JPH04123018A - Waveguide type optical parts - Google Patents

Waveguide type optical parts

Info

Publication number
JPH04123018A
JPH04123018A JP24503990A JP24503990A JPH04123018A JP H04123018 A JPH04123018 A JP H04123018A JP 24503990 A JP24503990 A JP 24503990A JP 24503990 A JP24503990 A JP 24503990A JP H04123018 A JPH04123018 A JP H04123018A
Authority
JP
Japan
Prior art keywords
ridge
waveguide
optical waveguide
type optical
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24503990A
Other languages
Japanese (ja)
Inventor
Makoto Minakata
誠 皆方
Nobuhiro Ninomiya
二宮 伸浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP24503990A priority Critical patent/JPH04123018A/en
Publication of JPH04123018A publication Critical patent/JPH04123018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drop a driving voltage by providing electrodes for impressing alternating electric fields on the side faces of the region of phase modulating parts of a ridge type optical waveguide and as well specifying the relation between the width and height of the ridge type optical waveguide. CONSTITUTION:The above optical parts have a rectangular parallelepiped substrate 2 which consists of an LiNbO3 crystal, the ridge type optical waveguide 3 which is formed atop this substrate 2 and is thermally diffused with Ti, the electrodes 4 which are disposed along the side faces of the optical wavelength 3 in order to impress the alternating electric fields on this optical waveguide 3 and an AC power source 5 which impresses a prescribed AC voltage to the electrodes 4. The phase modulating parts 3c, 3d of the optical waveguide 3 are formed to >=0.1 ratio of the height dL to width W thereof and are set at 90+ or -10 deg., more preferably 90 deg. ridge anglebeta. An electro-optical effect is effectively exhibited in this way and the correction factor of the electric field is increased. The driving voltage is thus dropped.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、導波路型光部品に関し、より詳しパくは、光
スィッチ、電磁環境用の微弱電磁界センサ、さらには光
フアイバ通信系における高速光変調器等に適用して好適
な導波路型光部品に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a waveguide type optical component, and more particularly, to an optical switch, a weak electromagnetic field sensor for electromagnetic environment, and furthermore, The present invention relates to a waveguide type optical component suitable for application to high-speed optical modulators and the like in optical fiber communication systems.

(従来の技術) 上述したような技術分野における光部品として、従来第
7図に示すものが知られている。
(Prior Art) As an optical component in the technical field as described above, the one shown in FIG. 7 is conventionally known.

同図はプレーナ形光部品30を示すものであり、例えば
LiNb0.製の基板31上に平坦なチャンネル導波路
32及び電極33a、33b。
The figure shows a planar optical component 30, for example, LiNb0. A flat channel waveguide 32 and electrodes 33a, 33b are disposed on a substrate 31 made of aluminum.

33cを形成することにより構成したものである。33c.

しかしながら、このプレーナ形光部品30は、前記電極
33a、33b及び電極33b、33c間に印加する交
番電界と、光電界との相互作用を示す電界補正係数r(
詳細は後述する)の値が0.4程度(以下通常r=o、
1乃至0. 4ヲ意味するものとする。)と小さく、こ
のため、前記プレーナ形光部品30を駆動するための駆
動電圧の低減を図れないという問題がある。
However, this planar optical component 30 has an electric field correction coefficient r(
(details will be described later) is approximately 0.4 (hereinafter usually r=o,
1 to 0. It shall mean 4. ), and for this reason, there is a problem that the drive voltage for driving the planar optical component 30 cannot be reduced.

そして、駆動電圧の低減を図るべく電極33a。And an electrode 33a to reduce the driving voltage.

33b及び電極33b、33c間の間隔を狭くすると、
電界補正係数Fの値もその間隔に応じて減少してしまう
(1988年5月2社団法人、電子情報通信学会論文誌
C,Vol、J71.Na5r微小方微小方向性光スイ
ッチ」第666頁参照)。
33b and the spacing between the electrodes 33b and 33c is narrowed,
The value of the electric field correction coefficient F also decreases according to the interval (see May 1988, 2 Incorporated Association, Transactions of the Institute of Electronics, Information and Communication Engineers C, Vol. J71. Na5r Microdirectional Microdirectional Optical Switch, page 666 ).

このようなプレーナ形光部品30における駆動電圧の低
減化の困難性に鑑み、三次元形の光部品が提案され、特
にリッジ(ridge)形光部品の研究が進められてい
る。
In view of the difficulty in reducing the drive voltage in such a planar optical component 30, three-dimensional optical components have been proposed, and research on ridge-shaped optical components is in particular progressing.

以下に従来における導波路型光部品について、駆動電圧
(半波長電圧)Vπ、電界補正係数Fとの関連に基いて
説明する。
Conventional waveguide type optical components will be explained below based on the relationship between the drive voltage (half-wavelength voltage) Vπ and the electric field correction coefficient F.

導波路型光部品40は第8図に示すように、L iN 
b O3結晶の基板41上にTi薄膜の熱拡散、あるい
はエピタキシャル成膜法等の方法により、プレーナ形光
導波路を作製し、前記プレーナ形光導波路をマスクとイ
オンエツチング技術等を用いてリッジ導波路42とした
ものである。
The waveguide type optical component 40, as shown in FIG.
b A planar optical waveguide is fabricated on an O3 crystal substrate 41 by a method such as thermal diffusion of a Ti thin film or an epitaxial film formation method, and the planar optical waveguide is formed into a ridge waveguide 42 using a mask and ion etching technology. That is.

この場合に、第8図に示すリッジ角βと、電界補正係数
Fとの関係は、リッジ角βが90度に近くなるほど電界
補正係数Fは1.0に近づくことが知られている(19
77年10月24日1社団法人、電子通信学会資料、0
QE77−57.rリッジ形光、導波路J第17頁参照
)。
In this case, it is known that the relationship between the ridge angle β and the electric field correction coefficient F shown in FIG. 8 is that the closer the ridge angle β approaches 90 degrees, the closer the electric field correction coefficient F approaches 1.0 (
October 24, 1977 1 Incorporated Association, Institute of Electronics and Communication Engineers Materials, 0
QE77-57. (see page 17 of Waveguide J).

また、リッジ形の光導波路42における印加電界の分布
状態を第10図(a)、(b)に示す。
Further, the distribution state of the applied electric field in the ridge-shaped optical waveguide 42 is shown in FIGS. 10(a) and 10(b).

第10図(b)に示すリッジ角90度の先導波路42の
場合、導波光の伝搬領域での電界は均一な状態であるの
に対し、第10図(a)に示すリッジ角45度の先導波
路42′の場合上述した均一性は低下し、平均な電界強
度も低下することが知られている(前記「リッジ形光導
波路」第16頁参照)。
In the case of the leading waveguide 42 with a ridge angle of 90 degrees as shown in FIG. 10(b), the electric field in the propagation region of the guided light is uniform, whereas It is known that in the case of the leading waveguide 42', the above-mentioned uniformity is reduced and the average electric field strength is also reduced (see "Ridge-type optical waveguide", page 16).

尚、第10図(a)、(b)は、電極43a。Note that FIGS. 10(a) and 10(b) show the electrode 43a.

43b間に1(V)の電圧を印加した例であり、また、
同図中の数字は電界強度を11段階表示したものである
This is an example in which a voltage of 1 (V) is applied between 43b, and
The numbers in the figure represent the electric field strength in 11 levels.

(発明が解決しようとする課題) 上述したように、従来においてはリッジ角が90度に近
いほど電界補正係数Fが1.0に近くなることは知られ
ているが、理論的には光導波路の幅及び高さと電界補正
係数Fとの関係については未解決であり、実験的には、
リッジ角βが高さdLの変化と共に90度から減少し、
例えばdLが2μm以上では75乃至70度程度となる
(前記「リッジ形光導波路」第13.14頁参照)。
(Problem to be Solved by the Invention) As mentioned above, it is conventionally known that the closer the ridge angle is to 90 degrees, the closer the electric field correction coefficient F is to 1.0. The relationship between the width and height of and the electric field correction coefficient F is unresolved, and experimentally,
The ridge angle β decreases from 90 degrees as the height dL changes,
For example, when dL is 2 μm or more, the angle is about 75 to 70 degrees (see pages 13 and 14 of the above-mentioned “Ridge-type optical waveguide”).

従って、依然として駆動電圧の低減を図ることが困難で
あるのが現状である。
Therefore, the current situation is that it is still difficult to reduce the driving voltage.

そこで、本発明は、リッジ形光導波路の特に幅と高さと
の関係の特定を図り駆動電圧の低減が可能な導波路型光
部品を提供することを目的とするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a waveguide-type optical component in which the relationship between the width and height of the ridge-type optical waveguide can be specified, and the driving voltage can be reduced.

[発明の構成コ (課題を解決するための手段) 本発明は、電気光学効果を有するとともに電気光学効果
の最も大きな結晶方位を導光方向と直交する方向とした
基板上に、位相変調部を含むリッジ形光導波路を形成し
た導波路型光部品において、前記リッジ形光導波路のう
ちの位相変調部領域側面に交番電界印加用の電極を設け
るとともに、前記リッジ形光導波路の幅をW、高さをd
Lとするとき、dL/W=0.1以上に形成し、リッジ
角β=90±10度の範囲に設定したものである。
[Structure of the Invention (Means for Solving the Problems) The present invention provides a phase modulation section on a substrate which has an electro-optic effect and whose crystal orientation with the largest electro-optic effect is perpendicular to the light guiding direction. In a waveguide type optical component having a ridge type optical waveguide formed therein, an electrode for applying an alternating electric field is provided on the side surface of the phase modulation region of the ridge type optical waveguide, and the width of the ridge type optical waveguide is set to W, and the height of the ridge type optical waveguide is set to W. sawo d
When L, it is formed so that dL/W=0.1 or more, and the ridge angle β is set in the range of 90±10 degrees.

前記リッジ形光導波路は、位相変調部領域において、Y
字状に分岐した形状又は分割した形状に形成したもので
ある。
The ridge-shaped optical waveguide has Y in the phase modulation region.
It is formed into a branched shape or a divided shape.

尚、前記幅Wはリッジ形光導波路の屈折率や使用する光
波長によって単一モードとなるように決定され、Ti拡
散LiNbO3導波路の場合には4乃至8μm程度とな
る。
The width W is determined so as to be a single mode depending on the refractive index of the ridge-shaped optical waveguide and the optical wavelength used, and is approximately 4 to 8 μm in the case of a Ti-diffused LiNbO3 waveguide.

(作 用) 上述した構成の導波路型光部品によれば、電気光学効果
を有する基板の結晶方位と、リッジ形光導波路のうちの
位相変調部領域側面に形成した電極に印加される交番電
界の方向とが一致するので、大きな電気光学効果が得ら
れ、かつ、リッジ形光導波路の幅Wと高さdLとの比を
0.1以上。
(Function) According to the waveguide type optical component having the above-described configuration, the crystal orientation of the substrate having an electro-optic effect and the alternating electric field applied to the electrode formed on the side surface of the phase modulation region of the ridge type optical waveguide are controlled. Since the directions coincide with each other, a large electro-optic effect can be obtained, and the ratio of the width W to the height dL of the ridge-shaped optical waveguide is 0.1 or more.

リッジ角βを90±10度としたことにより電界補正係
数がプレーナ形に比べて大きくなり、これにより駆動電
圧を低減することができる。
By setting the ridge angle β to 90±10 degrees, the electric field correction coefficient becomes larger than that of the planar type, thereby making it possible to reduce the driving voltage.

また、前記幅Wと高さdLの比を0.1程度、例えばW
=8.czm、dL=0.8乃至1μm程度にすれば、
位相変調部領域のエツチング処理が容易となる。
Further, the ratio of the width W to the height dL is set to about 0.1, for example, W
=8. If czm, dL=0.8 to 1 μm,
This facilitates etching of the phase modulation region.

前記リッジ形光導波路における光度調部領域は、Y字状
に分岐した形状又は分割した形状として上述した作用を
発揮させることができる。
The light intensity adjustment region in the ridge-shaped optical waveguide can have a Y-shaped branched shape or a divided shape to exhibit the above-mentioned effect.

(実施例) 以下に本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第1図に示す導波路型光部品1は、例えばL i Nb
O3結晶の直方体状の基板2と、この基板2の上面に形
成されたTiを熱拡散したリッジ形光導波路(以下「光
導波路」という。)3と、この光導波路3に交番電界を
印加するために光導波路3の側面に沿うように配置した
電極4と、この電極4に所定の交流電圧を印加する交流
電源5とを具備している。
The waveguide type optical component 1 shown in FIG. 1 is, for example, L i Nb
An alternating electric field is applied to a rectangular parallelepiped substrate 2 of O3 crystal, a ridge-shaped optical waveguide (hereinafter referred to as "optical waveguide") 3 formed on the upper surface of this substrate 2 in which Ti is thermally diffused, and this optical waveguide 3. For this purpose, an electrode 4 arranged along the side surface of the optical waveguide 3 and an AC power source 5 for applying a predetermined AC voltage to the electrode 4 are provided.

前記光導波路3は、基板2の一方の端部及び他方の端部
側に各々直線状に形成された光入射部3a、光射出部3
bと、光入射部3a、光出射部3bから各々Y字状に分
岐し、かつ、相互に平行配置で、光入射部3a、光出射
部3bとも各々平行な位相変調部3c、3dとを具備し
ている。
The optical waveguide 3 includes a light entrance part 3a and a light exit part 3 formed linearly at one end and the other end of the substrate 2, respectively.
b, and phase modulation parts 3c and 3d, which are branched in a Y-shape from the light incidence part 3a and the light emission part 3b, and are arranged parallel to each other, and are parallel to the light incidence part 3a and the light emission part 3b, respectively. Equipped with

前記光導波路3のうち、位相変調部3c、3dは、第1
図に示すように高さd 1.+ 幅Wに形成され、また
、リッジ角βは第5図に示すように90±10度、好ま
しくは、90度に設定されている。
Of the optical waveguide 3, the phase modulation sections 3c and 3d are
As shown in the figure, the height d1. + width W, and the ridge angle β is set to 90±10 degrees, preferably 90 degrees, as shown in FIG.

前記電極4は、前記位相変調部3c、3dの直線部分の
各側面に接触配置した側部電極パターン4a、4b及び
中央電極パターン4cからなり、各電極パターン4a、
4b、4cの光の進行方向の長さは1に設定されている
The electrode 4 consists of side electrode patterns 4a, 4b and a center electrode pattern 4c arranged in contact with each side of the linear portion of the phase modulation parts 3c, 3d, and each electrode pattern 4a,
The lengths of 4b and 4c in the direction in which the light travels are set to 1.

尚、光の減衰を防止する目的で位相変調部3c。Note that a phase modulation section 3c is provided for the purpose of preventing light attenuation.

3dと電極4の境界に、絶縁体で成る電界緩和薄層を挿
入する場合もある。
In some cases, an electric field relaxing thin layer made of an insulator is inserted at the boundary between the electrode 3d and the electrode 4.

また、前記基板2の結晶方位は、X、 Y、  Z3軸
を第1図に示すようにとるとき、C軸がZ軸方向に一致
するように、即ち、光の進行方向と直交する方向になる
ように予め形成されている。
Further, the crystal orientation of the substrate 2 is such that when the three axes of X, Y, and Z are taken as shown in FIG. It is pre-formed to look like this.

次に、前記交流電源5による位相変調部3c。Next, a phase modulation section 3c using the AC power source 5.

3dの駆動電圧Vπ、電界電界補正係数1柑2図をも参
照して説明する。
The explanation will be made with reference to the drive voltage Vπ and electric field correction coefficient 1 and 2 of 3d.

駆動電圧Vπは下記(1)式で表すことができることが
知られている。
It is known that the drive voltage Vπ can be expressed by the following equation (1).

Vx=λW/ 2 n e r 33 r J    
 −(1)ここに、λは光の波長、neは光導波路3c
Vx=λW/ 2 n e r 33 r J
-(1) Here, λ is the wavelength of light, ne is the optical waveguide 3c
.

3dの屈折率、r33は電気光学定数、lは電極4の長
さ、Wは既述した如く位相変調部3c,3dの幅である
3d is the refractive index, r33 is an electro-optical constant, l is the length of the electrode 4, and W is the width of the phase modulation portions 3c and 3d as described above.

また、電界補正係数Fは下記(2)式で表すことができ
る。
Further, the electric field correction coefficient F can be expressed by the following equation (2).

(以下余白) ―       W/2 ffE(x.z)・e(x,z)dx・dz−舖   
 −W/2 ・・・(2) ここに、E (X,Z)は光電界、e (X,  Z)
は印加電界、Tは位相変調部3c,3dにおける平均電
界である。
(Left below) - W/2 ffE(x.z)・e(x,z)dx・dz-or
-W/2...(2) Here, E (X, Z) is the optical electric field, e (X, Z)
is the applied electric field, and T is the average electric field in the phase modulation sections 3c and 3d.

前記(1)式から、駆動電圧Vπは電界補正係数rに反
比例し、この電界補正係数Fが大きい値になるほど駆動
電圧Vπが小さくなることが判る。
From equation (1) above, it can be seen that the drive voltage Vπ is inversely proportional to the electric field correction coefficient r, and the larger the electric field correction coefficient F becomes, the smaller the drive voltage Vπ becomes.

次に、前記高さdL,幅W,電界補正係数F。Next, the height dL, width W, and electric field correction coefficient F.

駆動電圧Vπの関係を、光波長λ=1.3μmについて
計算及び実験した結果を第1表に示す。また、dL/W
と電界補正係数Fとの関係を第2図に示す。
Table 1 shows the results of calculations and experiments regarding the relationship between the drive voltage Vπ and the light wavelength λ=1.3 μm. Also, dL/W
The relationship between F and the electric field correction coefficient F is shown in FIG.

(以下余白) 第1表 (λ=1 3μl) 第1表及び第2図から明らかなように、前記幅Wが8μ
m、6μmの場合とも高さdLが大きくなるほどdt/
Wの値も大きくなり、これに伴い電界補正係数rの値が
大きくなって、逆に駆動電圧Vπの値はプレーナ形光部
品の場合に比べ大幅に小さくなることが判る。
(Margin below) Table 1 (λ=1 3 μl) As is clear from Table 1 and Figure 2, the width W is 8 μl.
m, 6 μm, the larger the height dL, the more dt/
It can be seen that as the value of W increases, the value of the electric field correction coefficient r increases accordingly, and conversely, the value of the drive voltage Vπ becomes significantly smaller than in the case of the planar optical component.

特に、W=6μmに対しdt =0.84μmと僅かに
光変調部3c、3dのエツチング処理を行い、リッジ化
するだけで、J=14mmの場合電界補正係数Fが0.
 6となり、このとき、駆動電圧Vπは1.4vとプレ
ーナ形の場合の略2/3となる。また、W=6μm、d
L=3μ口の場合、1=140で駆動電圧Vπは0.8
5Vとなり、プ・レーナ形の215に低減することがで
きる。これは高周波動作において極めて有効である。
In particular, when W=6 μm, dt=0.84 μm, and by simply etching the light modulating parts 3c and 3d to form a ridge, the electric field correction coefficient F can be reduced to 0.8 μm when J=14 mm.
6, and at this time, the driving voltage Vπ is 1.4 V, which is approximately ⅔ of that in the case of the planar type. Also, W=6 μm, d
In the case of L=3μ, 1=140 and the driving voltage Vπ is 0.8
5V, which can be reduced to 215 for planar type. This is extremely effective in high frequency operation.

さらに、電力の点では、駆動電圧Vπの2乗に比例する
ので、本実施例の場合プレーナ形に比べ大幅な電源容量
の削減が可能となる。
Furthermore, in terms of power, since it is proportional to the square of the drive voltage Vπ, in this embodiment, it is possible to significantly reduce the power supply capacity compared to the planar type.

次に、前記導波路型光部品1の製造工程について第3図
乃至第5図をも参照して説明する。
Next, the manufacturing process of the waveguide type optical component 1 will be explained with reference to FIGS. 3 to 5.

まず、第3図に示すように、L i N b O3結晶
の基板2上にTi熱拡散又はエピタキシャル成膜により
プレーナ形光導波路層を形成する。次にλTi等を用い
たマスクをフォトリソグラフィによって形成し、CF系
のエツチングガスを導入したエツチング装置を用いてイ
オンエツチング処理を行い、第5図に示すリッジ角β=
90±10度の光導波路3を得た。
First, as shown in FIG. 3, a planar optical waveguide layer is formed on a substrate 2 of L i N b O3 crystal by Ti thermal diffusion or epitaxial film formation. Next, a mask using λTi or the like is formed by photolithography, and an ion etching process is performed using an etching apparatus that introduces a CF-based etching gas, so that the ridge angle β=
An optical waveguide 3 having an angle of 90±10 degrees was obtained.

さらに、光導波路3の位相変調部3c、3dの側面に側
部電極パターン4a、4bs中央電極パターン4Cから
なる電極4を形成し、この電極4に交流電源5を接続し
て第1図に示す導波路型光部品1を得た。
Furthermore, an electrode 4 consisting of side electrode patterns 4a, 4bs and a center electrode pattern 4C is formed on the side surfaces of the phase modulation parts 3c and 3d of the optical waveguide 3, and an AC power source 5 is connected to this electrode 4, as shown in FIG. A waveguide type optical component 1 was obtained.

次に、本実施例の他側について第6図を参照して説明す
る。
Next, the other side of this embodiment will be explained with reference to FIG.

同図に示す導波路型光部品IAは、位相変調部3c、3
dを光入射部3a、光出射部3bと分割した形状に形成
したことが特徴である。
The waveguide type optical component IA shown in the figure includes phase modulation sections 3c, 3
A feature is that d is formed into a shape divided into a light entrance part 3a and a light output part 3b.

この導波路型光部品IAの場合にも、幅W、高さdL+
  リッジ角βを前記導波路型光部品1と同様にするこ
とにより、駆動電圧Vπの低減を図ることができる。
Also in the case of this waveguide type optical component IA, the width W and the height dL+
By making the ridge angle β similar to that of the waveguide type optical component 1, it is possible to reduce the driving voltage Vπ.

以上詳述した本実施例の導波路型光部品1によれば、位
相変調部3c、3dの幅W、高さdLの関係、及びリッ
ジ角βの範囲を既述したように設定することにより、駆
動電圧Vπをプレーナ形の場合に比べ大幅に低減するこ
とができる。
According to the waveguide type optical component 1 of the present embodiment described in detail above, by setting the relationship between the width W and the height dL of the phase modulation portions 3c and 3d and the range of the ridge angle β as described above, , the drive voltage Vπ can be significantly reduced compared to the planar type.

特に、dL/Wの値は、実用上第2図からも明らかなよ
うに0. 1乃至0.7の範囲、好ましくは0.2乃至
0. 5、最適値としては0. 3程度が好ましく、こ
の場合には電界補正係数Fは0.5乃至0.9、好まし
い範囲では0.6乃至0.8、最適値で0.7程度とな
る。
In particular, the value of dL/W is practically 0.0, as is clear from FIG. In the range of 1 to 0.7, preferably 0.2 to 0. 5, the optimal value is 0. The electric field correction coefficient F is preferably about 3. In this case, the electric field correction coefficient F is 0.5 to 0.9, preferably 0.6 to 0.8, and the optimum value is about 0.7.

また、基板2の結晶軸(C軸)の方向と、電極4による
交番電界の方向とが一致するので、位相変調部3c、3
dにおける電気光学効果を適切に発揮させることができ
、駆動電圧Vπの低減化を図ることができる。
Further, since the direction of the crystal axis (C axis) of the substrate 2 and the direction of the alternating electric field by the electrode 4 match, the phase modulation parts 3c, 3
The electro-optic effect at d can be appropriately exhibited, and the drive voltage Vπ can be reduced.

さらに、例えば位相変調部3c、3dの高さdLも1μ
l程度のエツチング処理で駆動電圧Vπの低減を図るこ
とができ、エツチング処理の容易化を図ることができる
Furthermore, for example, the height dL of the phase modulation sections 3c and 3d is also 1μ.
The driving voltage Vπ can be reduced by an etching process of about 1, and the etching process can be facilitated.

本発明は上述した実施例のほかその要旨の範囲内で種々
の変形が可能である。例えば基板2の材質としては、L
 i N b O3のほかL i T a O3。
In addition to the embodiments described above, the present invention can be modified in various ways within the scope of its gist. For example, the material of the substrate 2 is L
i N b O3 as well as L i T a O3.

PLZT、GaAs、InPを用いても実施できる。It can also be implemented using PLZT, GaAs, or InP.

[発明の効果] 以上詳述した本発明によれば、上述した構成としたこと
により、光導波路の幅、高さ及びリッジ角の関係が適切
となり、かつ、電気光学効果を有効に発揮させることが
でき、これにより、電界補正係数が大きく駆動電圧の低
減を図れる導波路型光部品を提供することができる。
[Effects of the Invention] According to the present invention described in detail above, the above-described configuration allows the relationship between the width, height, and ridge angle of the optical waveguide to be appropriate, and to effectively exhibit the electro-optic effect. As a result, it is possible to provide a waveguide type optical component that has a large electric field correction coefficient and can reduce the driving voltage.

前記光導波路の位相変調部領域を、Y字状又は分割形状
として上述した効果を奏することができる。
The above-described effects can be achieved by forming the phase modulation region of the optical waveguide in a Y-shape or in a divided shape.

また、光導波路の高さdLと、幅Wとの比を0、 1程
度のものとすれば加工の容易化をも図れる。
Furthermore, if the ratio between the height dL and the width W of the optical waveguide is about 0.1, processing can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の導波路型光部品の実施例を示す斜視図
、第2図は本実施例における位相変調部の高さ9幅の比
と電界補正係数との関係を示すグラフ、第3図、第4図
は各々実施例の製造工程を示す斜視図、第5図は同上の
断面図、第6図は本実施例の他側を示す斜視図、第7図
は従来のプレーナ形光部品の斜視図、第8図はリッジ形
の光部品を示す断面図、第9図は同上のリッジ角と電界
補正係数との関係を示すグラフ、第1O図(a)はリッ
ジ角45度の場合の電界分布図、第10図(b)はリッ
ジ角90度の場合の電界分布図である。 1、IA・・・導波路型光部品、 2・・・基板、3・
・・光導波路、3c、3d・・・位相変調部、4・・・
電極、   5・・・交流電源。 dL/ W 第 図 第 図 第 図 第 図 \ 3b (b)
FIG. 1 is a perspective view showing an embodiment of the waveguide type optical component of the present invention, FIG. 3 and 4 are perspective views showing the manufacturing process of each embodiment, FIG. 5 is a sectional view of the same as above, FIG. 6 is a perspective view showing the other side of this embodiment, and FIG. 7 is a conventional planar type. A perspective view of the optical component, FIG. 8 is a cross-sectional view showing a ridge-shaped optical component, FIG. 9 is a graph showing the relationship between the ridge angle and the electric field correction coefficient, and FIG. 1O (a) is a ridge angle of 45 degrees. FIG. 10(b) is an electric field distribution diagram when the ridge angle is 90 degrees. 1. IA... Waveguide type optical component, 2... Substrate, 3.
...Optical waveguide, 3c, 3d... Phase modulation section, 4...
Electrode, 5...AC power supply. dL/W Figure Figure Figure Figure Figure \ 3b (b)

Claims (3)

【特許請求の範囲】[Claims] (1)電気光学効果を有するとともに電気光学効果の最
も大きな結晶方位を導光方向と直交する方向とした基板
上に、位相変調部を含むリッジ形光導波路を形成した導
波路型光部品において、 前記リッジ形光導波路のうちの位相変調部領域側面に交
番電界印加用の電極を設けるとともに、前記リッジ形光
導波路の幅をW、高さをd_Lとするとき、d_L/W
=0.1以上に形成し、リッジ角β=90±10度の範
囲に設定したことを特徴とする導波路型光部品。
(1) In a waveguide-type optical component in which a ridge-shaped optical waveguide including a phase modulation section is formed on a substrate that has an electro-optic effect and has a crystal orientation with the largest electro-optic effect in a direction perpendicular to the light guiding direction, An electrode for applying an alternating electric field is provided on the side surface of the phase modulation region of the ridge-shaped optical waveguide, and when the width of the ridge-shaped optical waveguide is W and the height is d_L, d_L/W
1. A waveguide-type optical component, characterized in that the ridge angle β is set in the range of 90±10 degrees.
(2)前記リッジ形光導波路は、Y字状に分岐した2本
の導波路と略平行に位相変調部領域内に形成されたもの
である請求項1記載の導波路型光部品。
(2) The waveguide-type optical component according to claim 1, wherein the ridge-shaped optical waveguide is formed within the phase modulation region substantially parallel to the two Y-shaped branched waveguides.
(3)前記リッジ形光導波路は、位相変調部領域におい
て分割した形状に形成されたものである請求項1記載の
導波路型光部品。
(3) The waveguide-type optical component according to claim 1, wherein the ridge-type optical waveguide is formed into a shape divided in a phase modulation region.
JP24503990A 1990-09-14 1990-09-14 Waveguide type optical parts Pending JPH04123018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24503990A JPH04123018A (en) 1990-09-14 1990-09-14 Waveguide type optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24503990A JPH04123018A (en) 1990-09-14 1990-09-14 Waveguide type optical parts

Publications (1)

Publication Number Publication Date
JPH04123018A true JPH04123018A (en) 1992-04-23

Family

ID=17127677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24503990A Pending JPH04123018A (en) 1990-09-14 1990-09-14 Waveguide type optical parts

Country Status (1)

Country Link
JP (1) JPH04123018A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118356A (en) * 1992-10-05 1994-04-28 Matsushita Electric Ind Co Ltd Semiconductor optical waveguide and its production
JPH06289341A (en) * 1992-05-26 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element and its production
JPH06289345A (en) * 1992-07-08 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element
JPH06289344A (en) * 1992-04-27 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element and its production
JPH06289346A (en) * 1992-09-01 1994-10-18 Matsushita Electric Ind Co Ltd Dielectric substance optical waveguide element and its production
US5991067A (en) * 1996-09-06 1999-11-23 Ngk Insulators, Ltd. Optical waveguide substrate, optical waveguide device, second harmonic generation device, and process of producing optical waveguide substrate
US7095926B2 (en) 2004-09-14 2006-08-22 Fujitsu Limited Optical device
CN103376569A (en) * 2012-04-26 2013-10-30 鸿富锦精密工业(深圳)有限公司 Electro-optical modulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147322A (en) * 1983-02-10 1984-08-23 Matsushita Electric Ind Co Ltd Optical modulating element
JPS62215918A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Optical modulator
JPS63307427A (en) * 1987-06-10 1988-12-15 Matsushita Electric Ind Co Ltd Optical modulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147322A (en) * 1983-02-10 1984-08-23 Matsushita Electric Ind Co Ltd Optical modulating element
JPS62215918A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Optical modulator
JPS63307427A (en) * 1987-06-10 1988-12-15 Matsushita Electric Ind Co Ltd Optical modulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289344A (en) * 1992-04-27 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element and its production
JPH06289341A (en) * 1992-05-26 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element and its production
JPH06289345A (en) * 1992-07-08 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element
JPH06289346A (en) * 1992-09-01 1994-10-18 Matsushita Electric Ind Co Ltd Dielectric substance optical waveguide element and its production
JPH06118356A (en) * 1992-10-05 1994-04-28 Matsushita Electric Ind Co Ltd Semiconductor optical waveguide and its production
US5991067A (en) * 1996-09-06 1999-11-23 Ngk Insulators, Ltd. Optical waveguide substrate, optical waveguide device, second harmonic generation device, and process of producing optical waveguide substrate
US7095926B2 (en) 2004-09-14 2006-08-22 Fujitsu Limited Optical device
CN103376569A (en) * 2012-04-26 2013-10-30 鸿富锦精密工业(深圳)有限公司 Electro-optical modulator

Similar Documents

Publication Publication Date Title
JP2902642B2 (en) Integrated optical light intensity modulator and method of manufacturing the same
CA1309483C (en) Travelling wave optical modulator
US7447389B2 (en) Optical modulator
EP1892559B1 (en) Optical functional devices
US5042895A (en) Waveguide structure using potassium titanyl phosphate
KR0138850B1 (en) Te-tm mode converter on polymer waveguide
US5566257A (en) Electro-optic modulator
US20050259923A1 (en) Optical coupler
JPH04123018A (en) Waveguide type optical parts
JPH03504899A (en) Electronic/optical equipment
JPS6378123A (en) Continuous reset-free adjustor for polarization and phase
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP3279210B2 (en) Light modulator
Goel et al. Design considerations for low switching voltage crossing channel switches
JPH05173099A (en) Optical control element
JP2822778B2 (en) Wavelength conversion element
US4940302A (en) Integrated optics waveguides with large phase shifts
KR100288447B1 (en) Optical intensity modulator and its fabrication method
US5566258A (en) Waveguide type electro-optical element comprising material having specific resistance ranging between 107-1011 omega CM
US4199221A (en) Electro-optic thin-film waveguide modulator device
JPS6223847B2 (en)
JP2706315B2 (en) Optical waveguide phase modulator
JPH05346560A (en) Optical modulator
JPS6269247A (en) Optical switch
JPH05341243A (en) Mode converter and optical filter