JP2592752B2 - Semiconductor optical waveguide device and method of manufacturing the same - Google Patents

Semiconductor optical waveguide device and method of manufacturing the same

Info

Publication number
JP2592752B2
JP2592752B2 JP4266162A JP26616292A JP2592752B2 JP 2592752 B2 JP2592752 B2 JP 2592752B2 JP 4266162 A JP4266162 A JP 4266162A JP 26616292 A JP26616292 A JP 26616292A JP 2592752 B2 JP2592752 B2 JP 2592752B2
Authority
JP
Japan
Prior art keywords
optical waveguide
silicon
substrate
compound
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4266162A
Other languages
Japanese (ja)
Other versions
JPH06118356A (en
Inventor
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4266162A priority Critical patent/JP2592752B2/en
Publication of JPH06118356A publication Critical patent/JPH06118356A/en
Application granted granted Critical
Publication of JP2592752B2 publication Critical patent/JP2592752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光導波路を用いた光強
度変調,光スイッチングなどを行う、各種半導体光導波
路素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various semiconductor optical waveguide devices for performing light intensity modulation, optical switching, and the like using an optical waveguide, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、光導波路素子、例えば光(強度)変
調器,光スイッチ,光偏波面制御素子,光伝搬モード制
御素子などは、GaAsやInPなどの電気光学効果を有
する単結晶半導体に、単一モード伝搬の光導波路を形成
し、その形状を工夫するとともに電極を適切な形で設
け、電気光学効果により光導波路通過光を制御して行っ
ている。
2. Description of the Related Art Conventionally, optical waveguide elements, such as an optical (intensity) modulator, an optical switch, an optical polarization plane control element, and a light propagation mode control element, are formed of a single crystal semiconductor having an electro-optical effect such as GaAs or InP. A single-mode-propagating optical waveguide is formed, its shape is devised, electrodes are provided in an appropriate shape, and light passing through the optical waveguide is controlled by an electro-optic effect.

【0003】具体的には、GaAsやInPなどの周期表I
II族およびV族からなる化合物半導体を用いた場合に
は、屈折率の異なる他の混晶、例えば、GaAsの場合に
は、GaAs基板の上にGaAsよりも屈折率の低いAlGa
As層をエピタキシャル成長で形成し、さらにその上に
GaAs層をエピタキシャル成長で形成して、上部のGa
As層内に光導波路を形成している。
[0003] Specifically, a periodic table I such as GaAs or InP is used.
In the case of using a compound semiconductor composed of Group II and Group V, another mixed crystal having a different refractive index, for example, in the case of GaAs, AlGa having a lower refractive index than GaAs on a GaAs substrate.
An As layer is formed by epitaxial growth, and a GaAs layer is further formed thereon by epitaxial growth.
An optical waveguide is formed in the As layer.

【0004】しかし、このような方法にはいくつかの制
約がある。まず第1に、エピタキシャル成長膜は成長速
度や成長時に発生する結晶内の歪の問題から、5μm以
上の膜厚を実用的に得ることが困難である。通常、光通
信に用いる光ファイバーは、シングルモードタイプで、
そのコア径(光の閉じ込められている部分)は約10μmで
ある。したがって、5μm以下の膜厚の光導波路と光結
合させると、直径の不一致による結合損失が極めて大き
くなる。
However, such a method has some limitations. First, it is difficult to practically obtain a film thickness of 5 μm or more due to the problem of the growth rate and the strain in the crystal generated during the growth. Usually, the optical fiber used for optical communication is a single mode type,
The core diameter (portion where light is confined) is about 10 μm. Therefore, when optical coupling is performed with an optical waveguide having a thickness of 5 μm or less, coupling loss due to mismatch of diameters becomes extremely large.

【0005】またエピタキシャル成長は、格子定数がほ
ぼ一致しないと困難なことから、基板に高価な化合物半
導体基板を用いなければならないこと,その上に形成で
きる膜の種類に制約があること,量産性が悪いことなど
の問題があった。
[0005] In addition, since epitaxial growth is difficult if the lattice constants do not substantially match, an expensive compound semiconductor substrate must be used for the substrate, the types of films that can be formed thereon are restricted, and mass productivity is low. There were problems such as bad things.

【0006】[0006]

【発明が解決しようとする課題】上記の如く、化合物半
導体のエピタキシャル成長多層膜からなる半導体光導波
路素子では、光導波路と光ファイバーとの結合損失が大
きい,基板に高価な化合物半導体基板を用いなければな
らない,使用できる半導体に制約がある,エピタキシャ
ル成長であるため量産性が悪いなどという課題があっ
た。
As described above, in a semiconductor optical waveguide device composed of a compound semiconductor epitaxially grown multilayer film, an expensive compound semiconductor substrate must be used as the substrate, which has a large coupling loss between the optical waveguide and the optical fiber. There is a problem that there are restrictions on the semiconductors that can be used, and mass productivity is poor due to epitaxial growth.

【0007】本発明は上述したような問題を解決し、光
導波路として、光導波路部の屈折率が均一で、光ファイ
バーコア径に対応した厚みの構造をうることにより、光
ファイバーとの結合損失を大幅に低減させることを目的
とする。
The present invention solves the above-described problems, and provides a structure having a uniform refractive index of the optical waveguide portion and a thickness corresponding to the diameter of the optical fiber core, thereby greatly reducing the coupling loss with the optical fiber. It is intended to reduce to.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するため、ガラス基体に低融点ガラスもしくは珪素も
しくは珪素化合物を用いて接合された電気光学効果を有
する単結晶半導体基板内に、前記ガラス基体との屈折率
差により形成された光導波路を有し、その光導波路を通
る光を電気光学効果により制御するようにしたものであ
る。
In order to solve the above-mentioned problems, the present invention provides a single crystal semiconductor substrate having an electro-optical effect, which is bonded to a glass substrate using low melting point glass or silicon or a silicon compound. It has an optical waveguide formed by a refractive index difference from a glass substrate, and controls light passing through the optical waveguide by an electro-optic effect.

【0009】[0009]

【作用】本発明によれば、光ファイバーとの結合損失の
少ない,安価なガラス基板を使用できる,使用できる半
導体の制約が少ない,量産性に優れた半導体光導波路素
子が得られる。
According to the present invention, it is possible to obtain a semiconductor optical waveguide element which has a small coupling loss with an optical fiber, can use an inexpensive glass substrate, has few restrictions on the semiconductors that can be used, and has excellent mass productivity.

【0010】[0010]

【実施例】以下、本発明の各実施例の半導体光導波路素
子、特に光変調器に適用した場合の構成とその製造方法
について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of a semiconductor optical waveguide device according to each embodiment of the present invention, particularly when applied to an optical modulator, and a method of manufacturing the same will be described with reference to the drawings.

【0011】(実施例1)本実施例の構成の第1の実施例
を図1および図2に示す。図1は全体の斜視図を示し、
これは光変調器に適用した場合を示したものであり、図
1において、1はガラス基体、2はガラス基体1に接合
された電気光学効果を有する単結晶半導体基板で、具体
的にはGaAs基板、3はGaAs基板2に形成された入出
力光導波路部、4は入力部から2つに分岐されたうちの
一方の第1の分岐光導波路、5は他方の第2の分岐光導
波路、6および7は第2の分岐光導波路5の両側に形成
された電極、8は接合の低融点ガラス層である。
(Embodiment 1) FIGS. 1 and 2 show a first embodiment of the configuration of this embodiment. FIG. 1 shows an overall perspective view,
This shows a case where the present invention is applied to an optical modulator. In FIG. 1, reference numeral 1 denotes a glass substrate, 2 denotes a single crystal semiconductor substrate having an electro-optical effect bonded to the glass substrate 1, and more specifically, GaAs. The substrate 3 is an input / output optical waveguide formed on the GaAs substrate 2, 4 is one of the first branched optical waveguides branched from the input portion into two, 5 is the other second branched optical waveguide, Reference numerals 6 and 7 denote electrodes formed on both sides of the second branch optical waveguide 5, and reference numeral 8 denotes a bonded low melting point glass layer.

【0012】図2は図1に示した光変調器中心部分のA
−A断面図であり、図2に示すように第1,第2の分岐
光導波路4,5の断面は、頭の部分が台形となってお
り、いわゆるリッジ型光導波路の構造となっている。入
出力光導波路3の断面形状も同じになっている。9は導
波光伝搬部を示したものである。
FIG. 2 shows A of the central portion of the optical modulator shown in FIG.
FIG. 2 is a cross-sectional view of FIG. 2A, and as shown in FIG. 2, the cross section of the first and second branch optical waveguides 4 and 5 has a trapezoidal head portion, and has a so-called ridge-type optical waveguide structure. . The cross-sectional shape of the input / output optical waveguide 3 is also the same. Reference numeral 9 denotes a guided light propagation unit.

【0013】この光変調器の構成そのものは、いわゆる
マッハーゼンダー型と呼ばれるもので、入出力光導波路
3の入力部より入射した光を2つに分岐し、分岐した一
方の第2の光導波路5(第1の分岐光導波路4でもよい)
に電極6,7により電界を加え、電気光学効果により、
光導波路部の屈折率を変えて導波光の伝搬速度を変え、
再結合部での光の位相が異なるようにすることにより、
入出力光導波路部3の出力部の光の強度を変調するよう
にしたものである。
The configuration of the optical modulator itself is what is called a Mach-Zehnder type, in which light incident from the input portion of the input / output optical waveguide 3 is branched into two, and one of the branched second optical waveguides 5 is formed. (The first branch optical waveguide 4 may be used)
An electric field is applied to the electrodes by the electrodes 6 and 7, and by the electro-optic effect,
By changing the refractive index of the optical waveguide portion to change the propagation speed of the guided light,
By making the phase of the light different at the recombination part,
In this configuration, the intensity of light at the output section of the input / output optical waveguide section 3 is modulated.

【0014】屈折率にある程度以上の差がある層を2層
積層にすれば、光は屈折率の大きい方に閉じ込めること
ができ、光導波路の形成が可能となる。GaAsの屈折率
は約3.6であり、ガラスの屈折率は通常1.4から1.6の範
囲にあるので、本実施例の構成にした場合、光はGaAs
基板2内に容易に閉じ込められる。さらにGaAs基板2
にリッジ構造を設けることにより、リッジ下部の部分の
方が、その他の部分よりも実効屈折率が大きくなるた
め、光はリッジ下部に閉じ込められ、したがってリッジ
下部が光導波路として作用する。
If two layers having a difference in the refractive index of a certain degree or more are laminated, light can be confined to the one having a larger refractive index, and an optical waveguide can be formed. Since the refractive index of GaAs is about 3.6 and the refractive index of glass is usually in the range of 1.4 to 1.6, the light of GaAs
It is easily confined in the substrate 2. GaAs substrate 2
When the ridge structure is provided, the portion under the ridge has a larger effective refractive index than the other portions, so that the light is confined under the ridge, and the lower portion of the ridge acts as an optical waveguide.

【0015】この場合の光導波路形状は、頭部が台形な
いしは矩形で、内部は均一の屈折率からなることによ
り、導波光の中心は光導波路の中心付近になり、かつ円
形に近い形となる。入出力光導波路部3の断面も同じ形
状であり、したがって、光ファイバーの直径10μmの円
形光導波路部構造との結合効率は極めて良好となる。
In this case, the optical waveguide has a trapezoidal or rectangular head and a uniform refractive index inside, so that the center of the guided light is near the center of the optical waveguide and has a shape close to a circle. . The cross section of the input / output optical waveguide section 3 also has the same shape, and therefore, the coupling efficiency with the optical fiber section structure having a diameter of 10 μm is extremely good.

【0016】各寸法の代表値はガラス基体1の厚みが1
mm、GaAs基板2の厚みが7μm、リッジ頭部でっぱり
の高さが3μm、光導波路幅は10μm、分岐光導波路部の
長さは1cm、光導波路部全体の長さは3cmであった。電
極6,7はアルミニウムを用いた。
A typical value of each dimension is that the thickness of the glass substrate 1 is 1
mm, the thickness of the GaAs substrate 2 was 7 μm, the height of the ridge was 3 μm, the width of the optical waveguide was 10 μm, the length of the branch optical waveguide was 1 cm, and the total length of the optical waveguide was 3 cm. Electrodes 6 and 7 used aluminum.

【0017】以上のような構成とすることにより、光フ
ァイバーとの結合損失は、屈折率の整合をとった接着材
を用いて接着固定することにより、片面で1.0dB以下と
なった。従来のエピタキシャル成長層状光導波路を用い
た場合、同様の接着固定方法で、通常の結合損失は約1.
5から3dBであったことから大幅に改善された。光変調
器としての性能は、従来のGaAs光導波路で構成したも
のとほぼ同様の性能が得られた。なお測定は0.8μmの波
長で行った。
With the above-described configuration, the coupling loss with the optical fiber is reduced to 1.0 dB or less on one side by bonding and fixing using an adhesive whose refractive index is matched. When a conventional epitaxially grown layered optical waveguide is used, a similar coupling and fixing method results in a typical coupling loss of about 1.
It was greatly improved from 5 to 3 dB. The performance as an optical modulator was almost the same as that of a conventional GaAs optical waveguide. The measurement was performed at a wavelength of 0.8 μm.

【0018】(実施例2)本実施例の光導波路素子の構成
の第2の実施例を図3に示す。図3は全体の斜視図を示
し、これは光変調器に適用した場合を示したものであ
り、図3において、10はガラス基体1とGaAs基板2を
接合するための珪素の層である。その他、図1に示す実
施例1と同じ構成要素には同じ符号を付してある。
(Embodiment 2) FIG. 3 shows a second embodiment of the configuration of the optical waveguide device of this embodiment. FIG. 3 is a perspective view of the whole, which shows a case where the present invention is applied to an optical modulator. In FIG. 3, reference numeral 10 denotes a silicon layer for bonding the glass substrate 1 and the GaAs substrate 2. In addition, the same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals.

【0019】ここで、前記珪素10の屈折率はGaAsと異
なるが、その厚みを100nmから1μm程度として、GaAs
基板2よりも十分薄くしておけば、やはりガラス基体1
とGaAs基板2の屈折率の違いにより、屈折率の大きい
GaAs基板2の方に光を効果的に閉じ込めることがで
き、光導波路の形成が可能となった。
Here, the refractive index of the silicon 10 is different from that of GaAs.
If it is made sufficiently thinner than the substrate 2, the glass substrate 1
Due to the difference in refractive index between the GaAs substrate 2 and the GaAs substrate 2, light can be effectively confined toward the GaAs substrate 2 having a large refractive index, and an optical waveguide can be formed.

【0020】珪素としては、多結晶珪素または非晶質珪
素を用いることにより、いずれの場合もほぼ同様の効果
が得られた。これにより、GaAs基板2に入射した光
は、薄板内に閉じ込められた。さらにリッジ構造を設け
ることにより、リッジ下部の部分の方が、その他の部分
よりも実効屈折率が大きくなるため、光はリッジ下部に
閉じ込められ、したがってリッジ下部が光導波路として
作用する。この場合の導波路形状は、実施例1の場合と
ほぼ同様であり、したがって光ファイバーの円形の光導
波構造との結合効率は極めて良好となった。
By using polycrystalline silicon or amorphous silicon as silicon, almost the same effect was obtained in each case. Thus, the light incident on the GaAs substrate 2 was confined in the thin plate. Further, by providing the ridge structure, the portion under the ridge has a larger effective refractive index than the other portions, so that light is confined under the ridge, and thus the ridge lower portion acts as an optical waveguide. The shape of the waveguide in this case was almost the same as that of the first embodiment, and therefore, the coupling efficiency of the optical fiber with the circular optical waveguide structure was extremely good.

【0021】各寸法の代表値としては、珪素10の膜厚を
0.5μmとし、他の寸法を実施例1と同様にしたとき、実
施例1とほぼ同じ諸特性が得られた。例えば、光ファイ
バーとの結合損失は、実施例1と同様、片面で1.0dB以
下となり、大幅に改善できた。
As a typical value of each dimension, the film thickness of silicon 10 is
When the size was 0.5 μm and other dimensions were the same as in Example 1, almost the same characteristics as in Example 1 were obtained. For example, the coupling loss with the optical fiber was 1.0 dB or less on one side, as in the case of Example 1, and could be greatly improved.

【0022】(実施例3)本実施例の光導波路素子の構
成の第3の実施例を図4に示す。図4は全体の斜視図を
示し、これは光変調器に適用した場合を示したものであ
り、図4において、11はガラス基体1とGaAs基板2
を接合するための珪素化合物の層である。その他、図1
に示す実施例1と同じ構成要素には同じ符号を付してあ
る。
(Embodiment 3) FIG. 4 shows a third embodiment of the configuration of the optical waveguide device of the present embodiment. FIG. 4 shows a perspective view of the whole, which shows a case where the present invention is applied to an optical modulator. In FIG. 4, reference numeral 11 denotes a glass substrate 1 and a GaAs substrate 2.
Is a layer of a silicon compound for bonding the layers. In addition, FIG.
The same reference numerals are given to the same components as those in the first embodiment shown in FIG.

【0023】ここで、前記珪素化合物11の屈折率はGa
Asと異なるが、その厚みを100nmから1μm程度とし
て、GaAs基板2よりも十分薄くしておけば、やはりガ
ラス基体1とGaAs基板2の屈折率の違いにより、屈折
率の大きいGaAs基板2の方に光を効果的に閉じ込める
ことができ、光導波路の形成が可能となった。
Here, the refractive index of the silicon compound 11 is Ga
Although it is different from As, if the thickness is about 100 nm to 1 μm and is sufficiently thinner than the GaAs substrate 2, the difference in the refractive index between the glass substrate 1 and the GaAs substrate 2 also results in the GaAs substrate 2 having a larger refractive index. The light can be effectively confined in the substrate, and an optical waveguide can be formed.

【0024】珪素化合物としては、酸化珪素または窒化
珪素を用いることにより、いずれの場合もほぼ同様の効
果が得られた。これにより、GaAs基板2に入射した光
は、薄板内に閉じ込められた。さらにリッジ構造を設け
ることにより、リッジ下部の部分の方が、その他の部分
よりも実効屈折率が大きくなるため、光はリッジ下部に
閉じ込められ、したがってリッジ下部が光導波路として
作用する。この場合の導波路形状は、実施例1の場合と
ほぼ同様であり、したがって光ファイバーの円形の光導
波構造との結合効率は極めて良好となった。
By using silicon oxide or silicon nitride as the silicon compound, almost the same effect was obtained in each case. Thus, the light incident on the GaAs substrate 2 was confined in the thin plate. Further, by providing the ridge structure, the portion under the ridge has a larger effective refractive index than the other portions, so that light is confined under the ridge, and thus the ridge lower portion acts as an optical waveguide. The shape of the waveguide in this case was almost the same as that of the first embodiment, and therefore, the coupling efficiency of the optical fiber with the circular optical waveguide structure was extremely good.

【0025】各寸法の代表値としては、珪素化合物11の
膜厚を0.5μmとし、他の寸法を実施例1と同様にしたと
き、実施例1とほぼ同じ諸特性が得られた。例えば、光
ファイバーとの結合損失は、実施例1と同様、片面で1.
0dB以下となり、大幅に改善できた。
As a representative value of each dimension, when the thickness of the silicon compound 11 is 0.5 μm and other dimensions are the same as those in the first embodiment, almost the same characteristics as in the first embodiment are obtained. For example, the coupling loss with the optical fiber is 1.
It was below 0dB, which was a great improvement.

【0026】(実施例4)本実施例の光導波路素子の製造
方法の第1の例を示す。
(Embodiment 4) A first example of a method of manufacturing an optical waveguide device according to this embodiment will be described.

【0027】まず鏡面研磨されたガラス基体とGaAs基
板の表面をエッチングにより極めて清浄にした。具体的
には、ガラス基体は弗酸系エッチング液で、GaAs基板
は硫酸−過酸化水素エッチング液で、それぞれの表面を
エッチングにより極めて清浄かつ平坦にした。
First, the surfaces of the mirror-polished glass substrate and the GaAs substrate were extremely cleaned by etching. Specifically, the glass substrate was a hydrofluoric acid-based etchant, and the GaAs substrate was a sulfuric acid-hydrogen peroxide etchant, and the respective surfaces were extremely clean and flat by etching.

【0028】次にスパッタリングにより、低融点ガラス
薄膜をそれぞれの片面に0.3μmの厚みで形成した。
Next, a low-melting-point glass thin film was formed on one surface of each with a thickness of 0.3 μm by sputtering.

【0029】次に低融点ガラス薄膜同士を接触させて、
ガラス基体とGaAs基板を重ね合わせ、低融点ガラスの
融点近傍の温度に加熱した。これにより、低融点ガラス
が軟化もしくは溶融し強固な接合が得られた。接合層の
厚みは熱処理温度により多少変わるが、一般に、高温で
行うほどスパッタリング形成した膜厚よりも薄くなっ
た。
Next, the low melting point glass thin films are brought into contact with each other,
The glass substrate and the GaAs substrate were overlapped and heated to a temperature near the melting point of the low-melting glass. As a result, the low-melting glass was softened or melted, and a strong bond was obtained. Although the thickness of the bonding layer slightly varies depending on the heat treatment temperature, generally, the higher the temperature, the smaller the thickness formed by sputtering.

【0030】次にGaAs基板を、機械的研磨およびエッ
チングにより薄板化していった。
Next, the GaAs substrate was thinned by mechanical polishing and etching.

【0031】10μmまで薄板化した後、ホトリソグラフ
ィー技術により、実施例1で示した光導波路構造のパタ
ーンにエッチングマスクを形成し、エッチングにより、
光導波路部以外を3μmエッチング除去した。
After reducing the thickness to 10 μm, an etching mask is formed on the pattern of the optical waveguide structure shown in Embodiment 1 by photolithography, and etching is performed.
The portion other than the optical waveguide was etched away by 3 μm.

【0032】マスクとしてはホトレジストを、エッチン
グ液としては、硫酸−過酸化水素弗酸系エッチング液を
用いた。
A photoresist was used as a mask, and a sulfuric acid-hydrogen peroxide hydrofluoric acid type etching solution was used as an etching solution.

【0033】その後レジストマスクを除去し、アルミニ
ウム電極を通常のホトリソグラフィーとエッチング技術
により形成した。これにより実施例1(図1)に示す光導
波路素子の構造を得た。この素子の光ファイバーとの結
合特性は、いずれも実施例1と同様であった。
Thereafter, the resist mask was removed, and an aluminum electrode was formed by ordinary photolithography and etching techniques. Thus, the structure of the optical waveguide device shown in Example 1 (FIG. 1) was obtained. The coupling characteristics of this element with the optical fiber were the same as those in Example 1.

【0034】(実施例5)本実施例の光導波路素子の製造
方法の第2の例を示す。
(Embodiment 5) A second example of a method for manufacturing an optical waveguide device of the present embodiment will be described.

【0035】実施例4と同様にして、鏡面研磨されたガ
ラス基体とGaAs基板の表面をエッチングにより極めて
清浄かつ平坦にした。
In the same manner as in Example 4, the surfaces of the mirror-polished glass substrate and the GaAs substrate were made extremely clean and flat by etching.

【0036】次にスパッタリングにより、非晶質珪素薄
膜をそれぞれの片面に0.25μmの厚みで形成した。
Next, an amorphous silicon thin film was formed with a thickness of 0.25 μm on each side by sputtering.

【0037】次に、非晶質珪素膜表面を弗酸系エッチン
グ液により清浄かつ表面の親水化処理をし、純水に浸し
た後すぐ非晶質珪素薄膜同士を接触させて、100〜700℃
の温度で熱処理を行った。これにより非晶質珪素膜を介
して強固な接合が得られた。熱処理温度が高いほど接合
部の強度は向上した。
Next, the surface of the amorphous silicon film is cleaned and hydrophilized with a hydrofluoric acid-based etchant, and the amorphous silicon thin films are brought into contact with each other immediately after being immersed in pure water. ° C
At a temperature of As a result, a strong bond was obtained via the amorphous silicon film. The higher the heat treatment temperature, the higher the strength of the joint.

【0038】以後、実施例4と同様の方法によりアルミ
ニウム電極まで形成し、実施例2(図3)に示す光導波路
素子の構造を得た。この素子の光ファイバーとの結合特
性などは、いずれも実施例2と同様であった。
Thereafter, aluminum electrodes were formed in the same manner as in Example 4 to obtain the structure of the optical waveguide device shown in Example 2 (FIG. 3). The coupling characteristics of this element to an optical fiber were the same as in Example 2.

【0039】(実施例6)本実施例の光導波路素子の製造
方法の第3の例を示す。
(Embodiment 6) A third example of a method for manufacturing an optical waveguide device of this embodiment will be described.

【0040】実施例4と同様にして、鏡面研磨および清
浄かつ平坦化されたガラス基体とGaAs基板の表面に、
化学気相成長法(CVD)により、多結晶珪素薄膜をそれ
ぞれの面に0.25μmの厚みで形成した。
In the same manner as in Example 4, a mirror-polished, clean and flattened glass substrate and a GaAs substrate
A polycrystalline silicon thin film having a thickness of 0.25 μm was formed on each surface by chemical vapor deposition (CVD).

【0041】次に実施例5と同様にして、多結晶珪素膜
表面を弗酸系エッチング液により清浄かつ表面の親水化
処理をし、純水に浸した後すぐ多結晶珪素薄膜同士を接
触させて、100〜700℃の温度で熱処理を行った。これに
より多結晶珪素膜を介して強固な接合が得られた。熱処
理温度が高いほど接合部の強度は向上した。
Next, in the same manner as in Example 5, the surface of the polycrystalline silicon film is cleaned with a hydrofluoric acid-based etching solution and the surface is hydrophilized. Then, heat treatment was performed at a temperature of 100 to 700 ° C. As a result, a strong bond was obtained via the polycrystalline silicon film. The higher the heat treatment temperature, the higher the strength of the joint.

【0042】以後、実施例4と同様の方法によりアルミ
ニウム電極まで形成し、実施例2(図3)に示す光導波路
素子の構造を得た。この素子の光ファイバーとの結合特
性などは、いずれも実施例2と同様であった。
Thereafter, aluminum electrodes were formed in the same manner as in Example 4 to obtain the structure of the optical waveguide device shown in Example 2 (FIG. 3). The coupling characteristics of this element to an optical fiber were the same as in Example 2.

【0043】(実施例7)本実施例の光導波路素子の製造
方法の第4の例を示す。
(Embodiment 7) A fourth example of a method for manufacturing an optical waveguide device of this embodiment will be described.

【0044】実施例4と同様にして、鏡面研磨および清
浄かつ平坦化されたガラス基体とGaAs基板の表面に、
化学気相成長法(CVD)により、酸化珪素薄膜をそれぞ
れの面に0.25μmの厚みで形成した。
In the same manner as in Example 4, a mirror-polished, clean and flattened glass substrate and a GaAs substrate
A silicon oxide thin film was formed on each surface with a thickness of 0.25 μm by chemical vapor deposition (CVD).

【0045】次に実施例5と同様にして、酸化珪素膜表
面を弗酸系エッチング液により清浄かつ表面の親水化処
理をし、純水に浸した後すぐ酸化珪素薄膜同士を接触さ
せて、100〜700℃の温度で熱処理を行った。これにより
酸化珪素膜を介して強固な接合が得られた。熱処理温度
が高いほど接合部の強度は向上した。
Next, in the same manner as in Example 5, the surface of the silicon oxide film was cleaned with a hydrofluoric acid-based etchant, and the surface of the silicon oxide film was hydrophilized. The heat treatment was performed at a temperature of 100 to 700 ° C. As a result, a strong bond was obtained via the silicon oxide film. The higher the heat treatment temperature, the higher the strength of the joint.

【0046】以後、実施例4と同様の方法によりアルミ
ニウム電極まで形成し、実施例3(図4)に示す光導波路
素子の構造を得た。この素子の光ファイバーとの結合特
性などは、いずれも実施例3と同様であった。
Thereafter, aluminum electrodes were formed in the same manner as in Example 4 to obtain the structure of the optical waveguide device shown in Example 3 (FIG. 4). The coupling characteristics of this device to an optical fiber were the same as those in Example 3.

【0047】(実施例8)本実施例の光導波路素子の製造
方法の第5の例を示す。
(Embodiment 8) A fifth example of the method of manufacturing the optical waveguide device of the present embodiment will be described.

【0048】実施例4と同様にして、鏡面研磨および清
浄かつ平坦化されたガラス基体とGaAs基板の表面に、
化学気相成長法(CVD)により、窒化珪素薄膜をそれぞ
れの面に0.25μmの厚みで形成した。
In the same manner as in Example 4, a mirror-polished, clean and flattened glass substrate and a GaAs substrate
A silicon nitride thin film was formed on each surface with a thickness of 0.25 μm by chemical vapor deposition (CVD).

【0049】次に実施例5と同様にして、窒化珪素膜表
面を弗酸系エッチング液により、清浄かつ表面の親水化
処理をし、純水に浸した後すぐ窒化珪素薄膜同士を接触
させて、100〜700℃の温度で熱処理を行った。これによ
り窒化珪素膜を介して強固な接合が得られた。熱処理温
度が高いほど接合部の強度は向上した。
Next, in the same manner as in Example 5, the surface of the silicon nitride film was cleaned and hydrophilized with a hydrofluoric acid-based etchant, and the silicon nitride thin films were contacted immediately after immersion in pure water. The heat treatment was performed at a temperature of 100 to 700 ° C. As a result, a strong bond was obtained via the silicon nitride film. The higher the heat treatment temperature, the higher the strength of the joint.

【0050】以後、実施例4と同様の方法によりアルミ
ニウム電極まで形成し、実施例3(図4)に示す光導波路
素子の構造を得た。この素子の光ファイバーとの結合特
性などは、いずれも実施例3と同様であった。
Thereafter, aluminum electrodes were formed in the same manner as in Example 4 to obtain the structure of the optical waveguide device shown in Example 3 (FIG. 4). The coupling characteristics of this device to an optical fiber were the same as those in Example 3.

【0051】(実施例9)本実施例の光導波路素子の構成
の第4の実施例を図5に示す。図5は全体の斜視図を示
し、これは光変調器に適用した場合を示したもので、図
5において、2′はInP基板である。その他、図1に
示す実施例と同じ構成要素には同じ符号を付してある。
このような構成とすることにより、実施例1に示したと
同じ原理に基づき、実施例1と同様の光導波路素子を得
ることができた。
(Embodiment 9) FIG. 5 shows a fourth embodiment of the configuration of the optical waveguide device of the present embodiment. FIG. 5 is a perspective view of the whole, which shows a case where the present invention is applied to an optical modulator. In FIG. 5, reference numeral 2 'denotes an InP substrate. In addition, the same components as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals.
With this configuration, an optical waveguide device similar to that of the first embodiment can be obtained based on the same principle as that of the first embodiment.

【0052】この場合の導波路形状は、実施例1の場合
とほぼ同様であり、したがって光ファイバーの円形の光
導波路部構造との結合効率は極めて良好となった。
The shape of the waveguide in this case is almost the same as that of the first embodiment, and therefore, the coupling efficiency of the optical fiber with the circular optical waveguide structure is extremely good.

【0053】各寸法の代表値として、実施例1と同様の
値をとったとき、実施例1とほぼ同じ諸特性が得られ
た。以上のような構成とすることにより、光ファイバー
との結合損失は、やはり実施例1と同様、片面で1.0dB
以下となり、大幅に改善できた。なお測定は1.3μmの波
長で行った。
When the same values as those of the first embodiment were taken as representative values of the respective dimensions, almost the same characteristics as those of the first embodiment were obtained. With the above configuration, the coupling loss with the optical fiber is 1.0 dB on one side, as in the first embodiment.
The result was as follows, which was greatly improved. The measurement was performed at a wavelength of 1.3 μm.

【0054】(実施例10)本実施例の光導波路素子の製
造方法の第6の例を示す。
(Embodiment 10) A sixth example of a method for manufacturing an optical waveguide device according to this embodiment will be described.

【0055】実施例4と同様にして、鏡面研磨および清
浄かつ平坦化されたガラス基体とInP基板の表面を、
エッチング液で清浄化し、スパッタリングにより低融点
ガラス膜を形成し、その面を重ねて熱処理を行うことに
より、強固な接合が得られた。
In the same manner as in Example 4, the surfaces of the mirror-polished, clean and flattened glass substrate and the InP substrate were
By cleaning with an etching solution, forming a low-melting glass film by sputtering, and performing heat treatment on the surfaces thereof, a strong bond was obtained.

【0056】以後、実施例4と同様の方法によりアルミ
ニウム電極まで形成し、実施例9(図5)に示す光導波
路素子の構造を得た。この素子の光ファイバーとの結合
特性などは、いずれも実施例9と同様であった。
Thereafter, aluminum electrodes were formed in the same manner as in Example 4 to obtain the structure of the optical waveguide device shown in Example 9 (FIG. 5). The coupling characteristics of this element to an optical fiber were the same as in Example 9.

【0057】同様にして、InPの場合にも、実施例5
から実施例8までに示したと同じ製造方法により、珪素
もしくは珪素化合物による接合の光導波路素子も得るこ
とができた。またその諸特性も実施例9とほぼ同様であ
った。
Similarly, in the case of InP, the fifth embodiment
By the same manufacturing method as described in Examples 1 to 8, an optical waveguide element joined by silicon or a silicon compound could be obtained. The various characteristics were almost the same as those in Example 9.

【0058】実施例5ないし8などにおける接合強化の
熱処理効果は、例えば、100℃で1時間程度保持するだ
けでも接合強度は数倍に上がり、数十kg/cm2の強度が
得られた。一般に温度が高いほど、また時間が長いほど
接合強度は強くなった。しかし700℃以上に温度を上げ
ると、GaAsまたはInP基板表面からの砒素または燐
の抜けが激しくなるため、表面の特性劣化が大きく光導
波路素子としての性能が劣化した。したがって熱処理温
度は700℃以下が好ましかった。
The heat treatment effect of the bonding strengthening in Examples 5 to 8 and the like, for example, the bonding strength increased several times even when the temperature was maintained at 100 ° C. for about 1 hour, and a strength of several tens kg / cm 2 was obtained. In general, the higher the temperature and the longer the time, the higher the bonding strength. However, when the temperature was raised to 700 ° C. or more, arsenic or phosphorus escaped from the surface of the GaAs or InP substrate became severe, so that the characteristics of the surface were greatly deteriorated and the performance as an optical waveguide device was deteriorated. Therefore, the heat treatment temperature was preferably 700 ° C. or less.

【0059】実施例5ないし8などに示した接合に珪素
もしくは珪素化合物を用いる製造方法の場合には、ガラ
ス基体の熱膨張率を、接合する化合物半導体の熱膨張率
に合わせることにより、接合のための熱処理を、より高
温で行うことができ、薄板化のための加工を強度の研磨
などで行っても剥離がない、あるいは光導波路素子とし
て、より高温まで安定に動作するなどの効果が得られ、
好ましかった。
In the case of the manufacturing method using silicon or a silicon compound for the bonding as shown in Examples 5 to 8, etc., the thermal expansion coefficient of the glass substrate is adjusted to the thermal expansion coefficient of the compound semiconductor to be bonded. Can be performed at a higher temperature, and there is no separation even if the processing for thinning is performed by strong polishing, or the effect of operating the optical waveguide element stably at higher temperatures is obtained. And
I liked it.

【0060】珪素もしくは珪素化合物を用いた接合は、
それぞれの珪素もしくは珪素化合物の表面を親水処理す
ることにより、表面に水中の水酸基が表面吸着し、その
イオンの結合力で接合したと考えられる。この状態で熱
処理を行うと、接合界面から次第に水酸基の水素が抜
け、残された酸素が核となって、接合が強化されると考
えられる。
The bonding using silicon or a silicon compound is as follows.
By hydrophilic treatment of the surface of each silicon or silicon compounds, hydroxyl group in water is surface adsorption to the surface, believed to have joined in the binding force of the ion. When heat treatment is performed in this state, it is considered that hydroxyl group hydrogen gradually escapes from the bonding interface, and the remaining oxygen becomes a nucleus, thereby strengthening the bonding.

【0061】したがって、実施例では単結晶半導体の例
として、GaAsおよびInPの例を用いて説明したが、
AlGaAs,InGaAs,InGaAsPなど他のIII−V族
化合物半導体を用いても、珪素もしくは珪素化合物を用
いて接合し、同様に光導波路素子を形成し、本実施例と
同様の効果が得られることは明らかである。また実施例
1および3で示した低融点ガラスを用いる方法も、他の
単結晶半導体を用いて同時に光導波路素子を形成できる
ことは、原理的に明らかである。
Therefore, in the embodiment, the example of GaAs and InP has been described as an example of the single crystal semiconductor.
Even if other III-V compound semiconductors such as AlGaAs, InGaAs, InGaAsP, etc. are used, they are joined by using silicon or a silicon compound to form an optical waveguide element in the same manner, and the same effect as that of the present embodiment can be obtained. it is obvious. It is also clear in principle that the method using the low melting point glass described in Examples 1 and 3 can simultaneously form an optical waveguide element using another single crystal semiconductor.

【0062】光導波路を形成する側の基板厚みは、光通
信が一般に単一モードで行われることから、単一モード
で伝搬する基板厚みにするのが望ましい。
Since the optical communication is generally performed in a single mode, the thickness of the substrate on which the optical waveguide is formed is desirably the thickness of the substrate propagating in a single mode.

【0063】本実施例では、光変調器の構成の例を示し
たが、本実施例の特徴が光導波路の構成そのものにある
ことから、基本的には光導波路を用いた各種光導波路素
子に広く一般的に適用できるものであり、光変調器に限
らず、光スイッチ,光偏波面制御,伝搬モード制御など
の各種光導波路素子に適用できるものである。
In this embodiment, an example of the configuration of the optical modulator has been described. However, since the feature of this embodiment lies in the configuration of the optical waveguide itself, basically, various optical waveguide devices using the optical waveguide are used. The present invention can be widely and generally applied, and is not limited to an optical modulator, but can be applied to various optical waveguide elements such as an optical switch, an optical polarization plane control, and a propagation mode control.

【0064】また本実施例では、特定の寸法例を示した
が、これに限定されるものではない。
In this embodiment, a specific example of dimensions is shown, but the present invention is not limited to this example.

【0065】また本実施例ではいずれも2枚の基板の接
合例を示したが、3枚以上接合することも可能である。
例えば3枚の基板を接合し、一番上と一番下の基板に光
導波路素子を作り込むことも可能であり、2枚の接合に
限定されるものではない。
In this embodiment, an example in which two substrates are joined is shown, but three or more substrates can be joined.
For example, it is also possible to bond three substrates and to form an optical waveguide element on the uppermost and lowermost substrates, and the present invention is not limited to the bonding of two substrates.

【0066】エピタキシャル成長膜は、成長させる基板
の表面処理,成長時の各種製造条件に極めて敏感なた
め、常に同じ膜質を得るのが難しく、歩留まりを上げに
くいが、本実施例で示した各種接合方式では、最初から
特性の優れた化合物半導体基板を選んで用いることがで
きるため、常に安定した特性の化合物半導体光導波路を
得ることができ、量産性でも明らかに優れた方法であ
る。またエピタキシャル成長させるためには高価な単結
晶半導体基板を用いなくてはならないが、本実施例の方
法ではガラスを用いることができる。ガラスの価格は、
単結晶化合物半導体より2桁程度安く、本実施例の方法
は価格面でも圧倒的に有利な方法である。
The epitaxially grown film is extremely sensitive to the surface treatment of the substrate to be grown and various manufacturing conditions during the growth, so that it is difficult to always obtain the same film quality and to increase the yield, but it is difficult to increase the yield. In this case, since a compound semiconductor substrate having excellent characteristics can be selected and used from the beginning, a compound semiconductor optical waveguide having stable characteristics can always be obtained, and this method is clearly superior in mass productivity. Although an expensive single crystal semiconductor substrate must be used for epitaxial growth, glass can be used in the method of this embodiment. The price of glass is
The method according to the present embodiment is about two orders of magnitude cheaper than a single crystal compound semiconductor and is overwhelmingly advantageous in terms of cost.

【0067】[0067]

【発明の効果】本発明は、以上説明したような構成と製
造方法からなり、以下のような効果を示す。
The present invention has the above-described structure and manufacturing method, and has the following effects.

【0068】光導波路として、導波路部の屈折率が均一
で、光ファイバーコア径に対応した厚みの構造が容易に
得られることから、光ファイバーとの結合損失を大幅に
低減できた。
As the optical waveguide, a structure having a uniform refractive index of the waveguide portion and a thickness corresponding to the diameter of the optical fiber core was easily obtained, so that the coupling loss with the optical fiber could be greatly reduced.

【0069】また製造方法として、エピタキシャル成長
ではなく接合を用いるので、基体に安価(化合物半導体
基板より2桁安い)なガラスを用いることができ、使用
できる化合物半導体の制約が少なく、また量産性に優れ
るものである。
In addition, since a junction is used instead of epitaxial growth as a manufacturing method, inexpensive (two orders of magnitude cheaper than a compound semiconductor substrate) glass can be used for the substrate, and there are few restrictions on the compound semiconductor that can be used, and excellent mass productivity is achieved. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の光導波路素子の構成を
示す全体斜視図である。
FIG. 1 is an overall perspective view showing a configuration of an optical waveguide device according to a first embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明の第2の実施例の光導波路素子の構成を
示す全体斜視図である。
FIG. 3 is an overall perspective view showing a configuration of an optical waveguide device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の光導波路素子の構成を
示す全体斜視図である。
FIG. 4 is an overall perspective view showing a configuration of an optical waveguide device according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の光導波路素子の構成を
示す全体斜視図である。
FIG. 5 is an overall perspective view showing a configuration of an optical waveguide device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス基体、 2…単結晶半導体基板(GaAs基
板)、 2′…InP基板、3…入出力光導波路部、 4
…第1の分岐光導波路、 5…第2の分岐光導波路、
6,7…電極、 8…低融点ガラス層、 9…導波光伝
搬部、 10…珪素、 11…珪素化合物。
DESCRIPTION OF SYMBOLS 1 ... Glass base, 2 ... Single crystal semiconductor substrate (GaAs substrate), 2 '... InP substrate, 3 ... Input / output optical waveguide part, 4
... first branch optical waveguide, 5 ... second branch optical waveguide,
6, 7: electrode, 8: low melting point glass layer, 9: guided light propagation part, 10: silicon, 11: silicon compound.

フロントページの続き (56)参考文献 特開 昭49−98258(JP,A) 特開 昭57−89712(JP,A) 特開 昭52−78454(JP,A) 特開 昭63−49732(JP,A) 特開 平4−123018(JP,A) 特開 昭58−223106(JP,A) 特開 昭60−51700(JP,A) 特開 平4−116816(JP,A) APPL.PHYS.LETT.VO L.56 NO.24 P.2419−P.2421 (1990年6月)Continuation of the front page (56) References JP-A-49-98258 (JP, A) JP-A-57-89712 (JP, A) JP-A-52-78454 (JP, A) JP-A-63-49732 (JP, A) JP-A-4-123018 (JP, A) JP-A-58-223106 (JP, A) JP-A-60-51700 (JP, A) JP-A-4-116816 (JP, A) APPL. PHYS. LETT. VOL. 56 NO. 24 p. 2419-P. 2421 (June 1990)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラス基体と、電気光学効果を有する周
期表III族およびV族の組み合わせからなる単結晶化
合物半導体が、前記ガラス基体または前記単結晶化合物
半導体基板の所定の部位に形成された珪素膜または珪素
化合物膜を介して、前記珪素膜もしくは前記珪素化合物
膜表面の水酸基または酸素により、直接接合されて積層
されており、前記単結晶化合物半導体基板内に、前記ガ
ラス基体との屈折率の差により閉じ込められた光導波路
を有することを特徴とする半導体光導波路素子。
1. A glass substrate having a periphery having an electro-optic effect.
Single crystallization comprising a combination of groups III and V
The compound semiconductor is the glass substrate or the single crystal compound
Silicon film or silicon formed on a predetermined portion of a semiconductor substrate
The silicon film or the silicon compound through a compound film
Direct bonding and lamination due to hydroxyl or oxygen on the film surface
The single crystal compound semiconductor substrate,
Optical waveguide confined by the difference in refractive index from a lath substrate
A semiconductor optical waveguide device comprising:
【請求項2】 電気光学効果を有する単結晶半導体とし
て、GaAsまたはInPを用いたことを特徴とする請
求項1記載の半導体光導波路素子。
2. A single crystal semiconductor having an electro-optic effect.
And GaAs or InP is used.
The semiconductor optical waveguide device according to claim 1.
【請求項3】 珪素化合物として、酸化珪素または窒化
珪素を用いたことを特徴とする請求項1記載の半導体光
導波路素子。
3. The method according to claim 1 , wherein the silicon compound is silicon oxide or nitrided.
2. The semiconductor light according to claim 1, wherein silicon is used.
Waveguide element.
【請求項4】 ガラス基体と、電気光学効果を有する周
期表III族およびV族の組み合わせからなる単結晶化
合物半導体基板の少なくとも一方の基板表面に、珪素ま
たは珪素化合物膜を形成する工程と、前記各基板の接合
予定部位表面を、親水化処理する工程と、純水に浸す工
程と、重ね合わせて接合する工程と、熱処理により接合
を強化する工程と、前記単結晶化合物半導体基板に光導
波路を形成する工程とからなることを特徴とする半導体
光導波路素子の製造方法。
4. A glass substrate and a periphery having an electro-optic effect.
Single crystallization comprising a combination of groups III and V
At least one substrate surface of the compound semiconductor substrate
Forming a silicon compound film and bonding the substrates
A process of hydrophilizing the surface of the planned site
Joining process by overlapping and joining by heat treatment
And conducting light to the single crystal compound semiconductor substrate.
Forming a wave path.
A method for manufacturing an optical waveguide device.
【請求項5】 珪素化合物として、酸化珪素または窒化
珪素を用いたことを特徴とする請求項4記載の半導体光
導波路素子の製造方法。
5. The method according to claim 1 , wherein the silicon compound is silicon oxide or nitrided.
The semiconductor light according to claim 4, wherein silicon is used.
A method for manufacturing a waveguide element.
JP4266162A 1992-10-05 1992-10-05 Semiconductor optical waveguide device and method of manufacturing the same Expired - Fee Related JP2592752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4266162A JP2592752B2 (en) 1992-10-05 1992-10-05 Semiconductor optical waveguide device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4266162A JP2592752B2 (en) 1992-10-05 1992-10-05 Semiconductor optical waveguide device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06118356A JPH06118356A (en) 1994-04-28
JP2592752B2 true JP2592752B2 (en) 1997-03-19

Family

ID=17427144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4266162A Expired - Fee Related JP2592752B2 (en) 1992-10-05 1992-10-05 Semiconductor optical waveguide device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2592752B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515001B2 (en) * 1973-01-22 1980-04-21
JPS5278454A (en) * 1975-12-25 1977-07-01 Nec Corp Optical waveguide of single crystal thin film
JPS5789712A (en) * 1980-11-25 1982-06-04 Nec Corp Optical circuit
JPS58223106A (en) * 1982-06-21 1983-12-24 Canon Inc Optical circuit element member
JPS6051700A (en) * 1983-08-31 1985-03-23 Toshiba Corp Bonding method of silicon crystalline body
JPH0750265B2 (en) * 1986-08-20 1995-05-31 川上 彰二郎 Wideband traveling waveform optical modulator
JPH02183510A (en) * 1989-01-10 1990-07-18 Sony Corp Manufacture of substrate for semiconductor
JPH0719738B2 (en) * 1990-09-06 1995-03-06 信越半導体株式会社 Bonded wafer and manufacturing method thereof
JPH04123018A (en) * 1990-09-14 1992-04-23 Tdk Corp Waveguide type optical parts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LETT.VOL.56 NO.24 P.2419−P.2421(1990年6月)

Also Published As

Publication number Publication date
JPH06118356A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
KR0134763B1 (en) Optical guided wave device and amnufacturing method
US5485540A (en) Optical waveguide device bonded through direct bonding and a method for fabricating the same
JP2574594B2 (en) Optical waveguide device and manufacturing method thereof
US8871554B2 (en) Method for fabricating butt-coupled electro-absorptive modulators
US9423560B2 (en) Electronic/photonic integrated circuit architecture and method of manufacture thereof
JPH0548444B2 (en)
JPH04213406A (en) Lightguide tube and manufacture thereof
TW200300504A (en) Waveguide-bonded optoelectronic devices
US20220373828A1 (en) Optical device and optical communication apparatus
JP2574606B2 (en) Dielectric optical waveguide device and method of manufacturing the same
JPH06222229A (en) Optical waveguide element and its manufacture
JP3474917B2 (en) Method for manufacturing semiconductor device
JP2592752B2 (en) Semiconductor optical waveguide device and method of manufacturing the same
JP2581486B2 (en) Optical waveguide device and method of manufacturing the same
KR0174303B1 (en) Semiconductor device and method of manufacturing the same
JPH06289347A (en) Optical waveguide element and its manufacture
JP2005084290A (en) Manufacturing method of light controlling element
JP2574602B2 (en) Optical waveguide device
JP2606525B2 (en) Optical waveguide device and manufacturing method thereof
JP2006284962A (en) Optical element
JPH10239544A (en) Optical waveguide element and manufacture thereof
JPH06186447A (en) Semiconductor optical waveguide element
US20240337870A1 (en) Integration of advanced photonic materials in silicon photonic platform
WO2024100782A1 (en) Optical integrated device and optical integrated device manufacturing method
JP4875918B2 (en) Optical waveguide device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees