JPH05313033A - Optical waveguide, manufacture thereof and optical element - Google Patents
Optical waveguide, manufacture thereof and optical elementInfo
- Publication number
- JPH05313033A JPH05313033A JP4115748A JP11574892A JPH05313033A JP H05313033 A JPH05313033 A JP H05313033A JP 4115748 A JP4115748 A JP 4115748A JP 11574892 A JP11574892 A JP 11574892A JP H05313033 A JPH05313033 A JP H05313033A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- optical
- single crystal
- lithium niobate
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Integrated Circuits (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザ光を使用する情
報処理分野あるいは光応用計測制御および通信分野に利
用する単結晶材料に関するものであり、特には耐光損傷
特性に優れたニオブ酸リチウム単結晶の光導波路、その
製造方法、およびこれを用いた光素子に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal material used in the information processing field using laser light or in the optical application measurement control and communication field, and particularly to a lithium niobate single crystal excellent in light damage resistance. The present invention relates to a crystalline optical waveguide, a method for manufacturing the same, and an optical device using the same.
【0002】[0002]
【従来の技術】ニオブ酸リチウム単結晶は融点約125
0℃、キュリー温度約1150℃の強誘電体結晶で、通
常大気中もしくは酸素を含む雰囲気中で白金坩堝を用
い、融液からチョクラルスキー法により育成され、結晶
はウエハ状に加工され表面弾性波素子用の基板として大
量に用いられている。近年、ニオブ酸リチウム結晶は光
学的品質に優れ、比較的安価で大口径の結晶が育成可能
で、しかも低損失な光導波路が容易に形成可能なことか
ら、非線形光学効果及び電気光学効果等を用いた各種光
学素子の基板材料や光導波路材料としてよく用いられて
いる。ニオブ酸リチウム単結晶の光導波路としては主に
2種類の方法があり、一つはニオブ酸リチウム単結晶基
板に熱拡散やイオン交換法により屈折率の大きな部分を
形成し、これを光導波路として用いる方法であり、例え
ば、ニオブ酸リチウム単結晶または、MgOを添加した
ニオブ酸リチウム単結晶の基板上にTi拡散やプロトン
交換により光導波路を形成されている。もう一つの方法
としては、単結晶基板上に屈折率の大きな薄膜をLPE
法により光導波路として形成する方法である。この場合
には、光導波路となるためには基板屈折率が形成する薄
膜より小さい事が必要とされるので、一般には、コング
ルエント組成結晶の結晶よりも屈折率の小さい、例えば
ストイキオメトリ組成のニオブ酸リチウム単結晶のよう
にLi成分の過剰な組成のニオブ酸リチウム単結晶やM
gOを添加して屈折率を下げた結晶を基板として用い、
コングルエント組成のニオブ酸リチウム単結晶薄膜が基
板上に形成されている。2. Description of the Related Art A single crystal of lithium niobate has a melting point of about 125.
A ferroelectric crystal with a temperature of 0 ℃ and a Curie temperature of about 1150 ℃, which is grown from the melt by the Czochralski method using a platinum crucible in the air or an atmosphere containing oxygen. Widely used as a substrate for wave elements. In recent years, lithium niobate crystals have excellent optical quality, are relatively inexpensive, can grow large-diameter crystals, and can easily form low-loss optical waveguides. It is often used as a substrate material and optical waveguide material for various optical elements used. There are mainly two types of lithium niobate single crystal optical waveguides. One is a lithium niobate single crystal substrate with a large refractive index formed by thermal diffusion or ion exchange, and this is used as an optical waveguide. This is a method used, and for example, an optical waveguide is formed by diffusion of Ti or proton exchange on a substrate of a lithium niobate single crystal or a MgO-added lithium niobate single crystal. As another method, a thin film having a large refractive index is formed on a single crystal substrate by LPE.
It is a method of forming an optical waveguide by the method. In this case, since it is necessary that the refractive index of the substrate is smaller than that of the thin film to form the optical waveguide, the refractive index is generally smaller than the crystal of the congruent composition crystal, for example, the stoichiometric composition. Lithium niobate single crystal having an excessive composition of Li component such as lithium niobate single crystal or M
Using a crystal whose refractive index is lowered by adding gO as a substrate,
A lithium niobate single crystal thin film having a congruent composition is formed on a substrate.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術による光
導波路で大きな問題となるのはニオブ酸リチウム単結晶
の耐光損傷強度が小さい事である。耐光損傷強度が小さ
いとこの材料を光変調器や波長変換素子等の光学用途の
基板として用いるときには、光照射部の屈折率が変化し
素子が安定に動作しないことや、本来結晶が有している
特性を十分生かしきれないという非常に大きな問題が生
じる。この光損傷は使用する光波長が短波長であるほど
顕著になるので、短波長の光を用いる素子用途ほど光損
傷の問題が大きくなる。従来技術で形成された光導波路
であるTi拡散光導波路はTiがLN単結晶の耐光損傷
強度を劣化させるので問題がある。また、プロトン交換
光導波路はプロトン交換部は耐光損傷強度を向上させる
のだが、プロトン交換により結晶本来の持つ非線形光学
定数や電気光学定数が劣化するため、材料の特性を生か
しきれなくなるという問題がある。従来技術の、単結晶
基板上に屈折率の大きな薄膜をLPE法により光導波路
として形成する方法においては、光導波路形成用の屈折
率の小さな基板が必要とされ、コングルエント組成結晶
の結晶よりも屈折率の小さい、例えばストイキオメトリ
組成のニオブ酸リチウム単結晶のようにLi成分の過剰
な組成のニオブ酸リチウム単結晶や、MgOを添加して
屈折率を下げた結晶が基板として用いられている。さら
に、MgOを添加したLN単結晶やストイキオメトリ組
成結晶のLN単結晶は光損傷に強いと言われているの
で、これらの結晶が光導波路になるように、これら結晶
よりも屈折率の小さな結晶を基板に用いて光導波路を形
成する試みもされている。しかしながら、MgOを添加
したすると耐光損傷性は向上するのであるがMgO添加
した結晶を育成するとMgOの偏析係数が1より大きい
ので結晶内でMgOの一様な分布が得られず、LN結晶
の屈折率はMgO濃度依存性が大きいので、屈折率がウ
エハやロット毎に均一なものは得られていない。また、
非コングルエント組成結晶では育成にともない結晶内で
結晶組成が変化するので屈折率も変化する。このため、
ストイキオメトリ組成結晶等の非コングルエント組成結
晶基板も屈折率の均一な基板材料は得られていない。本
発明の目的は、耐光損傷製に優れたニオブ酸リチウム単
結晶の光導波路を提供し上述した如き従来のニオブ酸リ
チウム単結晶光導波路と光導波路プロセスに於ける問題
点を解決し、耐光損傷製に優れたニオブ酸リチウム単結
晶の光導波路とその製造方法、およびこれを用いた光素
子を安定に作製、動作させんとするものである。A major problem in the above-mentioned optical waveguide according to the prior art is that the single crystal of lithium niobate has a small optical damage resistance. When this material is used as a substrate for optical applications such as optical modulators and wavelength conversion elements when the light damage resistance strength is low, the refractive index of the light irradiation part changes and the element does not operate stably. There is a big problem that the existing characteristics cannot be fully utilized. This optical damage becomes more remarkable as the wavelength of light used becomes shorter, and therefore the problem of optical damage becomes more serious in device applications using light of shorter wavelength. The Ti diffusion optical waveguide, which is an optical waveguide formed by the conventional technique, has a problem because Ti deteriorates the light damage resistance strength of the LN single crystal. Also, in the proton exchange optical waveguide, the proton exchange part improves the light damage resistance strength, but there is a problem that the characteristics of the material cannot be used fully because the nonlinear optical constants and electro-optical constants inherent in the crystal are deteriorated by the proton exchange. .. In the conventional method of forming a thin film having a large refractive index on a single crystal substrate as an optical waveguide by the LPE method, a substrate having a small refractive index for forming an optical waveguide is required, and it is more refracted than a crystal of a congruent composition crystal. A substrate having a low refractive index, for example, a lithium niobate single crystal having an excessive Li component, such as a lithium niobate single crystal having a stoichiometry composition, or a crystal having a refractive index lowered by adding MgO is used as a substrate. .. Furthermore, it is said that LN single crystals added with MgO and LN single crystals of stoichiometry composition crystal are strong against optical damage, so that these crystals have a smaller refractive index than these crystals so as to form an optical waveguide. Attempts have also been made to form optical waveguides by using crystals as substrates. However, when MgO is added, the light damage resistance is improved, but when a crystal added with MgO is grown, the segregation coefficient of MgO is larger than 1, so that a uniform distribution of MgO cannot be obtained within the crystal, and the refraction of the LN crystal Since the refractive index has a large dependency on the MgO concentration, it is not possible to obtain a uniform refractive index for each wafer or lot. Also,
In a non-congruent composition crystal, the crystal composition changes in the crystal as it grows, and the refractive index also changes. For this reason,
Substrate materials having a uniform refractive index have not been obtained even for non-congruent composition crystal substrates such as stoichiometry composition crystals. An object of the present invention is to provide an optical waveguide of lithium niobate single crystal excellent in light damage resistance, solve the problems in the conventional lithium niobate single crystal light waveguide and the optical waveguide process as described above, and prevent light damage. An optical waveguide of lithium niobate single crystal excellent in manufacturing, a manufacturing method thereof, and an optical element using the same are stably manufactured and operated.
【0004】[0004]
【課題を解決するための手段】上記目的の達成のため
に、本発明者は、光導波路の組成がコングルエント組成
よりもリチウム成分が少ないLi2O/(Li2O+Nb
2O5)のモル分率で0.45より大きく0.486より
小さい範囲のニオブ酸リチウム単結晶は耐光損傷強度を
向上し、しかも屈折率を増加させるので光導波路として
有用であることを見いだした。上記組成の光導波路はL
PE法もしくは気相成長法によりコングルエント組成ニ
オブ酸リチウム単結晶またはタンタル酸リチウム単結晶
の基板上に形成される。光導波路の製造方法はLPE法
においては用いるフラックスが五酸化バナジウム(V2
O5)もしくは、三酸化ボロン(B2O3)もしくは
(LiF)もしくは五酸化モリブデン(Mo2O5)も
しくは五酸化タングステン(W2O5)のいづれか1種
類もしくは2種類以上のフラックスを含有することによ
り良好な結果が得られる。SHG素子においては、結晶
基板として基板表面に周期的に分極反転されたニオブ酸
リチウム単結晶を用い、その上に光導波路が形成するこ
とにより高効率の擬位相整合型SHG素子が作成され
る。さらに、得られた光導波路は、耐光損傷強度に優れ
ているので特に短波長光を用いる波長変換素子やそれ以
外にも、光変調器、光偏向器などの種々の光学素子を安
定に動作させることが可能である。In order to achieve the above object, the present inventor has found that the composition of the optical waveguide is Li 2 O / (Li 2 O + Nb) containing less lithium than the congruent composition.
It has been found that a lithium niobate single crystal having a molar fraction of 2 O 5 ) of more than 0.45 and less than 0.486 improves the optical damage resistance and further increases the refractive index, and is therefore useful as an optical waveguide. It was The optical waveguide of the above composition is L
It is formed on a substrate of lithium niobate single crystal or lithium tantalate single crystal with a congruent composition by PE method or vapor phase growth method. In the method of manufacturing an optical waveguide, the flux used in the LPE method is vanadium pentoxide (V2
O5), or boron trioxide (B2O3), (LiF), molybdenum pentoxide (Mo2O5), or tungsten pentoxide (W2O5), or any one or more fluxes may be contained to obtain good results. In the SHG element, a highly-efficient quasi-phase matching SHG element is prepared by using a periodically poled lithium niobate single crystal as a crystal substrate and forming an optical waveguide thereon. Furthermore, since the obtained optical waveguide has excellent resistance to light damage, it is possible to stably operate various optical elements such as a wavelength conversion element that uses short-wavelength light and an optical modulator and an optical deflector, in addition to the wavelength conversion element. It is possible.
【0005】[0005]
【実施例】以下、実施例に基づいて本発明をより詳細に
説明する。The present invention will be described in more detail based on the following examples.
【0006】(実施例1)試料を次の作製法により作成
した。まずチョクラルスキ法により、組成を変えたニオ
ブ酸リチウム単結晶を育成した。直径100mm深さ1
00mmの白金坩堝の内に原料粉を入れ高周波加熱によ
りこれを溶かし、融液を作り、その後シード付けを行
い、所定の方位に約3日間で、直径60mm長さ80m
mの単結晶を育成した。この時の育成速度は1〜4mm
/h、回転速度は10〜30rpmである。上記引き上
げ法により育成した結晶体を結晶と非反応性の導電性粉
末を介して、結晶のZ軸方向に対向するように例えばP
t電極板を設け、電気炉内に挿入して単一分域化処理を
行った。その後、それぞれの結晶から各稜がx軸方位,
y軸方位,およびz軸方位に平行な10×10×10mm
3,の正方形ブロックを切り出し、その各面を鏡面研磨し
た。光損傷の測定は上記研磨試料に波長0.488μm
のアルゴンレーザーを入射し、これにより生じる屈折率
変化量を測定して行った。その結果を図1に示す。アル
ゴンレーザーの照射により、従来の無添加ニオブ酸リチ
ウム単結晶は照射後数秒で光損傷が生じ屈折率が大きく
変化してしまう。これに対し、本発明により育成したコ
ングルエント組成よりもリチウム成分が少ないニオブ酸
リチウム単結晶では、パワー密度100W/cm2のア
ルゴンレーザ入射に対して全く光損傷は観測されなかっ
た。このように光損傷特性の組成依存性を評価した結
果、従来報告とは異なり、Liの欠損や過剰のNbの無
い化学両論組成であるストイキオメトリ組成の結晶で光
損傷に弱く、結晶組成がLiが少なくなるにつれ耐光損
傷強度は向上し、コングルエント組成よりもリチウム成
分が少ない結晶で耐光損傷強度が最も大きい結果が得ら
れた。光素子用途においては単結晶基板の上に基板より
も屈折率の大きい結晶薄膜を形成し、これを光導波路と
して用いることが必要とされる。図2に屈折率とニオブ
酸リチウム単結晶の組成との関係を示す。Li2O/
(Li2O+Nb2O5)のモル分率が0.45よりおお
きく0.486より小さい組成結晶は耐光損傷強度に優
れ、しかもコングルエント組成のニオブ酸リチウム単結
晶よりも屈折率が大きいので、LPE法もしくは気相成
長法によってこれら基板の上に形成し光導波路として使
用することができる。Example 1 A sample was prepared by the following manufacturing method. First, by the Czochralski method, single crystals of lithium niobate having different compositions were grown. Diameter 100mm depth 1
Put the raw material powder in a platinum crucible of 00 mm and melt it by high frequency heating to make a melt, and then perform seeding. Approximately 3 days in a predetermined direction, diameter 60 mm, length 80 m
m single crystal was grown. The growth rate at this time is 1 to 4 mm
/ H, the rotation speed is 10 to 30 rpm. The crystal grown by the above-mentioned pulling method is, for example, P so as to face in the Z-axis direction of the crystal through a conductive powder which is non-reactive with the crystal.
A t-electrode plate was provided and inserted into an electric furnace for single-domain division processing. Then, from each crystal, each edge is x-axis oriented,
10x10x10mm parallel to y-axis and z-axis
Three square blocks were cut out and each surface was mirror-polished. The light damage was measured on the above-mentioned polished sample with a wavelength of 0.488 μm.
This was performed by irradiating an Argon laser of No. 1 and measuring the amount of change in refractive index caused by this. The result is shown in FIG. Irradiation with an argon laser causes optical damage to the conventional non-doped lithium niobate single crystal within a few seconds after irradiation, and the refractive index changes significantly. On the other hand, in the lithium niobate single crystal grown by the present invention and having a smaller lithium component than the congruent composition, no optical damage was observed when an argon laser having a power density of 100 W / cm 2 was incident. As a result of evaluating the composition dependence of the photodamage property in this way, unlike the previous reports, a crystal having a stoichiometric composition that is a stoichiometric composition without Li deficiency and excess Nb is vulnerable to photodamage and has a crystal composition The light damage resistance strength was improved as the amount of Li was decreased, and the result that the light damage resistance strength was the largest in the crystal having less lithium component than the congruent composition was obtained. In optical device applications, it is necessary to form a crystal thin film having a larger refractive index than the substrate on a single crystal substrate and use it as an optical waveguide. FIG. 2 shows the relationship between the refractive index and the composition of the lithium niobate single crystal. Li 2 O /
A composition crystal having a molar fraction of (Li 2 O + Nb 2 O 5 ) larger than 0.45 and smaller than 0.486 is excellent in light damage resistance and has a larger refractive index than a lithium niobate single crystal having a congruent composition. Can be formed on these substrates by a vapor deposition method or a vapor phase growth method and used as an optical waveguide.
【0007】(実施例2)ニオブ酸リチウム系のフラッ
クス中に2インチ径のニオブ酸リチウム単結晶ウエハ基
板を入れ、融液温度約900℃でウェハを回転させなが
ら厚さ数〜10μmの薄膜を形成した。試料を徐冷した
後、薄膜表面に付着したフラックスおよび表面の平坦を
揃える目的で表面を鏡面研磨した。表面の屈折率をHe
−Neレーザーを用いて測定したところ基板に対して屈
折率が増加していることを確認した。次に、プリズム結
合法により波長0.488μmのアルゴンレーザーおよ
び波長0.633μmのHe−Neレーザー、波長0.
83μm及び1.55μmの半導体レーザーを入射した
ところ、膜厚によりそれぞれの波長に対して良好な光導
波が確認された。さらに光損傷強度を測定したところ、
本発明により作成した光導波路では、パワー密度1KW
/cm2のレーザ入射に対して全く光損傷は観測されな
かった。Example 2 A lithium niobate single crystal wafer substrate having a diameter of 2 inches was placed in a lithium niobate-based flux, and a thin film having a thickness of several to 10 μm was formed while rotating the wafer at a melt temperature of about 900 ° C. Formed. After slowly cooling the sample, the surface was mirror-polished for the purpose of aligning the flux adhering to the thin film surface and the flatness of the surface. The refractive index of the surface is He
When measured with a -Ne laser, it was confirmed that the refractive index increased with respect to the substrate. Next, an argon laser having a wavelength of 0.488 μm and a He—Ne laser having a wavelength of 0.633 μm and a wavelength of 0.
When semiconductor lasers of 83 μm and 1.55 μm were incident, good optical waveguide was confirmed for each wavelength depending on the film thickness. Furthermore, when the light damage intensity was measured,
In the optical waveguide prepared by the present invention, the power density is 1 kW
No photodamage was observed for laser incidence of / cm 2 .
【0008】(実施例3)ニオブ酸リチウム単結晶ウエ
ハを充分洗浄した後、ニオブ酸リチウム単結晶基板上に
スパッタによりTiを30オングストローム程度の膜厚
に堆積した。Ti膜上にスピンナーでホトレジストを塗
布し、分極反転部分を形成するために窓あけされたホト
マスクを用いてホトリソグラフィによりパターニングし
た。さらにホトレジストをマスクとしてTiをパターニ
ングし、次にホトレジストを除去した。これを抵抗加熱
電気炉内に挿入し、約1100℃程度の温度で約10分
程度熱処理した。雰囲気は水蒸気を含むArガス雰囲気
とした。熱処理工程の最後に酸素ガスを流し、結晶の酸
素欠損を防いだ。これにより基板のc面上に分極反転部
が形成された。LPE法により単結晶薄膜を形成した。
融液の原料として炭酸リチウム、五酸化ニオブ、五酸化
バナジウムを用い、これを秤量後、白金坩堝内にいれ大
気中で約1180℃で均一化溶融し、約935℃まで徐
冷してフラックス融液を準備した。このニオブ酸リチウ
ム系のフラックス中に上記作成したニオブ酸リチウム単
結晶ウエハ基板を入れ、融液温度約920℃でウェハを
回転させながら厚さ数μmの薄膜を形成した。試料を徐
冷した後、薄膜表面に付着したフラックスおよび表面の
平坦を揃える目的で表面を鏡面研磨した。このニオブ酸
リチウム薄膜の組成を調べたところコングルエント組成
よりLi成分の少ない組成であった。さらに、表面の屈
折率をHe−Neレーザーを用いて測定したところ基板
に対して屈折率が増加していることを確認した。さら
に、作成した薄膜を電気炉内にいれ、約1140℃で約
10分間熱処理した後、ふっ酸と硝酸のエッチング液で
表面を調べたところ、基板下地と同一の分極反転層が形
成されていた。次に、ホトリソグラフィとイオンミリン
グによりチャンネル導波路を形成した。この作成された
光導波路に波長830nmのチタンサファイアレーザ光
を入射したところ、光の導波が確認され良好な光導波路
が形成されていることが判明した。また、光損傷の発生
について評価したが光損傷は検出されなかった。Example 3 A lithium niobate single crystal wafer was thoroughly washed, and then Ti was deposited on the lithium niobate single crystal substrate by sputtering to a film thickness of about 30 Å. A photoresist was applied onto the Ti film by a spinner and patterned by photolithography using a photomask having a window opened to form a domain-inverted portion. Further, Ti was patterned using the photoresist as a mask, and then the photoresist was removed. This was inserted into a resistance heating electric furnace and heat-treated at a temperature of about 1100 ° C. for about 10 minutes. The atmosphere was an Ar gas atmosphere containing water vapor. Oxygen gas was passed at the end of the heat treatment process to prevent oxygen deficiency of the crystal. As a result, a domain-inverted part was formed on the c-plane of the substrate. A single crystal thin film was formed by the LPE method.
Lithium carbonate, niobium pentoxide, and vanadium pentoxide were used as raw materials for the melt. After weighing them, they were put into a platinum crucible and homogenized and melted at about 1180 ° C in the atmosphere, and then gradually cooled to about 935 ° C and the flux melted. The liquid was prepared. The lithium niobate single crystal wafer substrate prepared above was put into this lithium niobate-based flux, and a thin film having a thickness of several μm was formed while rotating the wafer at a melt temperature of about 920 ° C. After slowly cooling the sample, the surface was mirror-polished for the purpose of aligning the flux adhering to the thin film surface and the flatness of the surface. When the composition of this lithium niobate thin film was examined, it was found that the Li component was smaller than the congruent composition. Furthermore, when the refractive index of the surface was measured by using a He-Ne laser, it was confirmed that the refractive index increased with respect to the substrate. Further, after the prepared thin film was placed in an electric furnace and heat-treated at about 1140 ° C. for about 10 minutes, the surface was examined with an etching solution of hydrofluoric acid and nitric acid. .. Next, a channel waveguide was formed by photolithography and ion milling. When titanium sapphire laser light having a wavelength of 830 nm was made to enter the optical waveguide thus created, it was confirmed that the optical waveguide was formed and that a good optical waveguide was formed. In addition, the occurrence of photodamage was evaluated, but no photodamage was detected.
【0009】(実施例4)上述の実施例で作製した光導
波路を、レーザー光源からの出射光を基本波として非線
形光学結晶光導波路への通過により第二高調波を発生す
るSHG素子の基板に用いた。チタンサファイヤレーザ
光を対物レンズにより分極反転周期が約3μmの光導波
路端面に集光し、基板温度をペルチェ素子により28℃
保ち、レーザ光源の波長を変えてSHG光の出力をモニ
タし、パワーが最大になる波長を探した。基本波入力3
5mWのときに約3mWのSHG出力が得られ、しかも
光損傷は発生せずにその動作は安定であることが確認さ
れた。今後、素子構造を最適化や、高出力の基本波レー
ザー光を高効率に結合することにより、さらに高出力の
SHG光が得られ、光ディスクの光源として使用できる
と思われる。(Embodiment 4) The optical waveguide manufactured in the above-mentioned embodiment is used as a substrate of an SHG element which generates a second harmonic by passing the light emitted from the laser light source as a fundamental wave to the nonlinear optical crystal optical waveguide. Using. Titanium sapphire laser light is focused on the end face of the optical waveguide with a polarization inversion period of about 3 μm by the objective lens, and the substrate temperature is 28 ° C by the Peltier device.
Then, the wavelength of the laser light source was changed and the output of the SHG light was monitored to find the wavelength with the maximum power. Fundamental wave input 3
It was confirmed that an SHG output of about 3 mW was obtained at 5 mW, and that the operation was stable without causing optical damage. In the future, by optimizing the element structure and coupling high-power fundamental wave laser light with high efficiency, it is possible to obtain SHG light of higher output and use it as a light source for optical disks.
【0010】(実施例5)本発明のニオブ酸リチウム単
結晶の光導波路を用い、レーザー光源からの出射光を電
気光学結晶へ入射し光の位相を変化させる光変調器を試
作したところ、しかも光損傷は発生せずにその動作は安
定であることが確認された。(Embodiment 5) A prototype of an optical modulator, which uses the lithium niobate single crystal optical waveguide of the present invention to change the phase of light emitted from a laser light source into an electro-optic crystal, was produced. It was confirmed that the operation was stable with no optical damage.
【0006】[0006]
【発明の効果】本発明によりはじめて耐光損傷特性に優
れたニオブ酸リチウム単結晶の光導波路を得ることがで
きた。これにより短波長光を用いる光素子にニオブ酸リ
チウム単結晶の光導波路を用いることができ、ニオブ酸
リチウム単結晶の持つ大きな非線形光学定数を生かした
SHG素子の安定性と高出力化の特性向上ができる。According to the present invention, an optical waveguide of lithium niobate single crystal excellent in optical damage resistance can be obtained for the first time. As a result, an optical waveguide of lithium niobate single crystal can be used for an optical element using short-wavelength light, and the stability and high output characteristics of the SHG element are improved by utilizing the large non-linear optical constant of the lithium niobate single crystal. You can
【図1】アルゴンレーザー照射により誘起された光損傷
(屈折率変化)の測定結果を示した図である。FIG. 1 is a diagram showing a measurement result of light damage (refractive index change) induced by argon laser irradiation.
【図2】屈折率とニオブ酸リチウム単結晶の組成との関
係を示した図である。FIG. 2 is a diagram showing the relationship between the refractive index and the composition of a lithium niobate single crystal.
【図3】ニオブ酸リチウムの光導波路を用いて作製した
光素子を示した図である。FIG. 3 is a diagram showing an optical element manufactured by using an optical waveguide of lithium niobate.
1 ニオブ酸リチウム単結晶基板 2 基本波 3 SHG波 4 分極反転部 5 コングルエント組成よりLi成分の少ないニオブ酸
リチウムの光導波1 Lithium niobate single crystal substrate 2 Fundamental wave 3 SHG wave 4 Polarization inversion part 5 Optical waveguide of lithium niobate with less Li component than congruent composition
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 康平 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kohei Ito 5200 Mikkajiri, Kumagaya City, Saitama Hitachi Metals Co., Ltd.
Claims (8)
りもリチウム成分が少ないLi2O/(Li2O+Nb2
O5)のモル分率で0.45より大きく0.486より
小さい範囲のニオブ酸リチウム単結晶の組成であること
により耐光損傷強度に優れたことを特徴とするニオブ酸
リチウム単結晶の光導波路。1. Li 2 O / (Li 2 O + Nb 2 ) in which the composition of the optical waveguide contains less lithium than the congruent composition.
A lithium niobate single crystal optical waveguide having excellent resistance to optical damage due to the composition of the lithium niobate single crystal having a molar fraction of O 5 ) of more than 0.45 and less than 0.486. ..
ント組成ニオブ酸リチウム単結晶またはタンタル酸リチ
ウム単結晶の基板上に形成されている事を特徴とする請
求項1記載の光導波路。2. The optical waveguide according to claim 1, which is formed on a substrate of congruent composition lithium niobate single crystal or lithium tantalate single crystal.
する方法がLPE法である事を特徴とする請求項1ない
し2記載の光導波路の製造方法。3. The method of manufacturing an optical waveguide according to claim 1, wherein the method of forming the optical waveguide according to claim 1 on a substrate is an LPE method.
する方法が気相成長法である事を特徴とする請求項1な
いし2記載の光導波路の製造方法。4. The method of manufacturing an optical waveguide according to claim 1, wherein the method of forming the optical waveguide of claim 1 on a substrate is a vapor phase growth method.
面に周期的に分極反転されたニオブ酸リチウム単結晶で
ある事を特徴とする請求項1記載の光導波路の製造方
法。5. The method for manufacturing an optical waveguide according to claim 1, wherein the substrate according to any one of claims 3 to 4 is a lithium niobate single crystal in which polarization is periodically inverted on the substrate surface.
光導波路の製造方法において、用いるフラックスが五酸
化バナジウム(V2O5)もしくは、三酸化ボロン(B
2O3)もしくは(LiF)もしくは五酸化モリブデン
(Mo2O5)もしくは五酸化タングステン(W2O
5)のいづれか1種類もしくは2種類以上のフラックス
を含有する事を特徴とするる請求項1もしくは2もしく
は3もしくは5記載の光導波路の製造方法。6. The method of manufacturing an optical waveguide according to claim 3, wherein the flux used is vanadium pentoxide (V2O5) or boron trioxide (B).
2O3) or (LiF) or molybdenum pentoxide (Mo2O5) or tungsten pentoxide (W2O)
5. The method for producing an optical waveguide according to claim 1, wherein the flux contains one or more fluxes of any one of 5).
て非線形光学結晶の光導波路への通過により第二高調波
を発生するSHG素子において、前記非線形光学結晶の
光導波路として請求項1ないし5のいずれかの項に記載
の光導波路を用いたことを特徴とするSHG素子。7. An SHG element for generating a second harmonic by passing light emitted from a laser light source as a fundamental wave to an optical waveguide of a nonlinear optical crystal, wherein the optical waveguide of the nonlinear optical crystal is used as an optical waveguide. An SHG device using the optical waveguide according to any one of items.
晶の光導波路へ入射し電気光学効果により光の強度、位
相を制御する光変調素子において、前記非線形光学結晶
の光導波路として請求項1ないし5項のいずれかに記載
の光導波路を用いたことを特徴とする光変調器。8. An optical modulator for controlling the intensity and phase of light emitted from a laser light source into an optical waveguide of an electro-optical crystal and controlling the intensity and phase of the light by an electro-optical effect. An optical modulator using the optical waveguide according to any one of items 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4115748A JPH05313033A (en) | 1992-05-08 | 1992-05-08 | Optical waveguide, manufacture thereof and optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4115748A JPH05313033A (en) | 1992-05-08 | 1992-05-08 | Optical waveguide, manufacture thereof and optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05313033A true JPH05313033A (en) | 1993-11-26 |
Family
ID=14670084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4115748A Pending JPH05313033A (en) | 1992-05-08 | 1992-05-08 | Optical waveguide, manufacture thereof and optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05313033A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6183922B1 (en) | 1998-07-31 | 2001-02-06 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP2002196381A (en) * | 2000-12-22 | 2002-07-12 | Matsushita Electric Ind Co Ltd | Optical wavelength converting element and method for manufacturing the same |
US6683175B2 (en) | 2001-04-12 | 2004-01-27 | Canon Kabushiki Kaisha | Porphyrin compound, and electrophotographic photosensitive member, process-cartridge and apparatus using the compound |
US6803932B2 (en) | 2002-08-22 | 2004-10-12 | Canon Kabushiki Kaisha | Image forming apparatus |
JP2006284964A (en) * | 2005-03-31 | 2006-10-19 | Sumitomo Osaka Cement Co Ltd | Manufacturing method of optical element |
US7785762B2 (en) | 2005-12-15 | 2010-08-31 | Ricoh Company, Ltd. | Image forming apparatus and image forming method |
-
1992
- 1992-05-08 JP JP4115748A patent/JPH05313033A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6183922B1 (en) | 1998-07-31 | 2001-02-06 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP2002196381A (en) * | 2000-12-22 | 2002-07-12 | Matsushita Electric Ind Co Ltd | Optical wavelength converting element and method for manufacturing the same |
US6683175B2 (en) | 2001-04-12 | 2004-01-27 | Canon Kabushiki Kaisha | Porphyrin compound, and electrophotographic photosensitive member, process-cartridge and apparatus using the compound |
US6833227B2 (en) | 2001-04-12 | 2004-12-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process-cartridge and apparatus |
US6803932B2 (en) | 2002-08-22 | 2004-10-12 | Canon Kabushiki Kaisha | Image forming apparatus |
JP2006284964A (en) * | 2005-03-31 | 2006-10-19 | Sumitomo Osaka Cement Co Ltd | Manufacturing method of optical element |
JP4667933B2 (en) * | 2005-03-31 | 2011-04-13 | 住友大阪セメント株式会社 | Optical element and manufacturing method thereof |
US7785762B2 (en) | 2005-12-15 | 2010-08-31 | Ricoh Company, Ltd. | Image forming apparatus and image forming method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tamada et al. | LiNbO3 thin‐film optical waveguide grown by liquid phase epitaxy and its application to second‐harmonic generation | |
JP3261594B2 (en) | Lithium tantalate single crystal, single crystal substrate and optical device | |
JP3542014B2 (en) | Method for producing single-crystal or polycrystal-containing amorphous material and amorphous material thereof | |
US5315432A (en) | Thin film of lithium niobate single crystal | |
JP3511204B2 (en) | Optical function element, single crystal substrate for the element, and method of using the same | |
US6747787B2 (en) | Optically functional device, single crystal substrate for the device and method for its use | |
JP3025982B2 (en) | Waveguide type optical directional coupler | |
JPH1082921A (en) | Optical waveguide substrate, optical waveguide parts, second harmonics generating device and manufacturing method of optical waveguide substrate | |
JPH05313033A (en) | Optical waveguide, manufacture thereof and optical element | |
JP3424125B2 (en) | Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal | |
JP3213907B2 (en) | Lithium niobate single crystal and optical functional device | |
JP2860800B2 (en) | Method for producing lithium niobate single crystal thin film | |
JPH0517295A (en) | Lithium niobate single crystal thin film subjected to domain inversion treatment | |
JPH05313219A (en) | Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element | |
JP2760172B2 (en) | Waveguide type nonlinear optical device | |
JP2951583B2 (en) | Optical waveguide component, second harmonic generation device, and method of manufacturing optical waveguide component | |
Haruna et al. | Epitaxial growth of LiNbO3 optical-waveguide films by excimer laser ablation | |
JP2001264554A (en) | Optical device | |
JPH0412095A (en) | Production of thin film of lithium niobate single crystal | |
JPH06174908A (en) | Production of waveguide type diffraction grating | |
JPH06281829A (en) | Single mode optical waveguide | |
JP2001059983A (en) | Lithium niobate single crystal | |
JPH05310500A (en) | Lithium tantalate single crystal, its production and optics | |
JP3909845B2 (en) | Manufacturing method of optical functional element | |
JPH06281983A (en) | Second harmonic generating device and its production |