JP2958408B2 - Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same - Google Patents

Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same

Info

Publication number
JP2958408B2
JP2958408B2 JP32042391A JP32042391A JP2958408B2 JP 2958408 B2 JP2958408 B2 JP 2958408B2 JP 32042391 A JP32042391 A JP 32042391A JP 32042391 A JP32042391 A JP 32042391A JP 2958408 B2 JP2958408 B2 JP 2958408B2
Authority
JP
Japan
Prior art keywords
lithium niobate
optical waveguide
zinc oxide
added
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32042391A
Other languages
Japanese (ja)
Other versions
JPH05155694A (en
Inventor
彰 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP32042391A priority Critical patent/JP2958408B2/en
Publication of JPH05155694A publication Critical patent/JPH05155694A/en
Application granted granted Critical
Publication of JP2958408B2 publication Critical patent/JP2958408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニオブ酸リチウム結晶
を用いた光導波路デバイスにおいて、光誘起屈折率変化
(光損傷)を起こしやすい短波長領域、特に500nm
以下の波長領域を利用したデバイスに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device using a lithium niobate crystal, in a short wavelength region in which a photoinduced refractive index change (optical damage) is liable to occur, particularly 500 nm.
The present invention relates to a device using the following wavelength region.

【0002】[0002]

【従来の技術】従来、ニオブ酸リチウム光導波路を形成
する方法として、イオン拡散法では金属チタンを蒸着し
拡散するチタン拡散法、安息香酸又はピロリン酸をプロ
トン源とするプロトン交換法がある。また、エピタキシ
ャル法ではマグネシウムを添加したニオブ酸リチウムに
無添加ニオブ酸リチウムをエピタキシャル成長させる方
法、又はタンタル酸リチウム基板上にニオブ酸リチウム
をエピタキシャル成長させる方法がある。
2. Description of the Related Art Conventionally, as a method for forming a lithium niobate optical waveguide, there are a titanium diffusion method in which metal titanium is deposited and diffused, and a proton exchange method using benzoic acid or pyrophosphoric acid as a proton source in the ion diffusion method. In addition, in the epitaxial method, there is a method of epitaxially growing lithium niobate without addition of lithium niobate to which magnesium is added, or a method of epitaxially growing lithium niobate on a lithium tantalate substrate.

【0003】[0003]

【発明が解決しようとする課題】上述のなかで、チタン
拡散法による光導波路の形成方法が最も多く用いられて
いるが、これにより得られる光導波路は、800nm以
上の長波長領域が使用範囲である。これ以下の波長領
域、特に500nm以下の波長領域では、強い光が入射
すると、チタン拡散導波路部分の屈折率が変化する、い
わゆる光損傷が顕著に起きる。プロトン交換法はこの光
損傷に強いが、プロトン交換部分では、異常光屈折率だ
けが増加する。そのため、異常光に対してのみの光導波
路であり、常光は導波しない欠点がある。
Among the above, the method of forming an optical waveguide by the titanium diffusion method is most often used. However, the optical waveguide obtained by this method has a long wavelength region of 800 nm or more. is there. In a wavelength region equal to or less than this, particularly a wavelength region equal to or less than 500 nm, when strong light enters, the refractive index of the titanium diffusion waveguide portion changes, that is, so-called optical damage occurs remarkably. The proton exchange method is resistant to this optical damage, but only the extraordinary light refractive index increases in the proton exchange portion. Therefore, there is a defect that the optical waveguide is only for the extraordinary light and does not guide the ordinary light.

【0004】一方、無添加のニオブ酸リチウムをエピタ
キシャル成長させた場合も、光損傷が顕著に起きる。そ
のために、マグネシウムを添加したニオブ酸リチウムが
試みられている。マグネシウムを5モル%添加すると、
無添加のニオブ酸リチウムと比較し、光損傷の耐性が1
00倍以上に増加することが報告されている(例えば、
D.A.Bryan, R.Crouson, H.E.Tomaschke, Appl.Phys.Let
t.44(1984)847〜849)。しかし、マグネシウムを添加し
たニオブ酸リチウムは、無添加のニオブ酸リチウムと比
べ常光屈折率、異常光屈折率ともに、添加量に伴って単
調減少する(例えば、佐藤、古川、応用物理学会結晶工
学分科会第93回研究会テキスト(1990,31〜38))。
On the other hand, when undoped lithium niobate is epitaxially grown, optical damage is remarkable. Therefore, lithium niobate to which magnesium is added has been attempted. When 5 mol% of magnesium is added,
1 less damage to light damage compared to lithium niobate without additives
Has been reported to increase by over a factor of 00 (eg,
DABryan, R. Crouson, HETomaschke, Appl.Phys.Let
t. 44 (1984) 847-849). However, lithium niobate to which magnesium is added monotonically decreases in both ordinary light refractive index and extraordinary light refractive index as compared with non-added lithium niobate (for example, Sato, Furukawa, Crystal Engineering Division of the Japan Society of Applied Physics). 93rd Workshop Textbook (1990, 31-38)).

【0005】そのため、無添加ニオブ酸リチウム基板上
に、マグネシウム添加のニオブ酸リチウムをエピタキシ
ャル成長させても、エピタキシャル成長層の屈折率は基
板の屈折率より小さいので、光導波路とならない。そこ
で、マグネシウム添加ニオブ酸リチウムに比較して、常
光屈折率及び異常光屈折率が小さいタンタル酸リチウム
基板上に、マグネシウム添加ニオブ酸リチウムをエピタ
キシャル成長させることが行われている。しかし、タン
タル酸リチウムとニオブ酸リチウムは格子定数、熱膨張
係数が大きく異なるため、歪みの小さいエピタキシャル
層の形成は容易ではない。
[0005] Therefore, even if magnesium-doped lithium niobate is epitaxially grown on a non-doped lithium niobate substrate, it does not become an optical waveguide because the refractive index of the epitaxially grown layer is smaller than that of the substrate. Therefore, magnesium-added lithium niobate is epitaxially grown on a lithium tantalate substrate having a smaller ordinary light refractive index and extraordinary light refractive index than magnesium-added lithium niobate. However, since lithium tantalate and lithium niobate have greatly different lattice constants and thermal expansion coefficients, it is not easy to form an epitaxial layer with small distortion.

【0006】本発明は、上記の事情に鑑み、常光、異常
光ともに導波し、しかも光損傷に強い光導波路を、エピ
タキシャル層により形成する光導波路材料及びその製造
方法の提供を目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide an optical waveguide material which is formed by an epitaxial layer and which forms an optical waveguide that guides both ordinary light and extraordinary light and is resistant to optical damage, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明の光導波路材料
は、ニオブ酸リチウム単結晶基板上に、酸化亜鉛を11
モル%以上添加したニオブ酸リチウム融液を用いてエピ
タキシャル成長させることによって形成せしめたエピタ
キシャル成長層を有することを特徴としている。
According to the optical waveguide material of the present invention, zinc oxide is deposited on a lithium niobate single crystal substrate in an amount of 11%.
It is characterized by having an epitaxial growth layer formed by epitaxial growth using a lithium niobate melt to which mol% or more is added.

【0008】すなわち、本発明者は、光損傷に強い光導
波路材料を種々検討した結果、ニオブ酸リチウム融液に
酸化亜鉛を5モル%以上添加すると、光損傷に対する耐
性が向上し、特に10モル%以上添加すれば、光損傷に
対する耐性が100倍以上増加することを見いだすとと
もに、11モル%添加した場合は、常光屈折率と異常光
屈折率のどちらも、無添加のニオブ酸リチウムよりも大
きくなることを発見した。そうして、無添加のニオブ酸
リチウム基板上に、酸化亜鉛を11モル%以上添加した
ニオブ酸リチウムをエピタキシャル成長させれば、、そ
のエピタキシャル成長層に常光、異常光ともに導波し、
しかも光損傷に強い光導波路が形成できることを確認し
て、本発明を完成するに至った。以下、これを更に詳述
する。
That is, the present inventor has studied various optical waveguide materials which are resistant to optical damage. As a result, when zinc oxide is added in an amount of 5 mol% or more to a lithium niobate melt, the resistance to optical damage is improved, and in particular, 10 mol% is added. %, The resistance to photodamage is increased by 100 times or more. When 11 mol% is added, both ordinary refractive index and extraordinary refractive index are larger than that of lithium niobate without addition. I discovered that it would be. If lithium niobate to which zinc oxide is added in an amount of 11 mol% or more is epitaxially grown on a non-added lithium niobate substrate, both ordinary light and extraordinary light are guided to the epitaxial growth layer,
Moreover, it was confirmed that an optical waveguide resistant to optical damage could be formed, and the present invention was completed. Hereinafter, this will be described in more detail.

【0009】[0009]

【作用】図1は、ニオブに対しリチウム組成が0.94
2の工業的に用いられているニオブ酸リチウム(LiN
bO3 )に、酸化亜鉛(ZnO)を様々な濃度で添加
し、その融液からチョコラルスキー法により育成した単
結晶の波長632.8nmにおける屈折率を、酸化亜鉛
の添加濃度に対して示したものである。図1に示すよう
に、常光屈折率は、酸化亜鉛の添加濃度の増加に伴っ
て、単調に増加する。一方、異常光屈折率は、5モル%
以下の領域において、酸化亜鉛の添加濃度の増加に伴い
減少している。しかし、5モル%以上の領域では、逆に
酸化亜鉛の添加濃度の増加に伴って異常光屈折率も増大
し、添加濃度11モル%では、無添加のニオブ酸リチウ
ムの異常光屈折率の値と等しくなる。そうして、添加濃
度11モル%以上では、添加した方が大きくなることが
分かる。
FIG. 1 shows that the lithium composition is 0.94 with respect to niobium.
2 lithium niobate (LiN
bO 3 ), zinc oxide (ZnO) was added at various concentrations, and the refractive index at a wavelength of 632.8 nm of a single crystal grown from the melt by the Czochralski method was shown with respect to the zinc oxide addition concentration. Things. As shown in FIG. 1, the ordinary light refractive index monotonically increases with an increase in the added concentration of zinc oxide. On the other hand, the extraordinary light refractive index is 5 mol%
In the following regions, it decreases with an increase in the concentration of zinc oxide. However, in the region of 5 mol% or more, the extraordinary light refractive index also increases with an increase in the concentration of zinc oxide, and at an addition concentration of 11 mol%, the value of the extraordinary light refractive index of lithium niobate without addition increases. Becomes equal to Thus, it can be seen that when the concentration is 11 mol% or more, the addition becomes larger.

【0010】図2は、ニオブに対しリチウム組成が0.
942の工業的に用いられているニオブ酸リチウム(L
iNbO3 )に、酸化亜鉛(ZnO)を様々な濃度で添
加し、その融液からチョコラルスキー法により育成した
単結晶について、波長488nmのアルゴン・レーザー
光に対する光誘起屈折率変化(光損傷)の時間依存性
を、酸化亜鉛の添加濃度をパラメータとし示したもので
ある。酸化亜鉛の添加濃度は、0(無添加),3,5,
7,10モル%と5段階に変化した。添加濃度が5モル
%以下では、酸化亜鉛を添加した効果はみられない。し
かし、それ以上の添加濃度では、光損傷に対する耐性が
増加して、添加濃度10モル%以上では、時間が経過し
ても屈折率変化はみられない。
FIG. 2 shows that the lithium composition is 0.1 to niobium.
942 of industrially used lithium niobate (L
iNbO 3 ) was added with zinc oxide (ZnO) at various concentrations, and the single crystal grown from the melt by the Czochralski method showed a change in photoinduced refractive index (optical damage) with respect to argon laser light having a wavelength of 488 nm. The time dependency is shown by using the zinc oxide addition concentration as a parameter. The addition concentration of zinc oxide is 0 (no addition), 3, 5,
It was changed to 7,10 mol% in 5 steps. When the addition concentration is 5 mol% or less, the effect of adding zinc oxide is not observed. However, at an added concentration higher than this, the resistance to optical damage increases, and at an added concentration of 10 mol% or more, no change in the refractive index is observed even with the passage of time.

【0011】上述のように、ニオブに対しリチウム組成
が0.942の工業的に用いられているニオブ酸リチウ
ム(LiNbO3 )に、酸化亜鉛(ZnO)を様々な濃
度で添加し、その融液からチョコラルスキー法により育
成した単結晶は、酸化亜鉛の添加濃度が11モル%以上
では、無添加のニオブ酸リチウムと比べて、常光屈折率
及び異常光屈折率が大きいばかりでなく、光損傷に対す
る耐性も大幅に向上する。したがって、工業的に用いら
れているニオブ酸リチウム基板上に、酸化亜鉛を11モ
ル%以上添加したニオブ酸リチウム融液を用いて、高屈
折率層をエピタキシャル成長させれば、常光、異常光と
もに導波し、しかも光損傷に強い光導波路を形成するこ
とができる。
As described above, zinc oxide (ZnO) is added at various concentrations to industrially used lithium niobate (LiNbO 3 ) having a lithium composition of 0.942 with respect to niobium. When the concentration of zinc oxide added is 11 mol% or more, the single crystal grown by the Czochralski method has not only a large ordinary light refractive index and an extraordinary light refractive index as compared with lithium niobate without addition, but also a light damage. Resistance is also greatly improved. Therefore, if a high refractive index layer is epitaxially grown on an industrially used lithium niobate substrate using a lithium niobate melt containing zinc oxide in an amount of 11 mol% or more, both ordinary light and extraordinary light can be guided. An optical waveguide that undulates and is resistant to optical damage can be formed.

【0012】[0012]

【実施例】ニオブに対しリチウム組成が0.942であ
るニオブ酸リチウムに、酸化亜鉛を13モル%添加し、
更にフラックスとしてバナジウム酸リチウム(LiVO
3 )を50モル%(ニオブと酸化亜鉛の総体を100と
したとき)添加して加熱し融液を準備した。ニオブに対
しリチウム組成が0.942であり、−Z軸を主面とし
たニオブ酸リチウム基板上に、この融液を用いてエピタ
キシャル成長させた。このとき、融液の温度は940℃
から860℃まで変化させ、成長速度は毎分1μmであ
った。
EXAMPLE 13% of zinc oxide was added to lithium niobate having a lithium composition of 0.942 with respect to niobium,
Furthermore, lithium vanadate (LiVO
3 ) was added at 50 mol% (when the total amount of niobium and zinc oxide was 100) and heated to prepare a melt. This melt was used for epitaxial growth on a lithium niobate substrate having a lithium composition of 0.942 with respect to niobium and having the -Z axis as a main surface. At this time, the temperature of the melt is 940 ° C.
From 860 ° C., and the growth rate was 1 μm / min.

【0013】エピタキシャル成長により形成された厚み
10μmの光導波路の伝搬損失は、30dB/cm以上
あったが、これをオゾン(O3 )中で2時間アニールす
ると、伝搬損失は2dB/cmに減少した。これはエピ
タキシャル層にわずかに含まれるバナジウムの価数が、
アニールにより3価から5価に変化したためと考えられ
る。また、エピタキシャル層による光導波路は、TMモ
ード、TEモードともに伝搬した。更に、波長488n
mのアルゴン・レーザーを1KW/cm2 の強度で入射
させても、光損失はみられなかった。
The propagation loss of an optical waveguide having a thickness of 10 μm formed by epitaxial growth was 30 dB / cm or more, but when this was annealed in ozone (O 3 ) for 2 hours, the propagation loss was reduced to 2 dB / cm. This is because the valence of vanadium contained in the epitaxial layer is slightly
It is considered that the annealing changed from trivalent to pentavalent. Further, the optical waveguide of the epitaxial layer propagated in both the TM mode and the TE mode. Further, the wavelength 488n
No light loss was observed when an argon laser of m m was incident at an intensity of 1 KW / cm 2 .

【0014】ニオブに対しリチウム組成が0.942で
あるニオブ酸リチウムに、酸化亜鉛を11モル%添加
し、更にフラックスとしてバナジウム酸リチウム(Li
VO3 )を50モル%(ニオブと酸化亜鉛の総体を10
0としたとき)添加して加熱し得た融液、また、ニオブ
に対しリチウム組成が0.942であるニオブ酸リチウ
ムに、酸化亜鉛を12モル%添加し、更にフラックスと
してバナジウム酸リチウム(LiVO3 )を50モル%
(ニオブと酸化亜鉛の総体を100としたとき)添加し
て加熱し得た融液を用いて、上述と同様な光導波路を形
成できた。
11% by mole of zinc oxide is added to lithium niobate having a lithium composition of 0.942 with respect to niobium, and lithium vanadate (Li) is added as a flux.
VO 3 ) (50 mol% (total of niobium and zinc oxide is 10
0%), and 12 mol% of zinc oxide was added to a melt obtained by heating after addition and lithium niobate having a lithium composition of 0.942 with respect to niobium, and lithium vanadate (LiVO2) was added as a flux. 3 ) 50 mol%
An optical waveguide similar to that described above could be formed using the melt obtained by adding and heating (when the total amount of niobium and zinc oxide was 100).

【0015】[0015]

【発明の効果】以上説明したように本発明による光導波
路材料は、チタンを拡散せず光損傷に強いので、短波長
領域での使用に有利である。また、エピタキシャル用の
基板としてニオブ酸リチウムを使用できるために、格子
歪の少ない光導波路が形成され、しかも、得られた光導
波路は常光、異常光ともに導波させることができる。
As described above, the optical waveguide material according to the present invention does not diffuse titanium and is resistant to optical damage, so that it is advantageous for use in a short wavelength region. In addition, since lithium niobate can be used as the substrate for epitaxial growth, an optical waveguide with less lattice distortion is formed, and the obtained optical waveguide can guide both ordinary light and extraordinary light.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ニオブ酸リチウムに添加した酸化亜鉛の濃度と
屈折率の関係を示す図である。
FIG. 1 is a graph showing the relationship between the concentration of zinc oxide added to lithium niobate and the refractive index.

【図2】酸化亜鉛の添加濃度をパラメータとしニオブ酸
リチウムの光誘起屈折率変化量の時間依存性を示す図で
ある。
FIG. 2 is a diagram showing the time dependence of the amount of change in the photo-induced refractive index of lithium niobate using the addition concentration of zinc oxide as a parameter.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニオブ酸リチウム単結晶基板上に、酸化
亜鉛を11モル%以上添加したニオブ酸リチウム融液を
用いてエピタキシャル成長させることによって形成せし
めたエピタキシャル成長層を有することを特徴とする亜
鉛添加ニオブ酸リチウム光導波路材料。
1. A zinc-doped niobium having an epitaxial growth layer formed on a lithium niobate single crystal substrate by epitaxial growth using a lithium niobate melt containing zinc oxide in an amount of 11 mol% or more. Lithium oxide optical waveguide material.
【請求項2】 ニオブ酸リチウムを基板とし、エピタキ
シャル法によりニオブ酸リチウムに酸化亜鉛を11モル
%以上添加したニオブ酸リチウム融液からエピタキシャ
ル成長層を成長させることを特徴とした光導波路材料の
製造方法。
2. A method of manufacturing an optical waveguide material, comprising: using lithium niobate as a substrate and growing an epitaxial growth layer from a lithium niobate melt obtained by adding zinc oxide to lithium niobate by 11 mol% or more by an epitaxial method. .
JP32042391A 1991-12-04 1991-12-04 Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same Expired - Lifetime JP2958408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32042391A JP2958408B2 (en) 1991-12-04 1991-12-04 Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32042391A JP2958408B2 (en) 1991-12-04 1991-12-04 Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05155694A JPH05155694A (en) 1993-06-22
JP2958408B2 true JP2958408B2 (en) 1999-10-06

Family

ID=18121295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32042391A Expired - Lifetime JP2958408B2 (en) 1991-12-04 1991-12-04 Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2958408B2 (en)

Also Published As

Publication number Publication date
JPH05155694A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
JPH103100A (en) Optical waveguide parts, optical parts, manufacture of optical waveguide parts, and manufacture of periodic polarization inversion structure
WO1992009917A1 (en) Thin film of lithium niobate single crystal
JP2958408B2 (en) Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same
JP2000066050A (en) Production of optical waveguide parts and optical waveguide parts
JPH1082921A (en) Optical waveguide substrate, optical waveguide parts, second harmonics generating device and manufacturing method of optical waveguide substrate
JP4665162B2 (en) Optical element and manufacturing method thereof
JP3479111B2 (en) Electro-optics
JP3340856B2 (en) Electro-optical article and method of manufacturing the same
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP2002258340A (en) Optical wavelength conversion element, method of manufacturing for the same, short wavelength light source and optical system
JP2001264554A (en) Optical device
JP2538161B2 (en) Method for manufacturing optical waveguide and lens
JPH06281829A (en) Single mode optical waveguide
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JPH05896A (en) Thin lithium niobate single crystal film
JP2849221B2 (en) Optical device having channel type waveguide and method of manufacturing the same
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JP3077001B2 (en) Magneto-optical material and manufacturing method thereof
JPH08292459A (en) Second higher harmonic generating element and its production
JPH06281983A (en) Second harmonic generating device and its production
JP3549374B2 (en) Manufacturing method of polarization diffraction element
JPH05105594A (en) Method for producing single crystal of lithium tantalate and optical element
JP2000131546A (en) Production of ridge type three-dimensional waveguide
EP0922793A2 (en) A method of processing a substrate made of a ferroelectric crystalline material
JPH05229897A (en) Lithium niobate single crystal thin film and its production