JPS59147322A - Optical modulating element - Google Patents

Optical modulating element

Info

Publication number
JPS59147322A
JPS59147322A JP2061283A JP2061283A JPS59147322A JP S59147322 A JPS59147322 A JP S59147322A JP 2061283 A JP2061283 A JP 2061283A JP 2061283 A JP2061283 A JP 2061283A JP S59147322 A JPS59147322 A JP S59147322A
Authority
JP
Japan
Prior art keywords
optical waveguide
thin film
optical
modulation element
plzt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2061283A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Hideaki Adachi
秀明 足立
Kentaro Setsune
瀬恒 謙太郎
Kenzo Ochi
謙三 黄地
Shiyoukou Wasa
和佐 消孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2061283A priority Critical patent/JPS59147322A/en
Priority to DE8484900750T priority patent/DE3482287D1/en
Priority to EP84900750A priority patent/EP0137851B1/en
Priority to PCT/JP1984/000039 priority patent/WO1984003155A1/en
Priority to US06/667,480 priority patent/US4715680A/en
Publication of JPS59147322A publication Critical patent/JPS59147322A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic
    • G02F1/0553Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic specially adapted for gating or modulating in optical waveguides

Abstract

PURPOSE:To constitute a photodetecting element in one body and to form an extremely small optical element easily by composing a light guide of a ridge part consisting of the projection part of a PLZT thin film provided on the surface of a substrate. CONSTITUTION:The optical modulating element branches at least one input light guide 111 into two control light guides 113 by a Y type branch 112 and holds those two control light guides 113 in parallel at a specific interval. Then, the optical modulating element 10 is provided with a light guide 11 which connects the two light guides to one output light guide 115 at the other-side terminals by a Y type branch 114 and a phase control electrode 12 provided to at least one control light guide 113, and the ridge part 221 consisting of the projection part is provided on the surface of the PLZT thin film 22 having the light guides on the substrate 21. Consequently, the photodetecting element is constituted in one body and the extremely small optical element is formed easily.

Description

【発明の詳細な説明】 、産業上の利用分野 本発明は、光変調素子に関するものであり、特にPLZ
T系薄膜からなる光集積回路用の光変調素子に関してい
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a light modulation element, and in particular to a PLZ
The present invention relates to a light modulation element for optical integrated circuits made of a T-based thin film.

従来例の構成とその問題点 光変調素子として、マンハツエンダ型が知られている。Conventional configuration and its problems A Mannha-Zender type light modulation element is known as a light modulation element.

従来、この種の光変調素子はT1拡散型LiNbO3光
導波路により構成されていた。このTi拡散型LiNb
O5光導波路において、Y分岐させた一方の導波路を伝
搬する光音電気光学効果により位相変調を行い、再びY
分岐により1本の導波路に戻すことによる光の干渉効果
により強度変調をしている。
Conventionally, this type of optical modulation element has been constructed from a T1 diffusion type LiNbO3 optical waveguide. This Ti-diffused LiNb
In the O5 optical waveguide, phase modulation is performed by the photoacoustic electro-optic effect propagating through one of the Y-branched waveguides, and the Y
Intensity modulation is performed by the interference effect of light that is returned to a single waveguide by branching.

しかし、上記T1拡散型LiNbO3光導波路では。However, in the T1 diffusion type LiNbO3 optical waveguide.

伝搬光の他の光学素子との結合および素子寸法の微小化
の困難なグレイテッドインデックス構造(屈折率が光導
波路周辺領域においておよそ2次関数的に屈折率分布を
変化させる構造)からなる単−モードでなければモード
変換が大きいので光伝搬損失か増加し、又変調度も大き
くとることができなかった。さらに1例えば半導体の個
別部品である…−■族からなる光検出用のダイオードを
集積化することはできないという欠点を有していた。又
、微小光学部品、例えばマイクロレンズプリズムなどを
形成するのもy1100℃の高温での熱処理における拡
散処理のため導波路の境界が広がり微小化は難しく一高
密度の光デバイス例えば光IC用、基板としては実用性
に欠けるという欠点があった。
A single-layer structure consisting of a graded index structure (a structure in which the refractive index distribution changes approximately quadratically in the area surrounding the optical waveguide) makes it difficult to couple the propagating light with other optical elements and to miniaturize the element dimensions. If it is not a mode, the mode conversion is large, so the optical propagation loss increases, and the degree of modulation cannot be increased. Another drawback is that it is not possible to integrate photodetecting diodes, which are individual semiconductor components, for example, from the -2 group. In addition, when forming microscopic optical components such as microlens prisms, the boundary of the waveguide expands due to diffusion treatment during heat treatment at a high temperature of 1100°C, making miniaturization difficult. The drawback was that it lacked practicality.

本発明者らは、この種の光変調素子にPLZT系薄膜光
薄膜光導波路ることにより、従来の光変調素子の欠点全
除去することに成功し、新規な光変調素子を発明した。
The present inventors have succeeded in eliminating all the drawbacks of conventional light modulation devices by using a PLZT thin film optical thin film optical waveguide in this type of light modulation device, and have invented a new light modulation device.

発明の目的 本発明は一光検出素子との一体化が可能で、微小化、集
積化が容易な光変調素子を得るものである。したがって
、本発明は薄膜光導波路からなる光変調素子の構造と構
成材料を提供するものである。特に本発明はPLZT薄
膜光導波路からなる光変調素子の構造と構成材料を提供
するものであるO 発明の構成 本発明は1本の入力光導波路をY分岐により2本の制御
光導波路に分岐し、所定の間隔において上記2本の制御
光導波路全平行に保持し、他端において再びY分岐によ
り1本の出力光導波路に連結する光導波路と、上記制御
光導波路のいずれかに設けた位相制御電極とからなる光
変調素子において、上記光導波路を基板表面上に設けた
PLZT系薄膜の凸部からなるリッジ部にて構成した光
変調素子であり、さらに望捷しくけ一基板がサファイヤ
(α−アルミナ)0面基板よりなり、PLZT系薄膜が
少なくとも鉛、チタンおよびランタンの酸化物からなり
、かつ鉛(pb)とチタン(ri)のモル比率Pb/T
i  が 0.65 < Pb 7 Ti (0,90の範囲にあ
る。
OBJECTS OF THE INVENTION The present invention provides a light modulation element that can be integrated with a single photodetection element and is easily miniaturized and integrated. Therefore, the present invention provides the structure and constituent materials of an optical modulation element comprising a thin film optical waveguide. In particular, the present invention provides the structure and constituent materials of an optical modulation element made of a PLZT thin film optical waveguide. , an optical waveguide that holds the two control optical waveguides fully parallel at a predetermined interval and connects them to one output optical waveguide again by a Y branch at the other end, and a phase control provided in either of the control optical waveguides. In this light modulation element, the above-mentioned optical waveguide is constructed from a ridge portion consisting of a convex portion of a PLZT thin film provided on the surface of the substrate, and the substrate is made of sapphire (α - Alumina) zero-sided substrate, the PLZT thin film consists of at least oxides of lead, titanium, and lanthanum, and the molar ratio of lead (pb) and titanium (ri) is Pb/T.
i is in the range of 0.65 < Pb 7 Ti (0.90).

実施例の説明 以下本発明の実施例について図面を参照して説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本発明にかかる光変調素子の要部
平面構造ならびに上記変調素子全構成する光導波路の要
部断面図である。なお、第1図ではバッファ層を省略し
ており、第2図は第1図のX−X’線部の断面を示す。
FIGS. 1 and 2 are sectional views of the planar structure of the main part of the optical modulation element according to the present invention and the main part of the optical waveguide that constitutes the entire modulation element. Note that the buffer layer is omitted in FIG. 1, and FIG. 2 shows a cross section taken along line XX' in FIG. 1.

同図において一本発明にかかる光変調素子は少なくとも
1本の入力光導波路111をY分岐112により2本の
制御光導波路113に分岐し、所定の間隔において。
In the figure, an optical modulation element according to the present invention branches at least one input optical waveguide 111 into two control optical waveguides 113 by a Y branch 112 at a predetermined interval.

上記2本の制御光導波路113を平行に保持し、他端に
おいて再びY分岐114により1本の出力光導波路11
6に連結する光導波路11と少なくとも上記制御光導波
路113のいずれかに位相制御電極12を設けた光調素
子10において、上記光導波路を、基板21上に設けた
PLZT系薄膜22の表面に凸部からなるリッジ部22
1を設けて構成したことを特徴としている。
The two control optical waveguides 113 are held in parallel, and one output optical waveguide 11 is formed by Y-branching 114 again at the other end.
In the light control element 10 in which a phase control electrode 12 is provided on at least one of the optical waveguide 11 connected to the optical waveguide 6 and the control optical waveguide 113, the optical waveguide is provided on the surface of the PLZT thin film 22 provided on the substrate 21. A ridge portion 22 consisting of
1.

発明者らはこの構造において従来の光変調素子における
グレイテッドインデックス構造で単一モードであるのと
異なり、PLZT系薄膜でリッジ部の有する光導波路構
造でもモード変換も少なく又光伝搬損失の少ないため光
変調素子として実用できることを見い出し、これらの発
見にもとづいて本発明にかかる光変調素子が実現できた
In this structure, unlike the graded index structure of conventional optical modulators which have a single mode, the inventors discovered that the optical waveguide structure with a ridge part using a PLZT thin film has less mode conversion and less optical propagation loss. It was discovered that the light modulation element can be put to practical use as a light modulation element, and based on these discoveries, the light modulation element according to the present invention was realized.

すなわち−第1図および第2図に示したように一本発明
は従来の光変調素子におけるグレイチー、 トインデッ
クス構造のTi−拡散型LiNb0+光導波路と異なり
1通常光導波路として用いられる膜厚0.1〜2μmの
PLZT系薄膜で、光導波路幅3〜3oμ(1−IJッ
ジ部と周辺部との膜厚さすなわちステップ高かりッジ部
PLZT系薄膜のh以下の構造でマルチモード光導波路
を形成しても、モード変換は問題なく光伝搬損失も20
 dB/cm以下(波長1.06μm)で素子として充
分実用できることを発明者らは見い出し、これらの発見
に基づいて本発明にかかる光変調素子が実現できた。そ
の光変調度は90%以上で実用上問題なく、くわえてマ
ルチモードであるために他の光学部品との結合も容易で
あることを確認した。この場合ステップ高かりッジ部P
LZT糸薄膜のン4以上あるいは先導波路幅3μm未満
では光伝搬損失が20dB/crn孕越え、又光導波路
幅30μmを越える場合は素子寸法が大きくなり且つ制
御電極ギャップも広がるため動作電圧が高くなり実用的
でない。
That is, as shown in FIGS. 1 and 2, the present invention differs from the Ti-diffusion type LiNb0+ optical waveguide with a Grachy-index structure in the conventional optical modulation element, and has a film thickness of 0.5 mm, which is normally used as an optical waveguide. With a PLZT thin film of 1 to 2 μm, the optical waveguide width is 3 to 3 μm (the film thickness between the 1-IJ edge part and the peripheral part, i.e., the step height edge part is less than h of the PLZT thin film), making it possible to create a multimode optical waveguide. Even if the
The inventors discovered that the light modulation element can be put to practical use as a device at a wavelength of dB/cm or less (wavelength 1.06 μm), and based on these findings, the light modulation device according to the present invention was realized. It was confirmed that the degree of optical modulation was 90% or more, which poses no practical problem, and since it is multi-mode, it is easy to combine with other optical components. In this case, the step height edge part P
If the length of the LZT yarn thin film is 4 or more or the leading waveguide width is less than 3 μm, the optical propagation loss will exceed 20 dB/crn, and if the optical waveguide width exceeds 30 μm, the device size will increase and the control electrode gap will also widen, resulting in a higher operating voltage. Not practical.

さらに、上記構造では熱拡散による光導波路の広がりが
ないため微小なマイクロレンズを容易に組み込むことが
できることを確認した。
Furthermore, it was confirmed that in the above structure, minute microlenses could be easily incorporated because the optical waveguide does not expand due to thermal diffusion.

この種の変調素子では第2図に示すように位相制御電極
が直接光導波路にかかるので光伝搬損失が増加するため
、バッファ層23を設は光導波路ど位相制御電極を分離
していた。しかるに従来PLZT系の材料は現在王に用
いられているLiNb05単結晶より電気光学効が大き
いことが知られていたが、誘電率が大きく、したがって
バッファ層は通常低誘電材料であるため、電界が光導波
路に充分に印加されず、変調には位相制@A]電極に高
電圧を印加しなければならないと信じられていた。この
場合1例えば誘電率2000の膜厚0.36μmのPL
ZT系薄膜上に誘電率20の膜厚0.2μmの酸化タン
タル層を設け、ギャップ幅6〜20μmの位相制御電極
を設けると、光導波路には10〜60%程度しか電圧が
印加さルないと考えられていたけれども一本発明にかか
る変調素子では予想外に60〜8o%以十の電圧が失効
的に印加されていること全発見し、実用上有効であるこ
とを確認した。
In this type of modulation element, as shown in FIG. 2, the phase control electrode is directly applied to the optical waveguide, which increases optical propagation loss. Therefore, a buffer layer 23 has been provided to separate the phase control electrode from the optical waveguide. However, although conventional PLZT-based materials are known to have a larger electro-optic effect than the LiNb05 single crystal currently used in the manufacturing process, they have a large dielectric constant, and therefore the buffer layer is usually a low dielectric material, so the electric field is It was believed that a high voltage had to be applied to the phase-controlled @A] electrode for modulation, rather than being sufficiently applied to the optical waveguide. In this case 1, for example, PL with a dielectric constant of 2000 and a film thickness of 0.36 μm
If a tantalum oxide layer with a dielectric constant of 20 and a thickness of 0.2 μm is provided on a ZT-based thin film, and a phase control electrode with a gap width of 6 to 20 μm is provided, only about 10 to 60% of the voltage will be applied to the optical waveguide. However, in the modulation element according to the present invention, it was unexpectedly discovered that a voltage of 60 to 80% or more was applied in an expiring manner, and it was confirmed that the modulation element is practically effective.

発明者ら、この種の構成のにおいて構成材料をさらに詳
細に詳べた結果、新規な構成材料全発見し、これらの発
見に基づいてさらに有効な光変調素子を発明した。
The inventors studied the constituent materials of this type of structure in more detail, discovered all new constituent materials, and invented a more effective light modulation element based on these discoveries.

すなわち、第2図に示すように、基鈑21をサファイヤ
0面(○O○1)基板で構成すると。
That is, as shown in FIG. 2, the base plate 21 is composed of a sapphire 0-sided (○O○1) substrate.

(111)面のPLZT系薄膜がイオン衝鵞蒸着法例工
ばマグネトロンスパッタ法で成長することを見い出した
。寸た一半導体薄膜1例えばSi。
It has been found that a PLZT thin film with a (111) plane can be grown by ion bombardment evaporation, such as magnetron sputtering. One semiconductor thin film 1, for example, Si.

eaAsの(111)面もこの(0001)面に例えば
気相成長法によりエビタキンヤル成長することを確認し
た。これらの半導体薄膜は通常の半導体プロセスにより
、例えはp−nあるいはp−1−〇構造全形成し、例え
は光検出素子を形成できるので、変調素子と光検出素−
rとを一体化可能である。
It was confirmed that the (111) plane of eaAs also grows on this (0001) plane by, for example, a vapor phase growth method. These semiconductor thin films can be used to completely form, for example, a p-n or p-1-〇 structure using a normal semiconductor process, and can be used to form, for example, a photodetector element.
r can be integrated.

さらに発明者らは、上記4オン?15諏蒸着法を用いて
PLZT系薄膜を形成すると、電気光学効果の大きい組
成領域の存在することを発見し−この発見に基づきさら
に有効な変調素子を発明した。
Furthermore, the inventors mentioned the above 4-on? They discovered that when a PLZT thin film was formed using the 15-silicon vapor deposition method, there existed a compositional region with a large electro-optic effect.Based on this discovery, they invented a more effective modulation element.

すなわち、発明者らはス・シック用ターゲットの組成と
して、pbおよびTiのモル比率Pb/Ti75:0.
66/ Pb/Ti(0,90の範囲において電気化学
効果の大きいことを見い出した。第3図においてPb/
Ti  の比率を変えたときの電気光学効果の実測値を
示す。同図において一曲線31はPLZT系薄膜の2 
KV/mmの電界印加時の電気光学効果のPb/Ti 
 モル比率依存性金示す0この曲線との比較のため曲線
32にLiNbO3単結晶の特性を示す。
That is, the inventors set the composition of the target for S.S.I.C. at a molar ratio of Pb and Ti of Pb/Ti of 75:0.
66/Pb/Ti (We found that the electrochemical effect is large in the range of 0.90. In Figure 3, Pb/Ti
The actual measured values of the electro-optic effect when changing the Ti ratio are shown. In the same figure, one curve 31 is 2 of the PLZT thin film.
Electro-optical effect of Pb/Ti when applying an electric field of KV/mm
For comparison with this curve, curve 32 shows the characteristics of a LiNbO3 single crystal.

同図から−Pb/7i  モtし比率が、o、6es 
< pb /ri〈0.90の範囲ではLiNbo 3
よりも大きい電気光学効果が得られ、本発明の光変調素
子における変調の半波長電圧は2 Kv/mmの)くイ
アスミ圧印加時において同一寸法のTi拡散型LiNb
O5光導波路からなる光変調素子の釣機になることを確
認1〜/ζ。
From the same figure, the -Pb/7i ratio is o, 6es
<pb/ri<0.90, LiNbo 3
A larger electro-optic effect can be obtained, and the half-wave voltage of modulation in the optical modulation element of the present invention is 2 Kv/mm).
Confirmed that it is a fishing device for optical modulation elements consisting of O5 optical waveguides 1~/ζ.

実施例1 第2図に示すごとく基板21として表面研)皆されたサ
ファイヤ(α−アルミナ)0面基板(0001)を用い
、上記サファイヤ0面基板21十に高周波マグネトロン
スノ(ツタにより、厚さ0.4μmのPLZT系薄膜2
2を蒸着したOこの場合ターゲットL7J Ml 成は
、PLZT(2a10/1oo)−スパッタ中のザラ1
イヤ基板の温度は680℃−スパッタ電力は200Wで
ある。蒸着されたPLZT系簿膜22の構造は(111
)面の単結晶であり。
Example 1 As shown in FIG. 2, a surface-polished sapphire (alpha-alumina) 0-face substrate (0001) was used as the substrate 21, and a high-frequency magnetron was applied to the sapphire 0-face substrate 21. 0.4 μm PLZT thin film 2
In this case, the target L7J Ml composition is PLZT (2a10/1oo) - the rough 1 during sputtering.
The temperature of the ear substrate was 680°C and the sputtering power was 200W. The structure of the deposited PLZT film 22 is (111
) plane is a single crystal.

屈折率はHe −Na レーザ(波長0.6328 μ
m )で2.6であった。次に、このPLZT系薄膜の
表面を例えば光導波路幅20μmで第1図に示す構成に
フォトレジストでマスキングして、−上記PLZT系薄
膜22にイオンビームにより例えば65nmだけエツチ
ングしてリッジ部221を形成した。
The refractive index is He-Na laser (wavelength 0.6328μ
m) was 2.6. Next, the surface of this PLZT-based thin film is masked with a photoresist to form the structure shown in FIG. 1 with an optical waveguide width of 20 μm, for example, and the PLZT-based thin film 22 is etched by, for example, 65 nm with an ion beam to form a ridge portion 221. Formed.

光導波路解析で一般に用いられている実効屈折率は、リ
ッジ部すなわち高膜厚領域221において倶喚厚領域よ
りも大きいので、光は高膜厚領域に閉じ込められ、高膜
厚領域か光導波路とし用いられろことかできる。次に、
これらの薄膜上の少なくとも位相制御電極と光導波路と
の間に、’ra2o、。
The effective refractive index generally used in optical waveguide analysis is larger in the ridge portion, that is, in the high film thickness region 221, than in the convex thickness region, so light is confined in the high film thickness region and is You can say that you should not be used. next,
'ra2o, between at least the phase control electrode and the optical waveguide on these thin films.

8募をマグネトロンスハノタ/去によりバノノア層23
として蒸着した。蒸着されたTa205膜は非結晶であ
り、屈折率はHa−Neレーザ(波長0.6328Hr
n  )で2.1であった。次に位相制御電極12を蒸
着A/で形成し、第1図に示す光変調素子を構す又 し
Aヒ。
8th recruitment to Magnetrons Hanota/Banonoa layer 23 due to departure
It was deposited as The deposited Ta205 film is amorphous, and its refractive index is determined by Ha-Ne laser (wavelength 0.6328 Hr).
n) was 2.1. Next, the phase control electrode 12 is formed by vapor deposition A/A, and the light modulation element shown in FIG. 1 is constructed.

上記の構成において、電圧を一方の光導波路たとえば導
波路113のみ印加したときの光強1ル変調の測定結果
を第4図に示す。同図において、曲鞭41は九強実“の
電圧による変化を示し、60Vのバイアス電圧印加時に
おいて一強度変調の半波長電圧(tJloVであった。
FIG. 4 shows the measurement results of optical intensity modulation when a voltage is applied to only one optical waveguide, for example, the waveguide 113, in the above configuration. In the same figure, the curved whip 41 shows a change due to the voltage of 90%, and when a bias voltage of 60V is applied, the half-wave voltage of one intensity modulation (tJloV) is shown.

これは同一寸法の素子で構成さnたT1拡散型LiNb
O3光導波路からなる従来の光変調素子の約いの値で一
従来のLiNbO3の性能を上回るものであり、従来の
素子の形状を1hす、上に小型化することができた。
This is a T1 diffused LiNb composed of elements of the same size.
The performance is about the same as that of a conventional optical modulation element composed of an O3 optical waveguide, and exceeds the performance of a conventional LiNbO3, and the size of the conventional element can be reduced by 1 h.

実施例2 上記の実施例は、第2図に示す構成の光導波路を用いて
述べたが、第6図の構成の光導波路でも同様の効果のあ
ることを確認した。すなわち、同図(でおいて、PLZ
T系薄膜22の表面に屈折率かPLZT系薄膜の屈折率
より小さい拐料すなわちロード層51を装荷することに
より層61の直下の薄膜22の一部を光導波路とするこ
とができる。この場合、たとえばロード層51に酸化タ
ンタルをスパッタ法で形成し、パターン加工により導波
路を形成することにより、本発明の光変調器を構成して
も同様の効果の得られることを確認U−たO 発明の効果 以−ヒのように本発明でかかる光変調器においてにt、
従来の″ri拡散型尤導波路において形成のできなかっ
た光検出素子を一体化でき一部に微小光学素子も容易に
形成できる。したがって、光ICの集積化が容易となり
、その工業的両値は高い。
Example 2 Although the above example was described using the optical waveguide having the configuration shown in FIG. 2, it was confirmed that the same effect could be obtained using the optical waveguide having the configuration shown in FIG. That is, in the same figure (in the same figure, PLZ
By loading the surface of the T-based thin film 22 with a loading layer 51 having a refractive index smaller than that of the PLZT-based thin film, a portion of the thin film 22 immediately below the layer 61 can be used as an optical waveguide. In this case, it has been confirmed that the same effect can be obtained even if the optical modulator of the present invention is configured by, for example, forming tantalum oxide on the load layer 51 by sputtering and forming a waveguide by patterning. Effects of the Invention As described above, in the optical modulator of the present invention, t,
It is possible to integrate a photodetector element that could not be formed in the conventional RI diffusion type waveguide, and it is also possible to easily form a microscopic optical element in a part of it. Therefore, it is easy to integrate optical ICs, and its industrial value is improved. is expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる光変調素子の要部[S平面図、
第2図は第1図のx −x’線部分の要部断面図−第3
図は本発明におけるPLZT系薄膜の2 Kv/mmの
電圧印加時における複屈折率変化を示す図、第4図は本
発明の実施例における光変調素子の光強度の電圧依存性
を示す図、第5図は本発明にかかる他の実施例における
光導波路の要部断面図である0 10・・・・・・光変調素子−11・・・・・・光導波
路−111・・・・・入力光導波路、112,114−
・・・・Y分岐。 113・・・・・制御光導波路、115・・・・出力光
導波路、12・・・・・制御電極−21・・・・基板、
22・・・・・PLZT系薄膜、221・・・・リッジ
部−23・・・・バッファ層、31・・・・・PLZT
系薄膜の組成対2に77mmの電圧印加時の複屈折変化
を示す曲線、32− =−LiNbO3の2Kv/mn
1の電圧印加時の複屈折率変化を示す直線−41・・・
・・一実施例にかかる光り重度対印加電圧を示す曲線−
61・・・・・・ロード層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 第3図 Pb/ra:モル浣率 a4図
FIG. 1 shows the main parts of the light modulation element according to the present invention [S plan view,
Figure 2 is a sectional view of the main part taken along line x-x' in Figure 1 - Figure 3
The figure shows the change in birefringence of the PLZT thin film in the present invention when a voltage of 2 Kv/mm is applied, and Figure 4 shows the voltage dependence of the light intensity of the light modulation element in the example of the present invention. FIG. 5 is a sectional view of a main part of an optical waveguide according to another embodiment of the present invention. Input optical waveguide, 112, 114-
...Y branch. 113... Control optical waveguide, 115... Output optical waveguide, 12... Control electrode-21... Substrate,
22...PLZT thin film, 221...Ridge part-23...Buffer layer, 31...PLZT
A curve showing the change in birefringence when a voltage of 77 mm is applied to system thin film composition pair 2, 32- = 2Kv/mn of -LiNbO3
Straight line showing the change in birefringence when a voltage of 1 is applied -41...
...Curve showing luminous intensity versus applied voltage according to one example.
61...Load layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Figure 3 Pb/ra: molar ratio a4 diagram

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも1本の入力光導波路をY分岐により2
本の制御光導波路に分岐し、所定の間隔において上記2
本の制御光導波路を平行に保持し。 他端において再びY分岐により1本の出力光導波路に連
結する光導波路と、少なくとも上記制御光導波路のいず
れかに設けた位相制御電極とを有し、上記光導波路を、
基板上に設けたPLZT系薄膜の表面に凸部からなるリ
ッジ部を設けて構成したことを特徴とする光変調素子。
(1) At least one input optical waveguide is divided into two by Y branching.
branched into the main control optical waveguide, and the two above at predetermined intervals.
Hold the control optical waveguides in parallel. an optical waveguide connected to one output optical waveguide by a Y branch again at the other end, and a phase control electrode provided on at least one of the control optical waveguides;
A light modulation element characterized in that it is constructed by providing a ridge portion consisting of a convex portion on the surface of a PLZT thin film provided on a substrate.
(2)基板がザファイヤ(α−アルミナ)0面基板であ
ることを特徴とする特許請求の範囲第1項記載の光変調
素子。
(2) The light modulation element according to claim 1, wherein the substrate is a Zapphire (α-alumina) zero-sided substrate.
(3)PLZT系薄膜が夕なくとも鉛、チタンおよびラ
ンタンの酸化唆からなり、がっ鉛(pb)とチタン(T
i)のモル比率Pb/Tiが0.65 < Pb/ T
i (0,90の範囲にあることを特徴とする特許請求
の範囲第1項記載の光変調素子。
(3) The PLZT-based thin film consists of lead, titanium, and lanthanum oxidants, and contains lead (pb) and titanium (T).
i) molar ratio Pb/Ti is 0.65 < Pb/T
The light modulation element according to claim 1, characterized in that i (in the range of 0.90).
JP2061283A 1983-02-10 1983-02-10 Optical modulating element Pending JPS59147322A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2061283A JPS59147322A (en) 1983-02-10 1983-02-10 Optical modulating element
DE8484900750T DE3482287D1 (en) 1983-02-10 1984-02-10 OPTICAL SWITCH.
EP84900750A EP0137851B1 (en) 1983-02-10 1984-02-10 Optical switch
PCT/JP1984/000039 WO1984003155A1 (en) 1983-02-10 1984-02-10 Optical switch
US06/667,480 US4715680A (en) 1983-02-10 1984-02-10 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061283A JPS59147322A (en) 1983-02-10 1983-02-10 Optical modulating element

Publications (1)

Publication Number Publication Date
JPS59147322A true JPS59147322A (en) 1984-08-23

Family

ID=12032080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061283A Pending JPS59147322A (en) 1983-02-10 1983-02-10 Optical modulating element

Country Status (1)

Country Link
JP (1) JPS59147322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266323A (en) * 1989-04-07 1990-10-31 Japan Aviation Electron Ind Ltd Optical integrated circuit including optical phase modulator
JPH04123018A (en) * 1990-09-14 1992-04-23 Tdk Corp Waveguide type optical parts
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266323A (en) * 1989-04-07 1990-10-31 Japan Aviation Electron Ind Ltd Optical integrated circuit including optical phase modulator
JPH04123018A (en) * 1990-09-14 1992-04-23 Tdk Corp Waveguide type optical parts
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides

Similar Documents

Publication Publication Date Title
US5546494A (en) Optical waveguide device and manufacturing method of the same
KR100271188B1 (en) Optical modulator
EP0576685B1 (en) Waveguide type light directional coupler
JPS59147322A (en) Optical modulating element
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP2940141B2 (en) Waveguide type optical control device
JPS59176731A (en) Optical switch
JPH01201609A (en) Optical device
JPS59185311A (en) Light control type optical switch
US5566258A (en) Waveguide type electro-optical element comprising material having specific resistance ranging between 107-1011 omega CM
JP2001004967A (en) Optical waveguide element
JPH02114243A (en) Optical control device and its manufacture
JPH0815656A (en) Optical waveguide type optical modulator
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
WO2002057840A1 (en) Optical waveguide device
JP3106710B2 (en) Light control device
JPH0566428A (en) Optical control device
JPS61231522A (en) Optical control type optical switch device
JP3481710B2 (en) Method for manufacturing optical waveguide body
JPH0497139A (en) Optical wavelength conversion element
JP2606552B2 (en) Light control device
JPS5936249B2 (en) light switch
JP2912039B2 (en) Light control device
JPH0795173B2 (en) Light control device
JPH06347839A (en) Optical control device