして、200〜300℃の燐酸中で
プロトンイオン交換を行い屈折率を一部変え光導波路を
形成している。しかしいずれの方法も表面からの拡散処
理により光導波路を形成していることから、光導波路の
断面形状が拡散にしたがった形状になるため色々不都合
がある。Conventionally, an optical waveguide element such as an optical modulator,
For optical switches, optical polarization control elements, and optical propagation mode control elements, a single-mode-propagating optical waveguide is formed in a dielectric single crystal having an electro-optical effect such as lithium niobate or lithium tantalate, and the shape is formed. In addition, the electrodes are provided in an appropriate form, and the light passing through the optical waveguide is controlled by the electro-optic effect. In the fabrication of an optical waveguide, light is confined by evaporating a metal, for example, titanium, and thermally diffusing it at a high temperature so that the refractive index of the diffused portion is slightly higher than that of the other portions. Alternatively, an optical waveguide is formed by performing a proton ion exchange in phosphoric acid at 200 to 300 ° C. and changing a part of the refractive index by using a metal mask on a predetermined portion. However, in any of the methods, since the optical waveguide is formed by the diffusion treatment from the surface, the cross-sectional shape of the optical waveguide becomes a shape according to the diffusion, and thus there are various inconveniences.
【0004】大きな課題の一つに、光導波路と光ファイ
バーとの結合損失がある。光ファイバーの断面形状は円
形であるのに対して、光導波路の形状は表面からの拡散
によるため逆三角形に似た形状であり、かつ導波光の強
度の最も強い部分が、表面近くにあるため、光ファイバ
ーとの光結合が充分ではなく、大きな損失を生じてい
た。光導波路素子では、光の結合損失の低減は極めて重
要な課題となっている。[0004] One of the major problems is the coupling loss between the optical waveguide and the optical fiber. While the cross-sectional shape of the optical fiber is circular, the shape of the optical waveguide is similar to an inverted triangle due to diffusion from the surface, and the strongest part of the intensity of the guided light is near the surface, The optical coupling with the optical fiber was not sufficient, causing a large loss. In an optical waveguide device, reduction of light coupling loss is an extremely important issue.
【0005】また拡散処理を行うことにより、拡散前よ
りも光伝搬損失が増大するという課題もあった。チタン
拡散光導波路の場合、通常1dB/cm程度の伝搬損失
が生ずるので、伝搬損失の低減も光導波路素子の大きな
課題となっている。[0005] In addition, there is another problem that the light propagation loss is increased by performing the diffusion process as compared with before the diffusion. In the case of a titanium diffused optical waveguide, a propagation loss of about 1 dB / cm usually occurs. Therefore, reduction of the propagation loss is also a major problem of the optical waveguide device.
【0006】また同じく拡散処理により光損傷が大きく
なるという課題もあった。これは、強度の強い光ないし
は短波長の光を拡散型光導波路に入射すると、伝搬損失
が時間とともに増大するというものである。これはイオ
ンの光導波路中への拡散により、光導波路中に電子のト
ラップが増大することによると考えられている。Another problem is that light damage is increased by the diffusion treatment. This is because, when high-intensity light or short-wavelength light enters the diffusion-type optical waveguide, the propagation loss increases with time. This is thought to be due to an increase in trapping of electrons in the optical waveguide due to diffusion of ions into the optical waveguide.
【0007】イオン拡散型でない光導波路の形成方法と
して、単結晶のエピタキシャル成長膜を用いる方法が知
られている。たとえば、タンタル酸リチウム基板にニオ
ブ酸リチウムとタンタル酸リチウムの混晶膜を形成した
光導波路が知られている。しかしこの方法にはいくつか
の制約がある。まず第1に、エピタキシャル成長膜は成
長速度や成長時に発生する結晶内の歪の問題から、5ミ
クロン以上の膜厚を実用的に得ることが困難であり、コ
ア径約10ミクロンの光ファイバーとの結合特性が悪く
なる。As a method for forming an optical waveguide that is not of the ion diffusion type, a method using a single crystal epitaxial growth film is known. For example, an optical waveguide in which a mixed crystal film of lithium niobate and lithium tantalate is formed on a lithium tantalate substrate is known. However, this method has some limitations. First, it is difficult to practically obtain a film having a thickness of 5 μm or more due to the problem of the growth rate and strain in the crystal generated during the growth of the epitaxially grown film. The characteristics deteriorate.
【0008】またエピタキシャル成長の条件が限られて
いる。結晶格子間隔がほぼ同じでなければエピタキシャ
ル成長が困難であることから、タンタル酸リチウム基板
上に純粋のニオブ酸リチウムを形成することは困難であ
り、そのため混晶膜の成長に留まっている。ニオブ酸リ
チウムの場合、混晶膜よりも純粋のニオブ酸リチウムの
方が光導波路特性全般に優れている。Further, conditions for epitaxial growth are limited. It is difficult to form pure lithium niobate on a lithium tantalate substrate because the epitaxial growth is difficult unless the crystal lattice spacing is substantially the same. Therefore, the mixed crystal film is only grown. In the case of lithium niobate, pure lithium niobate is superior to the mixed crystal film in overall optical waveguide characteristics.
【0009】同種のエピタキシャル成長は可能である
が、結晶方位が同じとなるため屈折率が一様な基板とな
り、光導波路を形成できないなどの課題があった。Although the same type of epitaxial growth is possible, there is a problem that the substrate has a uniform refractive index because the crystal orientation is the same, and an optical waveguide cannot be formed.
【0010】[0010]
【発明が解決しようとする課題】しかしながら上記従来
の構成では、単一基板に上からの拡散法のみにより形成
した光導波路あるいはエピタキシャル成長膜を用いた光
導波路素子としているため、光導波路と光ファイバーと
の結合損失が大きく、伝搬損失も大きく、光損傷も大き
いなどという問題点を有していた。However, in the above-mentioned conventional configuration, since the optical waveguide or the optical waveguide element using the epitaxially grown film is formed on the single substrate only by the diffusion method from above, the optical waveguide and the optical fiber are not connected to each other. There are problems such as a large coupling loss, a large propagation loss, and a large optical damage.
【0011】本発明は上記従来の問題点を解決するもの
で、光ファイバーとの結合損失も、伝搬損失も、また光
損傷も少ない光導波路素子とその製造方法を提供するこ
とを目的とする。An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide an optical waveguide device with less coupling loss to an optical fiber, less propagation loss, and less optical damage, and a method of manufacturing the same.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するため
に本発明の光導波路素子とその製造方法は、電気光学効
果を有し結晶方位により屈折率の異なる単結晶誘電体基
板を、結晶方位を変えて少なくとも2枚、珪素膜または
酸化珪素膜または窒化珪素膜により接合した基板に結晶
方位の違いによる屈折率の差により、一方の単結晶誘電
体基板内に光の閉じこめられた光導波路を有し、その光
導波路を通る光を電気光学効果により制御したり、電気
光学効果を有し、屈折率の異なる単結晶誘電体基板を少
なくとも2枚、珪素膜または酸化珪素膜または窒化珪素
膜により接合した基板にその屈折率の差により、一方の
単結晶誘電体基板内に光の閉じこめられた光導波路を有
し、その光導波路を通る光を電気光学効果により制御す
るような構成を有している。In order to achieve the above object, an optical waveguide device and a method of manufacturing the same according to the present invention provide a single crystal dielectric substrate having an electro-optic effect and having a different refractive index depending on the crystal orientation. By changing at least two substrates bonded by a silicon film, a silicon oxide film or a silicon nitride film, an optical waveguide in which light is confined in one single crystal dielectric substrate due to a difference in refractive index due to a difference in crystal orientation. And controlling the light passing through the optical waveguide by an electro-optic effect, or at least two single-crystal dielectric substrates having an electro-optic effect and having different refractive indices by a silicon film or a silicon oxide film or a silicon nitride film. The bonded substrate has an optical waveguide in which light is confined in one of the single-crystal dielectric substrates due to the difference in the refractive index, and the light passing through the optical waveguide is controlled by an electro-optic effect. To have.
【0013】[0013]
【作用】本発明は上記した構成において、光ファイバー
との結合損失および伝搬損失の少ない、また、光損傷の
少ない光導波路素子が得られることとなる。According to the present invention, an optical waveguide device having a small coupling loss and a propagation loss with an optical fiber and a small optical damage can be obtained.
【0014】[0014]
【実施例】以下本発明の実施例の光導波路素子、特に光
変調器に適用した場合の構成とその製造方法について、
図面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical waveguide device according to an embodiment of the present invention, in particular, a configuration when applied to an optical modulator and a method of manufacturing the same will be described.
This will be described with reference to the drawings.
【0015】(実施例1)図1および図2に示すように
本実施例の光導波素子は、光変調器に適用した場合、ニ
オブ酸リチウム基板1、ニオブ酸リチウム基板1に直接
接合されたニオブ酸リチウム基板1と結晶方位の異なる
ニオブ酸リチウム薄板2、ニオブ酸リチウム薄板2に形
成された入出力用の光導波路3、入力部から二つに分岐
されたうちの一方の第1の分岐光導波路4、他方の第2
の分岐光導波路5、第2の分岐光導波路5の両側に形成
された電極6および7、ニオブ酸リチウム基板1にニオ
ブ酸リチウム薄板2を接合している酸化珪素膜8で構成
されている。図2に示すようにその中心部分の断面の各
構成要素の名称は図1と同じである。第1および第2の
分岐光導波路4および5は、断面頭の部分が台形となっ
ており、いわゆるリッジ型光導波路の構造となってい
る。入出力用の光導波路3の断面形状も同じになってい
て、導波光伝搬部9を有している。光変調器の構成その
ものは、いわゆるマッハーゼンダー型と呼ばれるもの
で、光導波路3の入力部より入射した光を二つに分岐
し、分岐した一方の第2の分岐光導波路5に電界を加
え、電気光学効果により光導波路部の屈折率を変えて導
波光の伝搬速度を変え、再結合部での光の位相が異なる
ようにすることにより、光導波路3の出力部の光の強度
を変調するようにしたものである。(Embodiment 1) As shown in FIGS. 1 and 2, when applied to an optical modulator, the optical waveguide device of this embodiment was directly bonded to a lithium niobate substrate 1 and a lithium niobate substrate 1. Lithium niobate thin plate 2 having a different crystal orientation from lithium niobate substrate 1, input / output optical waveguide 3 formed on lithium niobate thin plate 2, one of two branches from the input part The optical waveguide 4 and the other second
, The electrodes 6 and 7 formed on both sides of the second branch optical waveguide 5, and the silicon oxide film 8 joining the lithium niobate thin plate 2 to the lithium niobate substrate 1. As shown in FIG. 2, the names of the components in the cross section of the central portion are the same as those in FIG. The first and second branch optical waveguides 4 and 5 have trapezoidal cross-section heads, and have a so-called ridge-type optical waveguide structure. The cross-sectional shape of the input / output optical waveguide 3 is also the same, and has a guided light propagation section 9. The configuration itself of the optical modulator is what is called a Mach-Zehnder type, in which light incident from the input portion of the optical waveguide 3 is branched into two, and an electric field is applied to one of the branched second branched optical waveguides 5. The intensity of light at the output of the optical waveguide 3 is modulated by changing the refractive index of the optical waveguide by the electro-optic effect to change the propagation speed of the guided light so that the phase of the light at the recombination is different. It is like that.
【0016】ニオブ酸リチウムは、結晶光軸方向とそれ
に垂直な方向とで誘電率が大きく異なり、それに伴い屈
折率にも違いが生ずる。常光線に対する屈折率は、2.
29であるのに対して、異常光線に対しては、2.20
の屈折率となる。屈折率に0.01程度以上の差があれ
ば、屈折率の大きい方に光を閉じこめることができ、光
導波路の形成が可能となる。本実施例の場合、光伝搬モ
ードに対して、ニオブ酸リチウム基板1の屈折率より
も、ニオブ酸リチウム薄板2の屈折率の方が大きくなる
ように結晶軸を選んで接合している。その間の接合酸化
珪素膜8は、屈折率が約1.46で、ニオブ酸リチウム
よりも低いが、その厚みを光導波遮断厚みよりも大幅に
薄い0.5ミクロンとしていることから、ニオブ酸リチ
ウム薄板2に入射した光は薄板内に閉じこめられる。さ
らにニオブ酸リチウム薄板2にリッジ構造を設けること
により、リッジ下部の部分の方が、その他の部分よりも
実効誘電率が大きくなるため、光はリッジ下部に閉じこ
められ、したがってリッジ下部の導波光伝搬部9が光導
波路として作用する。Lithium niobate has a large difference in dielectric constant between the crystal optical axis direction and a direction perpendicular to the crystal optical axis, and the refractive index also changes accordingly. The refractive index for ordinary rays is 2.
29, whereas for extraordinary rays, 2.20
Of the refractive index. If there is a difference of about 0.01 or more in the refractive index, light can be confined to the one having a larger refractive index, and an optical waveguide can be formed. In the case of this embodiment, the crystal axes are selected and joined so that the refractive index of the lithium niobate thin plate 2 is larger than the refractive index of the lithium niobate substrate 1 in the light propagation mode. The junction silicon oxide film 8 in the meantime has a refractive index of about 1.46 and is lower than that of lithium niobate, but its thickness is set to 0.5 μm, which is much smaller than the optical waveguide blocking thickness. Light incident on the thin plate 2 is confined in the thin plate. Further, by providing the ridge structure on the lithium niobate thin plate 2, the effective dielectric constant is higher in the lower portion of the ridge than in the other portions, so that the light is confined in the lower portion of the ridge, and thus the guided light propagation in the lower portion of the ridge. The part 9 acts as an optical waveguide.
【0017】この場合の導波路形状は頭部が台形ないし
は矩形であとは均一の屈折率からなることにより、導波
光の中心は光導波路の中心で円形に近い形となる。入出
力用の光導波路3の断面も同じ形状であり、したがっ
て、光ファイバーの直径約10ミクロンの円形光導波路
構造との結合効率は極めて良好となる。In this case, the waveguide has a uniform trapezoidal or rectangular head and a uniform refractive index, so that the center of the guided light is close to a circle at the center of the optical waveguide. The cross section of the input / output optical waveguide 3 has the same shape, and therefore, the coupling efficiency with the optical fiber circular optical waveguide structure having a diameter of about 10 μm is extremely good.
【0018】各寸法の代表的な実施値は、ニオブ酸リチ
ウム基板1の厚みが600ミクロン、ニオブ酸リチウム
薄板2の厚みが7ミクロン、リッジ頭部でっぱりの高さ
が3ミクロン、光導波路3,4,5の幅は7ミクロン、
酸化珪素膜8の厚みは0.5ミクロン、第1および第2
の分岐光導波路部4,5の長さは2cm、光導波路部全
体の長さは3cmである。電極6,7はアルミニウムを
用いた。以上のような構成とすることにより、光ファイ
バーとの結合損失は、屈折率の整合をとった接着材を用
いて接着固定することにより、片面で0.3dB以下と
なった。従来のチタン拡散光導波路を用いた場合、同様
の接着固定方法で、結合損失は約0.5から1.0dB
であったことから大幅に改善された。光変調器としての
性能は、従来のチタン拡散光導波路で構成したものとほ
ぼ同様の性能が得られた。A typical practical value of each dimension is that the thickness of the lithium niobate substrate 1 is 600 microns, the thickness of the lithium niobate thin plate 2 is 7 microns, the height of the ridge head is 3 microns, and the optical waveguide 3 4 and 5 are 7 microns wide,
The thickness of the silicon oxide film 8 is 0.5 μm, the first and second
The length of the branched optical waveguides 4 and 5 is 2 cm, and the length of the entire optical waveguide is 3 cm. Electrodes 6 and 7 used aluminum. With the above-described configuration, the coupling loss with the optical fiber is reduced to 0.3 dB or less on one side by bonding and fixing using an adhesive whose refractive index is matched. When a conventional titanium diffused optical waveguide is used, the coupling loss is about 0.5 to 1.0 dB by the same adhesive fixing method.
Was greatly improved. The performance as an optical modulator was almost the same as that of a conventional titanium diffused optical waveguide.
【0019】また光導波路として、イオン拡散処理を行
わない純粋の単結晶としての光学特性を有するニオブ酸
リチウム薄板を用いているため、光の伝搬損失も極めて
小さくすることができる。具体的には、0.1dB/c
m以下の光導波路伝搬損失が容易に得られた。通常チタ
ン拡散光導波路の場合、0.5から1.0dB/cmで
あったので、大幅に特性が改善された。Further, since a lithium niobate thin plate having optical properties as a pure single crystal not subjected to ion diffusion processing is used as the optical waveguide, light propagation loss can be extremely reduced. Specifically, 0.1 dB / c
An optical waveguide propagation loss of m or less was easily obtained. In the case of the titanium diffused optical waveguide, the characteristic was significantly improved since the value was 0.5 to 1.0 dB / cm.
【0020】また入射光の強度を0dBmから30dB
mまで変えて、光損傷の様子をみたが、ほとんど光損傷
は見られなかった。これは、光導波路として電子トラッ
プの非常に少ない純粋の単結晶ニオブ酸リチウム薄板を
用いたことによる効果と考えられる。なお測定光は1.
3ミクロンの波長で行った。Further, the intensity of the incident light is changed from 0 dBm to 30 dB.
m, the state of light damage was observed, but almost no light damage was observed. This is considered to be the effect of using a pure single crystal lithium niobate thin plate with very few electron traps as the optical waveguide. The measurement light was 1.
Performed at a wavelength of 3 microns.
【0021】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。(Embodiment 2) A second embodiment of the present invention will be described below with reference to the drawings.
【0022】図3に示すように本実施例の光導波路素子
の構造は、光変調器に適用した場合、タンタル酸リチウ
ム基板10、タンタル酸リチウム基板10に窒化珪素膜
8aにより接合された、ニオブ酸リチウム薄板11、光
導波路3から電極7までの各構成要素の名称と機能は実
施例1と同じである。As shown in FIG. 3, when the structure of the optical waveguide device of this embodiment is applied to an optical modulator, a lithium tantalate substrate 10 and a niobium bonded to the lithium tantalate substrate 10 by a silicon nitride film 8a are used. The names and functions of the components from the lithium oxide thin plate 11, the optical waveguide 3 to the electrode 7 are the same as in the first embodiment.
【0023】タンタル酸リチウムとニオブ酸リチウムは
屈折率が異なり、常光線に対して、タンタル酸リチウム
は2.175、ニオブ酸リチウムは2.29である。こ
の場合にも屈折率に0.115という適当な差があり、
屈折率の大きいニオブ酸リチウム薄板の方に光を効果的
に閉じこめることができ、光導波路の形成が可能とな
る。これにより、ニオブ酸リチウム薄板11に入射した
光は薄板内に閉じこめられ、さらにリッジ構造を設ける
ことによりリッジ下部の部分の方が、その他の部分より
も実効屈折率が大きくなるため、光はリッジ下部に閉じ
こめられ、したがってリッジ下部が光導波路として作用
する。接合窒化珪素膜8aは屈折率が約1.9で、ニオ
ブ酸リチウムよりも低いが、その厚みを単結晶誘電体基
板間の屈折率の違いによって、前記接合した複合基板の
うちの、屈折率の高い方の単結晶誘電体基板内に光の閉
じこめが可能となる厚み以下となるような大幅に薄い
0.5ミクロンとしていることから、ニオブ酸リチウム
薄板11に入射した光は薄板内に閉じこめられる。Lithium tantalate and lithium niobate have different refractive indices. For ordinary light, lithium tantalate is 2.175 and lithium niobate is 2.29. Also in this case, there is an appropriate difference of 0.115 in the refractive index,
Light can be effectively confined to the lithium niobate thin plate having a large refractive index, and an optical waveguide can be formed. As a result, the light incident on the lithium niobate thin plate 11 is confined in the thin plate, and the effective refractive index of the lower portion of the ridge becomes larger than that of the other portions by providing the ridge structure. Trapped in the lower part, the lower part of the ridge acts as an optical waveguide. In bonding the silicon nitride film 8a has a refractive index of about 1.9, but less than the lithium niobate, the thickness single crystal dielectric base
Due to the difference in the refractive index between the plates, the bonded composite substrate
Light is closed in the single-crystal dielectric substrate with the higher refractive index.
Since the thickness is set to 0.5 μm, which is significantly thinner than the thickness at which the indentation is possible, the light incident on the lithium niobate thin plate 11 is confined in the thin plate.
【0024】この場合の導波路形状は実施例1の場合と
全く同様であり、したがって光ファイバーの円形の光導
波路部構造との結合効率は極めて良好となった。In this case, the shape of the waveguide is exactly the same as that of the first embodiment. Therefore, the coupling efficiency of the optical fiber with the circular optical waveguide structure is extremely good.
【0025】各寸法の代表的な実施値は、窒化珪素膜8
aの厚みが0.5ミクロン、タンタル酸リチウム基板1
0の厚みが600ミクロンで、その他は実施例1と同様
である。以上のような構成とすることにより、光ファイ
バーとの結合損失は、やはり実施例1と同様、片面で
0.3dB以下となり、大幅に改善できた。A typical practical value of each dimension is that of the silicon nitride film 8.
a thickness 0.5 a, lithium tantalate substrate 1
0 has a thickness of 600 microns, and the others are the same as in the first embodiment. With the above-described configuration, the coupling loss with the optical fiber was 0.3 dB or less on one side, as in the first embodiment, and was significantly improved.
【0026】また伝搬損失は、実施例1と同様0.1d
B/cmのものが容易に得られた。また光損傷について
も実施例1と同様の効果が得られた。The propagation loss is 0.1 d as in the first embodiment.
B / cm was easily obtained. The same effect as in Example 1 was obtained for optical damage.
【0027】(実施例3)以下本発明の第3の実施例に
ついて図面を参照しながら説明する。(Embodiment 3) Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.
【0028】図4に示すように本実施例の光導波路素子
の構造は、光変調器に適用した場合、タンタル酸リチウ
ム基板10と、タンタル酸リチウム基板10に珪素膜8
bにより接合された、ニオブ酸リチウム薄板11と、そ
の他の各構成要素の名称と機能は実施例2と同じであ
る。As shown in FIG. 4, when the structure of the optical waveguide device of this embodiment is applied to an optical modulator, a lithium tantalate substrate 10 and a silicon film 8 are formed on the lithium tantalate substrate 10.
The names and functions of the lithium niobate thin plate 11 joined by b and other components are the same as those in the second embodiment.
【0029】この場合も実施例2の場合と同様、タンタ
ル酸リチウムとニオブ酸リチウムの屈折率の差により、
ニオブ酸リチウム薄板11に入射した光は薄板内に閉じ
こめられ、さらにリッジ構造を設けることによりリッジ
下部の部分の方が、その他の部分よりも実効誘電率が大
きくなるため、光はリッジ下部に閉じこめられ、したが
ってリッジ下部が光導波路として作用する。接合珪素膜
8bは屈折率がニオブ酸リチウムよりも低く、また1.
3ミクロンの波長の光に対し吸収があるが、その厚みを
光導波遮断厚みよりも大幅に薄い0.5ミクロンとして
いることから、ニオブ酸リチウム薄板11に入射した光
は薄板内に閉じこめられる。In this case, as in the case of Example 2, the difference in the refractive index between lithium tantalate and lithium niobate causes
Light incident on the lithium niobate thin plate 11 is confined in the thin plate, and furthermore, by providing a ridge structure, the effective dielectric constant of the lower part of the ridge becomes larger than that of the other parts. Therefore, the lower part of the ridge acts as an optical waveguide. The junction silicon film 8b has a lower refractive index than lithium niobate.
Although light having a wavelength of 3 μm is absorbed, since the thickness is set to 0.5 μm, which is much smaller than the optical waveguide cutoff thickness, light incident on the lithium niobate thin plate 11 is confined in the thin plate.
【0030】この場合の導波路形状は、実施例1の場合
と全く同様であり、したがって光ファイバーの円形の光
導波路部構造との結合効率は極めて良好となった。In this case, the shape of the waveguide is exactly the same as that of the first embodiment, and the coupling efficiency of the optical fiber with the circular optical waveguide structure is extremely good.
【0031】各寸法の代表的な実施値は、珪素膜8bの
厚みが0.5ミクロンで、その他は実施例2と同様であ
る。以上のような構成とすることにより、光ファイバー
との結合損失は、やはり実施例1と同様、片面で0.3
dB以下となり、大幅に改善できた。A typical practical value of each dimension is the same as that of the second embodiment except that the thickness of the silicon film 8b is 0.5 μm. With the above configuration, the coupling loss with the optical fiber is also 0.3% on one side, as in the first embodiment.
dB or less, which is a significant improvement.
【0032】また伝搬損失は、実施例1と同様0.1d
B/cmのものが容易に得られた。また光損傷について
も実施例1と同様の効果が得られた。The propagation loss is 0.1 d as in the first embodiment.
B / cm was easily obtained. The same effect as in Example 1 was obtained for optical damage.
【0033】(実施例4)つぎに、本実施例の光導波路
素子の製造方法の例を図1を用いて説明する。(Embodiment 4) Next, an example of a method for manufacturing an optical waveguide device of the present embodiment will be described with reference to FIG.
【0034】まず鏡面研磨された結晶方位の異なる2枚
のニオブ酸リチウム基板の表面を極めて清浄にしたの
ち、プラズマCVD法により各基板の片面に酸化珪素膜
を、0.25ミクロンの厚みに形成した。First, the surfaces of two mirror-polished lithium niobate substrates having different crystal orientations are extremely cleaned, and then a silicon oxide film is formed on one surface of each substrate to a thickness of 0.25 μm by a plasma CVD method. did.
【0035】つぎに、それぞれの酸化珪素膜表面をエッ
チングにより極めて清浄にし、かつ親水化処理を行っ
た。具体的には弗酸系エッチング液で酸化珪素膜表面層
をごくわずかエッチング除去すると、清浄になるととも
に表面を親水化処理することができた。このような状態
で、その表面を純水で十分洗浄するとともに、その表面
に水酸基を付着させ、すぐに一様に重ね合わせると、酸
化珪素膜表面に吸着した水酸基によって容易に接合が得
られた。このままでも十分強固な接合が得られたが、さ
らにこの状態で100〜1100℃の温度で熱処理を行
うとその接合はさらに強化された。Next, each of the silicon oxide film surface extremely clean by etching, and was subjected to hydrophilic treatment. Specifically, when the surface layer of the silicon oxide film was slightly removed by etching with a hydrofluoric acid-based etchant, the silicon oxide film could be cleaned and the surface could be hydrophilized. Under such conditions, clean the surface with pure water
When a hydroxyl group was attached to the surface of the silicon oxide film and immediately overlapped, a bond was easily obtained by the hydroxyl group adsorbed on the surface of the silicon oxide film. Although a sufficiently strong joint was obtained as it was, a heat treatment at a temperature of 100 to 1100 ° C. in this state further strengthened the joint.
【0036】つぎに、屈折率の高い方の結晶方位のニオ
ブ酸リチウム基板を、機械的研磨およびエッチングによ
り薄板化していった。7ミクロンまで薄板化したのち、
薄板化した方のニオブ酸リチウム基板上にホトリソグラ
フィー技術により、実施例1で示した光導波路構造のパ
ターンにエッチングマスクを形成し、エッチングにより
光導波路部以外を3ミクロンエッチング除去した。マス
クとしてはCrを、エッチングはCF4ガスを用いた反
応性イオンエッチングにより行った。そののちマスクを
除去し、アルミニウム電極6および7を通常のホトリソ
グラフィーとエッチング技術により形成した。これによ
り実施例1に示す光導波路素子の構造を得た。この素子
の光ファイバーとの結合特性,伝搬損失,光損傷特性は
いずれも実施例1と同様であった。Next, a lithium niobate substrate having a crystal orientation with a higher refractive index was thinned by mechanical polishing and etching. After thinning to 7 microns,
An etching mask was formed on the thinned lithium niobate substrate by the photolithography technique in the pattern of the optical waveguide structure shown in Example 1, and portions other than the optical waveguide portion were etched away by 3 μm by etching. Cr was used as a mask, and etching was performed by reactive ion etching using CF4 gas. After that, the mask was removed, and aluminum electrodes 6 and 7 were formed by ordinary photolithography and etching techniques. Thus, the structure of the optical waveguide device shown in Example 1 was obtained. The coupling characteristics of the device to an optical fiber, the propagation loss, and the optical damage characteristics were all the same as in Example 1.
【0037】酸化珪素膜8の熱処理は、100〜110
0℃の範囲では、熱処理温度が高いほど接合強度が向上
した。The heat treatment of the silicon oxide film 8 is performed at 100 to 110
In the range of 0 ° C., the higher the heat treatment temperature, the higher the bonding strength.
【0038】(実施例5)つぎに、本実施例の光導波路
素子の製造方法の他の例を図3を用いて説明する。(Embodiment 5) Next, another example of the method of manufacturing the optical waveguide device of this embodiment will be described with reference to FIG.
【0039】実施例4と同様にして、鏡面研磨されたタ
ンタル酸リチウムおよびニオブ酸リチウム基板の表面を
極めて清浄にしたのち、プラズマCVD法により各基板
の片面に窒化珪素膜を0.25ミクロンの厚みに形成し
た。In the same manner as in Example 4, the surfaces of the mirror-polished lithium tantalate and lithium niobate substrates were extremely cleaned, and a silicon nitride film of 0.25 μm was formed on one surface of each substrate by plasma CVD. It was formed to a thickness.
【0040】つぎに、実施例4とほぼ同様にして窒化珪
素膜表面を清浄かつ親水化処理し、さらに純水で洗浄す
るとともに、その表面に水酸基を付着させ、すぐに一様
に重ね合わせることによって、実施例4と同様、窒化珪
素膜表面に吸着した水酸基によって容易に接合が得られ
た。さらにこれを100〜1100℃の温度で熱処理す
ることにより、より強固な接合が得られた。Next, cleaned and hydrophilized substantially similar manner the silicon nitride film surface of Example 4, to further washed with pure water
And attach hydroxyl groups to the surface,
By overlapping with the silicon nitride,
Bonding was easily achieved by the hydroxyl groups adsorbed on the surface of the base film . Further, by subjecting this to a heat treatment at a temperature of 100 to 1100 ° C., a stronger bond was obtained.
【0041】以下実施例4と同様の方法により、アルミ
ニウム電極6および7まで形成し、実施例2に示す光導
波路素子の構造を得た。Thereafter, aluminum electrodes 6 and 7 were formed in the same manner as in Example 4, and the structure of the optical waveguide device shown in Example 2 was obtained.
【0042】この素子の光ファイバーとの結合特性,伝
搬損失,光損傷特性はいずれも実施例2と同様であっ
た。The coupling characteristics of the device to an optical fiber, the propagation loss, and the optical damage characteristics were all the same as in Example 2.
【0043】窒化珪素膜8aの熱処理は100〜110
0℃の範囲では、熱処理温度が高いほど接合強度が向上
した。The heat treatment of the silicon nitride film 8a is performed at 100 to 110.
In the range of 0 ° C., the higher the heat treatment temperature, the higher the bonding strength.
【0044】(実施例6)つぎに、本実施例の光導波路
素子の製造方法の他の例を図4を用いて説明する。(Embodiment 6) Next, another example of the method of manufacturing the optical waveguide device of this embodiment will be described with reference to FIG.
【0045】実施例5と同様にして、鏡面研磨されたタ
ンタル酸リチウムおよびニオブ酸リチウム基板の表面
を、極めて清浄にしたのち、プラズマCVD法により各
基板の片面に非晶質珪素膜を0.25ミクロンの厚みに
形成した。In the same manner as in Example 5, the surfaces of the mirror-polished lithium tantalate and lithium niobate substrates were extremely cleaned, and then an amorphous silicon film was formed on one surface of each substrate by plasma CVD. It was formed to a thickness of 25 microns.
【0046】つぎに、実施例4とほぼ同様にして非晶質
珪素膜表面を清浄かつ親水化処理し、さらに純水で洗浄
するとともに、その表面に水酸基を付着させ、すぐに一
様に重ね合わせることによって、実施例4と同様、非晶
質珪素膜表面に吸着した水酸基によって容易に接合が得
られた。さらにこれを100〜1100℃の温度で熱処
理することにより、より強固な接合が得られた。Next, cleaned and hydrophilized amorphous silicon film surface in much the same way as in Example 4, further washed with pure water
And attach hydroxyl groups to the surface.
In the same manner as in Example 4 ,
Bonding was easily obtained by the hydroxyl groups adsorbed on the surface of the porous silicon film . Further, by subjecting this to a heat treatment at a temperature of 100 to 1100 ° C., a stronger bond was obtained.
【0047】以下実施例5と同様の方法により、アルミ
ニウム電極6および7まで形成し、実施例3に示す光導
波路素子の構造を得た。Thereafter, aluminum electrodes 6 and 7 were formed in the same manner as in Example 5, and the structure of the optical waveguide device shown in Example 3 was obtained.
【0048】この素子の光ファイバーとの結合特性,伝
搬損失,光損傷特性はいずれも実施例3と同様であっ
た。The characteristics of this device for coupling to an optical fiber, the propagation loss, and the optical damage characteristics were all the same as in Example 3.
【0049】非晶質珪素膜の熱処理は、100〜110
0℃の範囲では、熱処理温度が高いほど接合強度が向上
した。ただし、熱処理温度が非晶質珪素の結晶化温度以
上になると、非晶質珪素膜は多結晶珪素膜に変化したが
接合状態は同様に保たれた。The heat treatment of the amorphous silicon film is performed at 100 to 110
In the range of 0 ° C., the higher the heat treatment temperature, the higher the bonding strength. However, when the heat treatment temperature was higher than the crystallization temperature of the amorphous silicon, the amorphous silicon film was changed to a polycrystalline silicon film, but the bonding state was similarly maintained.
【0050】実施例4,5,6とも、接合時の熱処理時
に、一般に温度が高いほど接合強度は強くなった。しか
し1100℃を超える温度にすると、ニオブ酸リチウム
またはタンタル酸リチウム板表面からのリチウムの抜け
が激しくなるため、表面の特性劣化が大きく光導波路素
子としての性能が劣化した。したがって熱処理温度は1
100℃以下が好ましかった。In Examples 4, 5, and 6, the bonding strength generally increased as the temperature increased during the heat treatment at the time of bonding. However, when the temperature exceeds 1100 ° C., lithium escapes from the surface of the lithium niobate or lithium tantalate plate, so that the surface characteristics are greatly deteriorated and the performance as an optical waveguide device is deteriorated. Therefore, the heat treatment temperature is 1
100 ° C. or less was preferred.
【0051】実施例4に示すニオブ酸リチウム同士の接
合の場合、熱膨脹率が同じであることから接合強度向上
のための熱処理温度を、より高温でより容易に行うこと
ができた。その場合、薄板化のための加工を強度の研磨
などで行っても剥離がない、あるいは光導波路素子とし
てより高温まで安定に動作するなどの効果が得られた。
したがって同種基板の接合の場合は、接合強度が強く高
温まで安定なものが得られた。In the case of joining lithium niobate shown in Example 4, since the coefficient of thermal expansion was the same, the heat treatment temperature for improving the joining strength could be more easily performed at a higher temperature. In this case, there were obtained effects such as no peeling even if the processing for thinning was performed by strong polishing or the like, and the optical waveguide element could operate stably up to a higher temperature.
Therefore, in the case of bonding substrates of the same type, a substrate having high bonding strength and stable up to high temperatures was obtained.
【0052】また接合の膜厚は、いずれの実施例におい
てもプラズマCVDの条件を変えることにより、0.1
から3ミクロンの範囲で任意に制御することができた。The thickness of the junction can be set to 0.1 by changing the conditions of the plasma CVD in any of the embodiments.
To 3 microns.
【0053】また実施例では、代表的寸法について記述
したが、良好な光導波路が形成される範囲で特にこれに
限定されるものではない。In the embodiments, typical dimensions have been described. However, the dimensions are not particularly limited as long as a good optical waveguide is formed.
【0054】また実施例では、単結晶誘電体の例とし
て、ニオブ酸リチウムおよびタンタル酸リチウムの例を
用いて説明したが、他の電気光学効果を有する単結晶誘
電体を用いても同様に形成できることは原理的に明らか
である。In the above embodiments, examples of lithium niobate and lithium tantalate have been described as examples of single crystal dielectrics. However, the same applies to the case of using other single crystal dielectrics having an electro-optical effect. What can be done is clear in principle.
【0055】また実施例では、特定の基板と接合膜の関
係の例のみを示したが、この組合せを色々変えて、例え
ば、実施例4の方法で酸化珪素膜の代わりに、窒化珪素
膜または珪素膜を用いたり、実施例5の方法で酸化珪素
膜を用いても、同様な構成と効果が得られた。さらに単
結晶誘電体基板同士を、珪素膜または酸化珪素膜または
窒化珪素膜を介して直接接合することにより、応用およ
び製造上、新たな効果が得られる。製造上では、接合界
面に多少の凹凸や小さいゴミが介在していても、珪素ま
たは酸化珪素または窒化珪素膜形成のプロセスにおい
て、ある程度膜内部に取り込まれて平坦化されるので、
直接接合の製造歩留まりが向上するなどの効果がある。
また珪素膜を用いる場合、初期の膜質が非晶質でも多結
晶でもよく、また熱処理温度に依存する熱処理後の状態
も、やはり非晶質でも多結晶でもよかった。In the embodiment, only an example of the relationship between a specific substrate and a bonding film is shown. However, the combination may be changed in various ways. For example, a silicon nitride film or a silicon nitride film may be used instead of the silicon oxide film in the method of the fourth embodiment. Similar configurations and effects were obtained by using a silicon film or using a silicon oxide film by the method of the fifth embodiment. Further, by directly joining the single crystal dielectric substrates via a silicon film, a silicon oxide film, or a silicon nitride film, a new effect can be obtained in application and manufacturing. In manufacturing, even if there is some unevenness or small dust at the bonding interface, it is taken into the film to some extent and flattened in the process of forming a silicon, silicon oxide, or silicon nitride film.
This has the effect of improving the production yield of direct bonding.
When a silicon film is used, the initial film quality may be amorphous or polycrystalline, and the state after heat treatment depending on the heat treatment temperature may be either amorphous or polycrystalline.
【0056】実施例1に示す構成は、光導波路部と基板
部で常光線と異常光線に対する屈折率が異なることか
ら、特にモードスプリッターに有効であった。The configuration shown in the first embodiment is particularly effective for a mode splitter because the optical waveguide portion and the substrate portion have different refractive indexes for ordinary and extraordinary rays.
【0057】[0057]
【発明の効果】以上の実施例から明らかなように、本発
明の構成と製造方法によれば、光導波路として均一層状
の構造が得られることから、光導波路断面形状の対称性
がよく、また光の伝搬中心をほぼ薄板中央にすることが
でき、またその厚みを自在にでき、それにより光ファイ
バーとの結合損失を大幅に低減できる。As is apparent from the above embodiments, according to the structure and the manufacturing method of the present invention, a uniform layered structure can be obtained as an optical waveguide. The center of light propagation can be substantially at the center of the thin plate, and its thickness can be made freely, thereby greatly reducing the coupling loss with the optical fiber.
【0058】また光導波路として拡散処理していない純
粋の単結晶誘電体薄板を用いるため、光伝搬損失が少な
く、また光損傷の少ない光導波路素子を得ることができ
る。Further, since a pure single-crystal dielectric thin plate which has not been subjected to a diffusion treatment is used as the optical waveguide, an optical waveguide element with small light propagation loss and small optical damage can be obtained.
【0059】また同物質からなる接合基板の場合、熱膨
脹率が同じであることから、接合強度の向上のための熱
処理をより高温でより容易に行えるため、薄板加工がよ
り容易になり高温まで特性が安定であるなどの効果があ
る。In the case of a bonded substrate made of the same material, since the thermal expansion coefficient is the same, heat treatment for improving the bonding strength can be performed more easily at a higher temperature. Is stable.
【0060】なお、本実施例では光変調器の構成の例を
示したが、本実施例の特徴が光導波路の構成そのものに
あることから、基本的には光導波路を用いた各種光導波
路素子に広く一般的に適用できるものであり、光変調器
に限らず、光スイッチ,偏波面制御,伝搬モード制御な
どの光導波路素子にも適用できる優れた光導波路素子と
その製造方法を実現できるものである。In this embodiment, an example of the configuration of the optical modulator is shown. However, since the feature of this embodiment lies in the configuration of the optical waveguide, various types of optical waveguide devices using the optical waveguide are basically used. That can be applied to optical waveguide devices such as optical switches, polarization plane control, and propagation mode control as well as optical modulators. It is.
【図1】本発明の第1の実施例の構成を示す斜視図FIG. 1 is a perspective view showing the configuration of a first embodiment of the present invention.
【図2】本発明の第1の実施例の断面図FIG. 2 is a sectional view of the first embodiment of the present invention.
【図3】本発明の第2の実施例の構成を示す斜視図FIG. 3 is a perspective view showing the configuration of a second embodiment of the present invention.
【図4】本発明の第3の実施例の構成を示す斜視図FIG. 4 is a perspective view showing the configuration of a third embodiment of the present invention.
1 ニオブ酸リチウム基板 2,11 ニオブ酸リチウム薄板 3 入出力用の光導波路 4 第1の分岐光導波路 5 第2の分岐光導波路 6,7 電極 8 酸化珪素膜 8a 窒化珪素膜 8b 珪素膜 9 導波光伝搬部 10 タンタル酸リチウム基板 DESCRIPTION OF SYMBOLS 1 Lithium niobate substrate 2, 11 Lithium niobate thin plate 3 Optical waveguide for input / output 4 First branch optical waveguide 5 Second branch optical waveguide 6, 7 Electrode 8 Silicon oxide film 8a Silicon nitride film 8b Silicon film 9 Conduction Wave light propagation part 10 Lithium tantalate substrate
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−44025(JP,A) 特開 昭64−18121(JP,A) 特開 昭52−145240(JP,A) 特開 昭49−98258(JP,A) 特開 昭58−223106(JP,A) 特開 昭60−51700(JP,A) 特開 平4−116816(JP,A) 特開 昭63−49732(JP,A) 特開 平4−123018(JP,A) APPL.PHYS.LETT.VO L.56 NO.24 P.2419−P.2421 (1990年6月) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-44025 (JP, A) JP-A-64-18121 (JP, A) JP-A-52-145240 (JP, A) JP-A-49-440 98258 (JP, A) JP-A-58-223106 (JP, A) JP-A-60-51700 (JP, A) JP-A-4-116816 (JP, A) JP-A-63-49732 (JP, A) JP-A-4-123018 (JP, A) APPL. PHYS. LETT. VOL. 56 NO. 24 p. 2419-P. 2421 (June 1990)
Claims (12)
折率が異なる少なくとも2枚の同種の単結晶誘電体基板
を、前記結晶方位を変えて、前記単結晶誘電体基板の所
定の部位に形成された珪素膜または酸化珪素膜または窒
化珪素膜を介して、前記珪素膜または酸化珪素膜または
窒化珪素膜表面の水酸基または酸素により、直接接合し
た複合基板のうちの、前記屈折率の高い方の前記単結晶
誘電体基板内に、前記単結晶誘電体基板間の前記屈折率
の違いによって光の閉じ込められた光導波路を有するこ
とを特徴とする光導波路素子。[Claim 1 further comprising an electro-optical effect, a single-crystal dielectric substrates at least two of the same type refractive index differs by crystal orientations, by changing the crystal orientation, a predetermined portion of said single crystal dielectric substrates The formed silicon film or silicon oxide film or nitride
Via the silicon oxide film, the silicon film or the silicon oxide film or
Direct bonding by the hydroxyl group or oxygen on the silicon nitride film surface
Out of the composite substrate, the single crystal having the higher refractive index
In the dielectric substrate, the refractive index between the single crystal dielectric substrate
Having an optical waveguide confined by the difference in
An optical waveguide device characterized by the following .
なくとも2枚の異種の単結晶誘電体基板を、前記単結晶
誘電体基板の所定の部位に形成された珪素膜または酸化
珪素膜または窒化珪素膜を介して、前記珪素膜または酸
化珪素膜または窒化珪素膜表面の水酸基または酸素によ
り、直接接合した複合基板のうちの、前記屈折率の高い
方の前記単結晶誘電体基板内に、前記単結晶誘電体基板
間の屈折率の違いによって光の閉じ込められた光導波路
を有することを特徴とする光導波路素子。2. A has the electro-optical effect, low refractive index different
Without even a single-crystal dielectric substrates of the two dissimilar, the single crystal
Silicon film or oxidation formed on predetermined part of dielectric substrate
The silicon film or the acid is interposed through a silicon film or a silicon nitride film.
Hydroxyl or oxygen on the surface of the silicon nitride film or silicon nitride film.
Of the directly bonded composite substrates, the high refractive index
The single-crystal dielectric substrate in one of the single-crystal dielectric substrates
Optical waveguide confined by difference in refractive index between
An optical waveguide device comprising:
またはタンタル酸リチウムを用いた請求項1または2記
載の光導波路素子。3. The optical waveguide device according to claim 1, wherein lithium niobate or lithium tantalate is used as the single crystal dielectric.
偏波面制御または伝搬モード制御を行うようにした請求
項1または2記載の光導波路素子。4. The optical waveguide device according to claim 1, wherein light intensity modulation, optical switching, polarization plane control, or propagation mode control is performed.
記載の光導波路素子。5. The silicon film according to claim 1, wherein the silicon film is amorphous.
An optical waveguide device as described in the above.
記載の光導波路素子。6. The silicon film according to claim 1, wherein the silicon film is polycrystalline.
An optical waveguide device as described in the above.
なくとも2枚の単結晶誘電体基板の表面を清浄化する工
程と、前記単結晶誘電体基板上の所定の部位に珪素膜ま
たは酸化珪素膜または窒化珪素膜を形成する工程と、前
記膜表面を親水化した後、重ね合わせて接合する工程
と、熱処理する工程を含むことを特徴とする光導波路素
子の製造方法。 7. A light source having an electro-optic effect and having different refractive indices.
A process to clean the surface of at least two single-crystal dielectric substrates
And a silicon film at a predetermined position on the single crystal dielectric substrate.
Forming a silicon oxide film or a silicon nitride film;
After the surface of the film is made hydrophilic, it is superposed and joined.
And an optical waveguide element comprising a heat treatment step.
Child manufacturing method.
とを特徴とする請求項7記載の光導波路素子の製造方
法。 8. The difference in the refractive index depends on the crystal orientation.
8. The method for manufacturing an optical waveguide device according to claim 7, wherein
Law.
板を、光導波路として 有効に動作する厚みまで薄く加工
する工程と、加工された基板に光導波路を形成する工程
と、さらに電極を形成する工程とをさらに含むことを特
徴とする請求項7または8記載の光導波路素子の製造方
法。 9. A substrate on the side where an optical waveguide is formed after bonding.
The board is thinned to a thickness that effectively works as an optical waveguide
And forming an optical waveguide on the processed substrate
And a step of further forming an electrode.
9. The method of manufacturing an optical waveguide device according to claim 7, wherein
Law.
ムまたはタンタル酸リチウムを用いることを特徴とする
請求項7乃至9記載の光導波路素子の製造方法。As claimed in claim 10 single crystal dielectric, characterized by using lithium niobate or lithium tantalate
A method for manufacturing an optical waveguide device according to claim 7 .
は偏波面制御または伝搬モード制御を行うようにするこ
とを特徴とする請求項7乃至9記載の光導波路素子の製
造方法。11. This is to perform the light intensity modulation or optical switching or polarization control, or propagation mode control
10. The method for manufacturing an optical waveguide device according to claim 7, wherein:
℃の温度範囲とすることを特徴とする請求項7乃至9記
載の光導波路素子の製造方法。12. A heat treatment temperature of 100-1100
℃ characterized by a temperature range of claims 7 to 9 Symbol
Manufacturing method of the above-mentioned optical waveguide element.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4133248A JP2574594B2 (en) | 1992-05-26 | 1992-05-26 | Optical waveguide device and manufacturing method thereof |
KR1019930006529A KR0134763B1 (en) | 1992-04-21 | 1993-04-19 | Optical guided wave device and amnufacturing method |
DE69303654T DE69303654T2 (en) | 1992-04-21 | 1993-04-20 | Optical waveguide device and manufacturing method |
EP93106332A EP0567051B1 (en) | 1992-04-21 | 1993-04-20 | Optical guided-wave device and manufacturing method |
US08/049,308 US5408566A (en) | 1992-04-21 | 1993-04-21 | Optical guided-wave device and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4133248A JP2574594B2 (en) | 1992-05-26 | 1992-05-26 | Optical waveguide device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06289341A JPH06289341A (en) | 1994-10-18 |
JP2574594B2 true JP2574594B2 (en) | 1997-01-22 |
Family
ID=15100174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4133248A Expired - Lifetime JP2574594B2 (en) | 1992-04-21 | 1992-05-26 | Optical waveguide device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2574594B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7295742B2 (en) | 2002-05-31 | 2007-11-13 | Matsushita Electric Industrial Co., Ltd. | Optical element and method for producing the same |
US8743917B2 (en) | 2009-12-14 | 2014-06-03 | Panasonic Corporation | Wavelength conversion light source, optical element and image display device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4658658B2 (en) | 2005-03-29 | 2011-03-23 | 住友大阪セメント株式会社 | Light modulator |
JP4868763B2 (en) | 2005-03-31 | 2012-02-01 | 住友大阪セメント株式会社 | Light modulator |
JP4667933B2 (en) * | 2005-03-31 | 2011-04-13 | 住友大阪セメント株式会社 | Optical element and manufacturing method thereof |
JP4851122B2 (en) * | 2005-06-13 | 2012-01-11 | 住友大阪セメント株式会社 | Optical element and manufacturing method thereof |
JP4183716B2 (en) | 2006-03-29 | 2008-11-19 | 住友大阪セメント株式会社 | Optical waveguide device |
JP4847177B2 (en) | 2006-03-30 | 2011-12-28 | 住友大阪セメント株式会社 | Light modulation element |
JP5092494B2 (en) | 2007-03-29 | 2012-12-05 | 住友大阪セメント株式会社 | Optical waveguide device and method for suppressing temperature crosstalk of optical waveguide device |
JP4445977B2 (en) | 2007-03-30 | 2010-04-07 | 住友大阪セメント株式会社 | Light control element |
JP4187771B2 (en) | 2007-03-30 | 2008-11-26 | 住友大阪セメント株式会社 | Light control element |
JP4589354B2 (en) | 2007-03-30 | 2010-12-01 | 住友大阪セメント株式会社 | Light modulation element |
JP4701232B2 (en) | 2007-12-28 | 2011-06-15 | 住友大阪セメント株式会社 | Light modulator |
JP4599434B2 (en) | 2008-07-04 | 2010-12-15 | 住友大阪セメント株式会社 | Optical waveguide device module |
JP4732539B2 (en) | 2009-09-25 | 2011-07-27 | 住友大阪セメント株式会社 | Optical waveguide device module |
JP5598221B2 (en) | 2010-09-30 | 2014-10-01 | 住友大阪セメント株式会社 | Light control element |
US11598980B2 (en) * | 2016-08-12 | 2023-03-07 | President And Fellows Of Harvard College | Micro-machined thin film lithium niobate electro-optic devices |
JP7069966B2 (en) * | 2018-03-29 | 2022-05-18 | 住友大阪セメント株式会社 | Optical control element |
JP7207087B2 (en) * | 2019-03-28 | 2023-01-18 | 住友大阪セメント株式会社 | optical waveguide element |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515001B2 (en) * | 1973-01-22 | 1980-04-21 | ||
JPS52145240A (en) * | 1976-05-28 | 1977-12-03 | Nippon Telegr & Teleph Corp <Ntt> | Optical guide connecting method |
JPS58223106A (en) * | 1982-06-21 | 1983-12-24 | Canon Inc | Optical circuit element member |
JPS5944025A (en) * | 1982-09-06 | 1984-03-12 | Matsushita Electric Ind Co Ltd | Optical switch |
JPS6051700A (en) * | 1983-08-31 | 1985-03-23 | Toshiba Corp | Bonding method of silicon crystalline body |
JPH0750265B2 (en) * | 1986-08-20 | 1995-05-31 | 川上 彰二郎 | Wideband traveling waveform optical modulator |
JPS6418121A (en) * | 1987-07-13 | 1989-01-20 | Nippon Telegraph & Telephone | Production of high-speed optical circuit parts |
JPH0719738B2 (en) * | 1990-09-06 | 1995-03-06 | 信越半導体株式会社 | Bonded wafer and manufacturing method thereof |
JPH04123018A (en) * | 1990-09-14 | 1992-04-23 | Tdk Corp | Waveguide type optical parts |
-
1992
- 1992-05-26 JP JP4133248A patent/JP2574594B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
APPL.PHYS.LETT.VOL.56 NO.24 P.2419−P.2421(1990年6月) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7295742B2 (en) | 2002-05-31 | 2007-11-13 | Matsushita Electric Industrial Co., Ltd. | Optical element and method for producing the same |
US7548678B2 (en) | 2002-05-31 | 2009-06-16 | Panasonic Corporation | Optical element and method for producing the same |
US8743917B2 (en) | 2009-12-14 | 2014-06-03 | Panasonic Corporation | Wavelength conversion light source, optical element and image display device |
Also Published As
Publication number | Publication date |
---|---|
JPH06289341A (en) | 1994-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2574594B2 (en) | Optical waveguide device and manufacturing method thereof | |
KR0134763B1 (en) | Optical guided wave device and amnufacturing method | |
US5418883A (en) | Optical waveguide device and manufacturing method of the same | |
US5485540A (en) | Optical waveguide device bonded through direct bonding and a method for fabricating the same | |
US5291574A (en) | Method for manufacturing strip optical waveguides | |
JP2574606B2 (en) | Dielectric optical waveguide device and method of manufacturing the same | |
US6195191B1 (en) | Optical devices having improved temperature stability | |
JP2581486B2 (en) | Optical waveguide device and method of manufacturing the same | |
JPH06222229A (en) | Optical waveguide element and its manufacture | |
JP2019105808A (en) | Optical element and manufacturing method thereof | |
EP1224491B1 (en) | Titanium-indiffusion waveguides and methods of fabrication | |
JPH06289347A (en) | Optical waveguide element and its manufacture | |
JP2574602B2 (en) | Optical waveguide device | |
JP2005084290A (en) | Manufacturing method of light controlling element | |
JP2606525B2 (en) | Optical waveguide device and manufacturing method thereof | |
JP7295467B2 (en) | Optical element and its manufacturing method | |
US6567598B1 (en) | Titanium-indiffusion waveguides | |
JP2592752B2 (en) | Semiconductor optical waveguide device and method of manufacturing the same | |
JP2006284962A (en) | Optical element | |
JPH01201609A (en) | Optical device | |
JPH10239544A (en) | Optical waveguide element and manufacture thereof | |
JP4875918B2 (en) | Optical waveguide device and manufacturing method thereof | |
JP3222092B2 (en) | Manufacturing method of ridge structure optical waveguide | |
JPH06186447A (en) | Semiconductor optical waveguide element | |
JP2900569B2 (en) | Optical waveguide device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 16 |