JP2006284964A - Manufacturing method of optical element - Google Patents

Manufacturing method of optical element Download PDF

Info

Publication number
JP2006284964A
JP2006284964A JP2005105405A JP2005105405A JP2006284964A JP 2006284964 A JP2006284964 A JP 2006284964A JP 2005105405 A JP2005105405 A JP 2005105405A JP 2005105405 A JP2005105405 A JP 2005105405A JP 2006284964 A JP2006284964 A JP 2006284964A
Authority
JP
Japan
Prior art keywords
substrate
optical element
manufacturing
thickness
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005105405A
Other languages
Japanese (ja)
Other versions
JP4667933B2 (en
Inventor
Takashi Jinriki
孝 神力
Futoshi Yamamoto
太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2005105405A priority Critical patent/JP4667933B2/en
Publication of JP2006284964A publication Critical patent/JP2006284964A/en
Application granted granted Critical
Publication of JP4667933B2 publication Critical patent/JP4667933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical element using a thin plate having a rugged part formed on the surface of a substrate by dry etching and the like, wherein the surface of the substrate which lacks Li by its external diffusion is repaired and breakage of the substrate is suppressed. <P>SOLUTION: In the manufacturing method of the optical element having the substrate formed by using a material having an electrooptical effect and having the rugged part formed on the surface thereof and ≤30 μm thickness, (2) the rugged part is formed on the surface of the substrate in the state that the substrate has ≥200 μm thickness, (3) then thermal treatment is performed and (4) then the rear surface of the substrate is polished so that the substrate may have ≤30 μm thickness. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学素子の製造方法に関し、特に、電気光学効果を有する材料で形成された基板であり、該基板表面に凹凸部が形成されると共に、該基板の厚みが30μm以下の厚みとなる基板を有する光学素子の製造方法に関する。   The present invention relates to a method for manufacturing an optical element, and more particularly to a substrate formed of a material having an electro-optic effect, where uneven portions are formed on the surface of the substrate and the thickness of the substrate is 30 μm or less. The present invention relates to a method for manufacturing an optical element having a substrate.

従来、光通信分野や光測定分野において、電気光学効果を有する基板上に光導波路や変調電極を形成した導波路型光変調器などの光学素子が多用されている。
光変調周波数の広帯域化を実現するためには、変調信号であるマイクロ波と光波との速度整合を図ることが重要であり、これまでに、様々な方法が考案されている。具体例を挙げれば、バッファ層の厚膜化、電極の高アスペクト化やリッジ構造などがこれにあたる。
Conventionally, in an optical communication field and an optical measurement field, an optical element such as a waveguide type optical modulator in which an optical waveguide or a modulation electrode is formed on a substrate having an electro-optic effect has been widely used.
In order to realize a wider optical modulation frequency, it is important to match the speed of the modulation signal microwave and the light wave, and various methods have been devised so far. Specific examples include thicker buffer layers, higher aspect ratios of electrodes, and ridge structures.

また、以下の特許文献1又は2においては、30μm以下の厚みを有する極めて薄い基板(以下、「第1基板」という。)に、光導波路並びに変調電極を組み込み、第1基板より誘電率の低い他の基板を接合し、マイクロ波に対する実効屈折率を下げ、マイクロ波と光波との速度整合を図ることが行われている。
特開昭64−18121号公報 特開2003−215519号公報
In Patent Document 1 or 2 below, an optical waveguide and a modulation electrode are incorporated in an extremely thin substrate (hereinafter referred to as “first substrate”) having a thickness of 30 μm or less, and has a lower dielectric constant than the first substrate. Other substrates are bonded to reduce the effective refractive index with respect to the microwave, thereby achieving speed matching between the microwave and the light wave.
JP-A 64-18121 JP 2003-215519 A

これらのように、薄板化された第1基板を用いることで、変調器の設計自由度が飛躍的に高まり、例えばバッファ層を用いずとも、広帯域かつ低駆動電圧の光変調器が作製可能となる。またさらに、マイクロ波の伝搬損失低減の観点からは、誘電率の低い材料を基板に用いることと同義に、第1基板を具体的には150μm以下とすることで、特に26GHz以上の領域においてマイクロ波自身の誘電体損(tanδ)の影響を低減できることが以下の非特許文献により公開され、変調器の広帯域化に適用されている。
Y.Yamane et.al., “Investigation of sandblast machining techniques for broadband LN modulators”, Sumitomo Osaka Cement Technical report 2002, pp49-54 (2003)
By using the thinned first substrate like this, the design flexibility of the modulator is dramatically increased, and for example, an optical modulator having a wide band and a low driving voltage can be manufactured without using a buffer layer. Become. Furthermore, from the viewpoint of reducing the propagation loss of microwaves, it is synonymous with the use of a material having a low dielectric constant for the substrate. Specifically, the first substrate is specifically set to 150 μm or less, particularly in the region of 26 GHz or more. The fact that the influence of the dielectric loss (tan δ) of the wave itself can be reduced is disclosed by the following non-patent document and applied to widening the bandwidth of the modulator.
Y. Yamane et.al., “Investigation of sandblast machining techniques for broadband LN modulators”, Sumitomo Osaka Cement Technical report 2002, pp49-54 (2003)

他方、従来、導波路型光変調器などの光学素子に光導波路を形成する際には、Tiなどの金属を基板中に高温で熱拡散することにより、拡散部分の屈折率を他の部分より高くし、光の閉じ込めを行っている。あるいは、所定の部分に金属マスクを施し、200〜300℃の燐酸中でプロトンイオン交換を行い屈折率を変化させ、導波路の形成を行っている。
このため、光導波路の断面形状は、表面から拡散した逆半円の形状を有するのに対し、光変調器に光波を導入・導出する光ファイバの断面形状が円形であることから、光導波路と光ファイバとの間の結合損失が大きくなるという問題等を生じる。
これらの問題を解消するため、以下の特許文献3においては、図1に示すように、電気光学効果を有し、結晶方位により屈折率の異なる単結晶誘電体のニオブ酸リチウム(以下、「LN」という)基板(厚み600μm)4とLN薄板(厚み7μm)1とを、結晶方位を変えて、酸化珪素膜3により接合し、LN薄板にリッジを利用した光導波路2を形成する技術が開示されている。
特開平6−289341号公報
On the other hand, conventionally, when an optical waveguide is formed in an optical element such as a waveguide type optical modulator, a refractive index of the diffusion portion is made higher than that of other portions by thermally diffusing a metal such as Ti into the substrate at a high temperature. Raised and confined light. Alternatively, a metal mask is applied to a predetermined portion, and proton ions are exchanged in phosphoric acid at 200 to 300 ° C. to change the refractive index, thereby forming a waveguide.
For this reason, the cross-sectional shape of the optical waveguide has an inverse semicircular shape diffused from the surface, whereas the cross-sectional shape of the optical fiber for introducing and deriving the light wave into the optical modulator is circular. There arises a problem that the coupling loss with the optical fiber becomes large.
In order to solve these problems, in Patent Document 3 below, as shown in FIG. 1, a single crystal dielectric lithium niobate (hereinafter referred to as “LN”) having an electro-optic effect and having a refractive index different depending on crystal orientation. And a substrate (thickness 600 μm) 4 and an LN thin plate (thickness 7 μm) 1 are joined by a silicon oxide film 3 while changing the crystal orientation to form an optical waveguide 2 using a ridge on the LN thin plate. Has been.
JP-A-6-289341

特許文献3に示すようなリッジを利用した光導波路としては、図1(a)に示すように、光導波路部分を突出させ、それ以外の基板領域を薄く形成したリブ型の光導波路や、図1(b)に示すように光導波路部分の周囲に溝を形成したリッジ型の光導波路などがある。これらは、個々の特徴に言及する場合には、リブ型又はリッジ型と称するが、一般的にこれらを総称してリッジ型光導波路という。   As an optical waveguide using a ridge as shown in Patent Document 3, as shown in FIG. 1 (a), a rib-type optical waveguide in which an optical waveguide portion is protruded and other substrate regions are formed thin, As shown in FIG. 1B, there is a ridge type optical waveguide having a groove formed around the optical waveguide portion. These are referred to as a rib type or a ridge type when referring to individual features, but these are generally collectively referred to as a ridge type optical waveguide.

リッジ型光導波路の形成に際しては、基板表面にエッチングする領域以外をフォトレジスト膜などで保護し、ドライエッチング又はケミカルエッチングによる加工や、レーザ加工などが行われている。
しかしながら、このようなドライエッチングなどによる処理においては、ニオブ酸リチウムやタンタル酸リチウムなどの基板表面にあるLiが、エッチングやレーザ加工時の熱や、スパッタリングなどにより、基板外に外拡散し、基板表面のLiが欠乏した基板に変質する。これにより、光変調器のDCドリフトが増大したり、光導波路の屈折率変化や表面形状の変化による光損失の増大が発生するという問題を生じていた。
In forming the ridge-type optical waveguide, a region other than the region to be etched on the substrate surface is protected with a photoresist film or the like, and processing by dry etching or chemical etching, laser processing, or the like is performed.
However, in such processing by dry etching, Li on the substrate surface such as lithium niobate or lithium tantalate diffuses out of the substrate due to heat during etching or laser processing, sputtering, etc. It changes into a substrate lacking Li on the surface. As a result, there has been a problem that the DC drift of the optical modulator increases, or that the optical loss increases due to the change in the refractive index of the optical waveguide and the change in the surface shape.

このようなLiの欠乏状態を改善する方法として、基板を1000℃付近の高温で、熱処理を行うことも行われているが、上述した30μm以下の厚みを有する薄板を使用する光学素子においては、薄板を高温で加熱すると、熱歪み等により薄板が破損する危険性がある。また、通常、薄板を使用する場合には、基板の機械的強度を高めるために、該薄板の裏面に接着層を介して補強板が接合されており、同様に高温に加熱すると、薄板、接着層、及び補強板との間で熱膨張係数の差による応力が発生し、薄板が破損することとなる。   As a method for improving such a deficiency state of Li, the substrate is also heat-treated at a high temperature around 1000 ° C., but in the optical element using the thin plate having a thickness of 30 μm or less as described above, When a thin plate is heated at a high temperature, there is a risk that the thin plate may be damaged due to thermal strain or the like. In addition, when a thin plate is normally used, a reinforcing plate is bonded to the back surface of the thin plate via an adhesive layer in order to increase the mechanical strength of the substrate. Stress due to the difference in thermal expansion coefficient between the layer and the reinforcing plate is generated, and the thin plate is damaged.

本発明が解決しようとする課題は、上述したような問題を解決し、ドライエッチングなどにより基板表面に凹凸部を形成した薄板を使用する光学素子の製造方法において、Liの外拡散で欠乏した基板表面を補修すると共に、基板の破損を抑制した光学素子の製造方法を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, and in a method for manufacturing an optical element using a thin plate having a concavo-convex portion formed on the substrate surface by dry etching or the like, a substrate deficient due to out-diffusion of Li An object of the present invention is to provide a method of manufacturing an optical element that repairs a surface and suppresses breakage of a substrate.

上記課題を解決するため、請求項1に係る発明では、電気光学効果を有する材料で形成された基板であり、該基板表面に凹凸部が形成されると共に、該基板の厚みが30μm以下の厚みとなる基板を有する光学素子の製造方法において、該基板の厚みが200μm以上の状態で、該基板表面に凹凸部を形成し、その後、熱処理を行った後に、該基板を30μm以下の厚みにするため、該基板の裏面を研磨することを特徴とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is a substrate formed of a material having an electro-optic effect, and has a concavo-convex portion formed on the substrate surface and a thickness of the substrate of 30 μm or less. In the method of manufacturing an optical element having a substrate, a concavo-convex portion is formed on the surface of the substrate in a state where the thickness of the substrate is 200 μm or more, and after heat treatment, the substrate is made 30 μm or less in thickness. Therefore, the back surface of the substrate is polished.

請求項2に係る発明では、請求項1に記載の光学素子の製造方法において、該基板を研磨した後、接着層を介して該基板の裏面に補強板を貼り付けることを特徴とする。なお、本発明に係る「接着層」とは、接着剤を使用したものに限らず、基板と補強板を直接接合法により接合したものも含むものである。   The invention according to claim 2 is characterized in that, in the optical element manufacturing method according to claim 1, after the substrate is polished, a reinforcing plate is attached to the back surface of the substrate through an adhesive layer. The “adhesive layer” according to the present invention is not limited to one using an adhesive, but includes one obtained by joining a substrate and a reinforcing plate by a direct joining method.

請求項3に係る発明では、請求項1又は2に記載の光学素子の製造方法において、該基板表面の凹凸部は、光導波路の少なくとも一部を形成していることを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing an optical element according to the first or second aspect, the concavo-convex portion of the substrate surface forms at least a part of an optical waveguide.

請求項4に係る発明では、請求項1乃至3のいずれかに記載の光学素子の製造方法において、該基板は、ニオブ酸リチウム又はタンタル酸リチウムの少なくとも1つを含むことを特徴とする。   The invention according to claim 4 is the method for manufacturing an optical element according to any one of claims 1 to 3, wherein the substrate includes at least one of lithium niobate or lithium tantalate.

請求項5に係る発明では、請求項1乃至4のいずれかに記載の光学素子の製造方法において、該熱処理は、900〜1200℃の温度で処理することを特徴とする。   The invention according to claim 5 is the method for manufacturing an optical element according to any one of claims 1 to 4, wherein the heat treatment is performed at a temperature of 900 to 1200 ° C.

請求項6に係る発明では、請求項4に記載の光学素子の製造方法において、製造終了時の該基板表面のLi/Nb又はLi/Taの組成比は、製造開始時の当該組成比以上又は0.7以上であることを特徴とする。   In the invention according to claim 6, in the method of manufacturing an optical element according to claim 4, the Li / Nb or Li / Ta composition ratio of the substrate surface at the end of manufacture is equal to or higher than the composition ratio at the start of manufacture. It is 0.7 or more.

請求項7に係る発明では、電気光学効果を有する材料で形成された基板と、該基板表面に凹凸部が形成されており、該基板の厚みが30μm以下の厚みである光学素子において、該基板表面の凹凸部は、該基板の厚みが200μm以上の状態で形成し、熱処理を行った後に、該基板を30μm以下の厚みにしたことを特徴とする。   In the invention according to claim 7, in the substrate formed of a material having an electro-optic effect and an uneven portion formed on the surface of the substrate, and the thickness of the substrate is 30 μm or less, the substrate The uneven portion on the surface is characterized in that the thickness of the substrate is formed in a state of 200 μm or more, and the substrate is made 30 μm or less after heat treatment.

請求項8に係る発明では、請求項7に記載の光学素子において、該基板表面のLi/Nb又はLi/Taの組成比は、製造に用いた該基板の最初の組成比以上又は0.7以上であることを特徴とする。   In the invention according to claim 8, in the optical element according to claim 7, the composition ratio of Li / Nb or Li / Ta on the surface of the substrate is equal to or higher than the initial composition ratio of the substrate used for production or 0.7. It is the above.

請求項1に係る発明により、基板の厚みが200μm以上の状態で、該基板表面に凹凸部を形成し、その後、熱処理を行った後に、該基板を30μm以下の厚みにするために該基板の裏面を研磨するよう構成されているため、ドライエッチングなどによるLiの欠乏を熱処理で補修でき、基板の厚みも熱処理に耐え得る厚みであるため、基板が破損することを抑制することも可能となる。   According to the first aspect of the present invention, in order to reduce the thickness of the substrate to 30 μm or less after forming a concavo-convex portion on the surface of the substrate in a state where the thickness of the substrate is 200 μm or more and then performing heat treatment. Since the back surface is configured to be polished, Li deficiency due to dry etching or the like can be repaired by heat treatment, and the thickness of the substrate can also withstand the heat treatment, so that the substrate can be prevented from being damaged. .

請求項2に係る発明により、基板を研磨した後、接着層を介して該基板の裏面に補強板を貼り付けるため、請求項1に係る熱処理の後に補強板を接着することとなるため、基板、接着層、及び補強板における熱膨張係数の差により、熱応力が発生し、基板が破損することも抑制される。   According to the invention of claim 2, after the substrate is polished, the reinforcing plate is adhered to the back surface of the substrate through the adhesive layer, and therefore the reinforcing plate is bonded after the heat treatment according to claim 1, Further, the thermal stress is generated due to the difference in thermal expansion coefficient between the adhesive layer and the reinforcing plate, and the substrate is also prevented from being damaged.

請求項3に係る発明により、基板表面の凹凸部は、光導波路の少なくとも一部を形成しているため、ドライエッチングなどに続く熱処理により、Liの欠乏が補修された光導波路を提供することが可能となる。これにより、DCドリフトや光損失の改善された光学素子が提供できる。   According to the invention of claim 3, since the uneven portion on the surface of the substrate forms at least a part of the optical waveguide, it is possible to provide an optical waveguide in which the deficiency of Li is repaired by heat treatment subsequent to dry etching or the like. It becomes possible. Thereby, an optical element with improved DC drift and optical loss can be provided.

請求項4に係る発明により、基板は、ニオブ酸リチウム又はタンタル酸リチウムの少なくとも1つを含むため、特に熱処理でのLiの外拡散が発生した場合でも、本発明により効果的にLiの欠乏を補修でき、しかも基板の破損を抑制することが可能となる。   According to the invention of claim 4, since the substrate contains at least one of lithium niobate or lithium tantalate, the present invention effectively eliminates the Li deficiency even when Li outdiffusion occurs particularly during heat treatment. It can be repaired and the damage to the substrate can be suppressed.

請求項5に係る発明により、熱処理は、900〜1200℃の温度で処理するため、Liの外拡散が発生し易いが、本発明を適用することにより、効果的に基板内部からLiの欠乏を補修でき、しかも基板の破損を抑制することが可能となる。   According to the invention of claim 5, since the heat treatment is performed at a temperature of 900 to 1200 ° C., Li outdiffusion is likely to occur. However, by applying the present invention, Li deficiency is effectively reduced from the inside of the substrate. It can be repaired and the damage to the substrate can be suppressed.

請求項6に係る発明により、製造終了時の基板表面のLi/Nb又はLi/Taの組成比は、製造開始時の当該組成比以上又は0.7以上であるため、Liの欠乏によるDCドリフトや光損失の増加を抑制した光学素子を提供することが可能となる。   According to the invention of claim 6, since the composition ratio of Li / Nb or Li / Ta on the substrate surface at the end of production is equal to or higher than the composition ratio at the start of production or 0.7 or more, DC drift due to Li deficiency In addition, it is possible to provide an optical element in which an increase in light loss is suppressed.

請求項7に係る発明により、電気光学効果を有する材料で形成された基板と、該基板表面に凹凸部が形成されており、該基板の厚みが30μm以下の厚みである光学素子において、該基板表面の凹凸部は、該基板の厚みが200μm以上の状態で形成し、熱処理を行った後に、該基板を30μm以下の厚みにしているため、基板の厚みが薄く、ドライエッチングなどによる処理を経ているにも拘わらず、Liの欠乏が補修され、しかも基板の破損の少ない光学素子を提供することが可能となる。   According to the seventh aspect of the present invention, there is provided a substrate formed of a material having an electro-optic effect, and an optical element in which uneven portions are formed on the surface of the substrate, and the thickness of the substrate is 30 μm or less. The surface irregularities are formed in a state where the thickness of the substrate is 200 μm or more, and after the heat treatment, the substrate is made 30 μm or less in thickness. Nevertheless, it is possible to provide an optical element in which the deficiency of Li is repaired and the substrate is less damaged.

請求項8に係る発明により、基板表面のLi/Nb又はLi/Taの組成比は、製造に用いた該基板の最初の組成比以上又は0.7以上であるため、Liの欠乏によるDCドリフトや光損失の増加を抑制した光学素子を提供することが可能となる。   According to the invention according to claim 8, since the composition ratio of Li / Nb or Li / Ta on the substrate surface is equal to or higher than the initial composition ratio of the substrate used for manufacturing or 0.7 or more, the DC drift due to the lack of Li In addition, it is possible to provide an optical element in which an increase in light loss is suppressed.

以下、本発明を好適例を用いて詳細に説明する。
本発明は、電気光学効果を有する材料で形成された基板であり、該基板表面に凹凸部が形成されると共に、該基板の厚みが30μm以下の厚みとなる基板を有する光学素子の製造方法において、該基板の厚みが200μm以上の状態でドライエッチング、ケミカルエッチング又はレーザ加工などにより、該基板表面に凹凸部を形成し、その後、熱処理を行った後に、該基板を30μm以下の厚みにするため、該基板の裏面を研磨することを特徴とする。
Hereinafter, the present invention will be described in detail using preferred examples.
The present invention is a substrate formed of a material having an electro-optic effect, wherein an uneven portion is formed on the surface of the substrate, and the optical element includes a substrate having a thickness of 30 μm or less. In order to reduce the thickness of the substrate to 30 μm or less after forming a concavo-convex portion on the substrate surface by dry etching, chemical etching, laser processing, or the like in a state where the thickness of the substrate is 200 μm or more, and then performing heat treatment The back surface of the substrate is polished.

図2は、本発明に係る光学素子の製造方法を示す図である。
図2(1)は電気光学効果を有する材料で形成された基板1であり、後の熱処理において、十分なLiを補給可能とするため、また、熱処理における基板の破損を防止するため、厚さ200μm以上の基板を使用する。
電気光学効果を有する材料としては、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能であるが、特に、熱処理やドライエッチング時の高エネルギー粒子の衝突などでLiの外拡散や欠乏が発生する、ニオブ酸リチウムやタンタル酸リチウムに対して、本発明を好適に用いることが可能である。
FIG. 2 is a diagram showing a method for manufacturing an optical element according to the present invention.
FIG. 2 (1) shows a substrate 1 made of a material having an electro-optic effect. The thickness of the substrate 1 is set so that sufficient Li can be replenished in the subsequent heat treatment and the substrate is prevented from being damaged during the heat treatment. A substrate of 200 μm or more is used.
As materials having an electro-optic effect, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used, particularly during heat treatment and dry etching. The present invention can be suitably used for lithium niobate and lithium tantalate in which Li outdiffusion or deficiency occurs due to collision of high energy particles.

基板表面にリッジなどの凹凸部を形成するには、例えば、ドライエッチングが好適に利用される。
基板表面にエッチングマスクと呼ばれるエッチングする以外の領域を保護する目的の膜をフォトレジスト、Ni、Tiなど材料にて形成した後、プラズマを利用したドライエッチング装置(RIEやECR)内に入れる。装置内にはCFなどのフルオロカーボン系のガスとArガスを導入し、装置内でプラズマを生成しCF系ラジカルとArイオンを発生させ、Arイオンで基板への衝突による物理的スパッタリングとCF系ラジカルによる化学的エッチングを行いエッチングマスクで保護されてない領域をエッチングし凹凸部を形成する。
光導波路をリッジ2などで形成するためには、1μm〜数10μm程度の凸部又は凹部を形成する必要がある(図2(2)参照)。
For example, dry etching is preferably used to form an uneven portion such as a ridge on the surface of the substrate.
A film intended to protect a region other than etching, called an etching mask, is formed on the surface of the substrate with a material such as photoresist, Ni, Ti, etc., and is then placed in a dry etching apparatus (RIE or ECR) using plasma. Fluorocarbon-based gas such as CF 4 and Ar gas are introduced into the apparatus, plasma is generated in the apparatus to generate CF-based radicals and Ar ions, and physical sputtering and CF-based by collision with the substrate with Ar ions. Chemical etching using radicals is performed to etch the regions not protected by the etching mask to form uneven portions.
In order to form the optical waveguide with the ridge 2 or the like, it is necessary to form a convex portion or a concave portion of about 1 μm to several tens of μm (see FIG. 2B).

次に、凹凸部を形成した基板を、加熱器に入れ、900〜1200℃の範囲で基板を加熱する(図2(3)参照)。加熱時間は、加熱温度に依存するが、3〜10時間程度が好ましい。加熱温度が、900℃未満の場合には、Liの内部拡散が進行し難く、基板表面のLiの欠乏を補うには長時間を要し、生産コストの増加を招き、現実的とは言えない。また、1200℃より高い温度で熱処理を行うと、Liの外拡散も顕著となるため、Liの欠乏状態を十分に補うことが困難となる。   Next, the substrate on which the concavo-convex portion is formed is placed in a heater, and the substrate is heated in the range of 900 to 1200 ° C. (see FIG. 2 (3)). The heating time depends on the heating temperature, but is preferably about 3 to 10 hours. When the heating temperature is less than 900 ° C., internal diffusion of Li is difficult to proceed, and it takes a long time to compensate for the lack of Li on the substrate surface, leading to an increase in production cost, which is not realistic. . In addition, when heat treatment is performed at a temperature higher than 1200 ° C., outdiffusion of Li becomes remarkable, so that it is difficult to sufficiently compensate for the Li deficiency state.

また、熱処理に際して、Li雰囲気や水蒸気を含んだ雰囲気の中で基板を加熱することにより、加熱によるLiの外拡散を抑制することが可能となり、Liの欠乏を効果的に補修することができる。さらに、Ptボックス内に基板を収容し熱処理を行うことによっても、同様にLiの外拡散を防止することが可能である。   In addition, by heating the substrate in a Li atmosphere or an atmosphere containing water vapor at the time of heat treatment, it becomes possible to suppress the outdiffusion of Li due to heating, and the deficiency of Li can be effectively repaired. Furthermore, it is also possible to prevent out-diffusion of Li by accommodating the substrate in a Pt box and performing heat treatment.

通常、ドライエッチング処理を行うと、基板表面のLi/Nb又はLi/Taの組成比は、0.2〜0.3程度にまで減少しているが、上述した熱処理を行うことにより、製造開始時の基板の当該組成比以上、好ましくは0.7以上にまで回復しており、Liの欠乏によるDCドリフトや光損失の増加を抑制した光学素子を製作することが可能となる。   Normally, when dry etching treatment is performed, the composition ratio of Li / Nb or Li / Ta on the substrate surface is reduced to about 0.2 to 0.3. It is possible to manufacture an optical element in which the composition ratio of the substrate at the time is restored to more than that, preferably 0.7 or more, and an increase in DC drift and light loss due to lack of Li is suppressed.

次に、図2(4)に示すように、基板の裏面を研磨し、基板の厚みdを30μm以下に調整する。
基板の研磨方法としては、基板表面に熱可塑性樹脂を塗布し、研磨冶具を貼り付け、ラップ盤研磨機で、基板の裏面を研磨する。
Next, as shown in FIG. 2 (4), the back surface of the substrate is polished to adjust the thickness d of the substrate to 30 μm or less.
As a substrate polishing method, a thermoplastic resin is applied to the substrate surface, a polishing jig is attached, and the back surface of the substrate is polished by a lapping machine polishing machine.

薄板化した基板1に対し、補強板4を接着層3を介して接合する(図2(5)参照)。
補強板4に使用される材料としては、種々のものが利用可能であり、例えば、薄板と同様の材料を使用する他に、石英、ガラス、アルミナなどのように薄板より低誘電率の材料を使用したり、薄板と異なる結晶方位を有する材料を使用することも可能である。ただし、線膨張係数が薄板と同等である材料を選定することが、温度変化に対する光変調器の変調特性を安定させる上で好ましい。
The reinforcing plate 4 is bonded to the thinned substrate 1 through the adhesive layer 3 (see FIG. 2 (5)).
Various materials can be used as the reinforcing plate 4. For example, in addition to using the same material as the thin plate, a material having a lower dielectric constant than the thin plate such as quartz, glass, alumina, etc. It is also possible to use a material having a crystal orientation different from that of the thin plate. However, it is preferable to select a material having a linear expansion coefficient equivalent to that of the thin plate in order to stabilize the modulation characteristics of the optical modulator with respect to temperature changes.

また接着層3としては、エポキシ系接着剤、熱硬化型接着剤、紫外線硬化性接着剤、半田ガラス、熱硬化性、光硬化性あるいは光増粘性の樹脂接着剤シートなど、種々の接着材料を使用することが可能である。
さらに、直接接合法による接着も可能である。直接接合法は、接合面を酸もしくはアルカリ薬剤洗浄し、清浄面同士を適当な加重下にて着け合わせると、水素結合を介して互いが吸着することを利用する。接合力は一般的に、引き続き行われる熱処理にて向上し、300℃以上の温度が好適に用いられる。また、直接接合法は、接合面をプラズマクリーニング後に貼りあわせて行うことも可能であり、この場合は室温下でも実用十分な強度を示す。
As the adhesive layer 3, various adhesive materials such as epoxy adhesives, thermosetting adhesives, ultraviolet curable adhesives, solder glass, thermosetting, photocurable or photothickening resin adhesive sheets are used. It is possible to use.
Furthermore, adhesion by a direct joining method is also possible. The direct bonding method utilizes the fact that the bonded surfaces are washed with acid or alkali chemicals and the cleaned surfaces are bonded together under an appropriate load, so that they are adsorbed via hydrogen bonds. In general, the bonding force is improved by a subsequent heat treatment, and a temperature of 300 ° C. or higher is preferably used. Further, the direct bonding method can be performed by bonding the bonding surfaces after plasma cleaning, and in this case, a practically sufficient strength is exhibited even at room temperature.

最後に、必要に応じて、光変調器などに必要な、SiOによるバッファ層を形成し、Ti・Auの電極パターンの形成及び金メッキ方法などにより信号電極や接地電極などの変調電極を形成する。 Finally, if necessary, a buffer layer made of SiO 2 necessary for an optical modulator or the like is formed, and a modulation electrode such as a signal electrode or a ground electrode is formed by a Ti / Au electrode pattern formation or a gold plating method. .

本発明の光学素子の製造方法に基づき、光変調器を以下のように作成した。
Zカット型の厚み500μmのLN基板を、ECR-310E(アネルバ(株)製)を使用してドライエッチングを行い、図2(2)に示す3μmのリッジ部を形成した。ドライエッチングの条件は、エッチングマスクにレジストを用い、エッチングガスはArとCを混合比9:1で導入した。
Based on the method for manufacturing an optical element of the present invention, an optical modulator was prepared as follows.
A Z-cut LN substrate having a thickness of 500 μm was dry-etched using ECR-310E (manufactured by Anerva Co., Ltd.) to form a 3 μm ridge portion shown in FIG. As the dry etching conditions, a resist was used as an etching mask, and Ar and C 2 F 6 were introduced at a mixing ratio of 9: 1 as an etching gas.

次に、加熱器(横型システム炉:光洋サーモシステム(株)製)を用いて、基板を990℃に加熱し、5時間に渡り加熱を維持し、その後自然冷却させた。加熱時の条件は、室温より3時間で990℃まで加熱し5時間保持した後自然冷却する。990℃保持時の雰囲気には水蒸気(露点温度30℃)を導入した。   Next, using a heater (horizontal system furnace: manufactured by Koyo Thermo System Co., Ltd.), the substrate was heated to 990 ° C., maintained for 5 hours, and then naturally cooled. The heating conditions are as follows: from room temperature to 990 ° C. in 3 hours, held for 5 hours, and then naturally cooled. Water vapor (dew point temperature of 30 ° C.) was introduced into the atmosphere at 990 ° C. holding.

その後、基板表面に熱可塑性樹脂を使用し、研磨冶具を接合し、ラップ盤研磨機(キャリア:ガラス繊維入エポキシ樹脂 ラップ剤:GC#1200 20wt%aq)にて、速度35min−1、ラップ圧12.75〜9.81kPaの条件下において基板の厚さがおよそ50μm、あるいは、〔仕上がり厚み〕5μm〜10μm程度となるまで研磨する。この後、パット材質に不織布、加工液にはコロイダルシリカを用いたメカノケミカルポリッシング(CMP)により設定厚まで精密鏡面研磨を行なった。 Thereafter, a thermoplastic resin is used on the substrate surface, a polishing jig is joined, and a lapping machine polishing machine (carrier: epoxy resin containing glass fiber, lapping agent: GC # 1200 20 wt% aq), speed 35 min −1 , lapping pressure. Polishing is performed under conditions of 12.75 to 9.81 kPa until the thickness of the substrate becomes approximately 50 μm or [finished thickness] of approximately 5 μm to 10 μm. Thereafter, precision mirror polishing was performed to a set thickness by mechanochemical polishing (CMP) using a nonwoven fabric as the pad material and colloidal silica as the processing liquid.

補強板として、厚み500μmのZカット型LN基板を、接着剤を使用して、基板の裏面に接合し、その後、研磨冶具を除去した。
最後に、厚さ0.5μmのSiO膜を基板表面に形成し、基板表面に変調電極及び接地電極を高さ5μmで形成した。
As a reinforcing plate, a Z-cut LN substrate having a thickness of 500 μm was bonded to the back surface of the substrate using an adhesive, and then the polishing jig was removed.
Finally, a SiO 2 film having a thickness of 0.5 μm was formed on the substrate surface, and a modulation electrode and a ground electrode were formed on the substrate surface with a height of 5 μm.

上記光変調器の特性を測定した。DCドリフト特性においては温度加速させた評価を行った。測定条件は温度85℃、初期印加電圧3.5Vである。この測定において動作点変動量ΔVtが熱処理未実施品に比べ約1/5となり(未実施品ΔVt:8.5V,実施品ΔVt:1.5V)、リッジ型でない平板型(プレーナー型)と同等の特性が得られた。また、光の伝搬損失は、0.5dB/cmという優れた結果が得られた。
このことから、本発明の光学素子の製造方法は、ドライエッチングなどにより基板表面に凹凸部を形成した薄板を使用する光学素子に、特に有用であることが理解できる。
The characteristics of the optical modulator were measured. The DC drift characteristics were evaluated with temperature acceleration. The measurement conditions are a temperature of 85 ° C. and an initial applied voltage of 3.5V. In this measurement, the operating point variation ΔVt is about 1/5 of the heat treatment untreated product (unfinished product ΔVt: 8.5V, product ΔVt: 1.5V), which is equivalent to a flat plate type (planar type) that is not a ridge type. The characteristics were obtained. Moreover, the optical propagation loss was as excellent as 0.5 dB / cm.
From this, it can be understood that the method for producing an optical element of the present invention is particularly useful for an optical element using a thin plate in which an uneven portion is formed on the substrate surface by dry etching or the like.

本発明に係る光学素子の製造方法によれば、ドライエッチングなどにより基板表面に凹凸部を形成した薄板を使用する光学素子の製造方法において、Liの外拡散で欠乏した基板表面を補修すると共に、基板の破損を抑制した光学素子の製造方法を提供することが可能となる。   According to the method of manufacturing an optical element according to the present invention, in the method of manufacturing an optical element that uses a thin plate in which a concavo-convex portion is formed on the substrate surface by dry etching or the like, while repairing the substrate surface deficient due to Li outdiffusion, It is possible to provide a method for manufacturing an optical element in which damage to the substrate is suppressed.

リブ型(a)及びリッジ型(b)の光導波路を有する光学素子の概略図である。It is the schematic of the optical element which has a rib type | mold (a) and a ridge type (b) optical waveguide. 本発明に係る光学素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the optical element which concerns on this invention.

符号の説明Explanation of symbols

1 基板
2 リッジ部
3 接着層
4 補強板
1 Substrate 2 Ridge 3 Adhesive layer 4 Reinforcing plate

Claims (8)

電気光学効果を有する材料で形成された基板であり、該基板表面に凹凸部が形成されると共に、該基板の厚みが30μm以下の厚みとなる基板を有する光学素子の製造方法において、
該基板の厚みが200μm以上の状態で、該基板表面に凹凸部を形成し、その後、熱処理を行った後に、該基板を30μm以下の厚みにするため、該基板の裏面を研磨することを特徴とする光学素子の製造方法。
In a method for manufacturing an optical element, which is a substrate formed of a material having an electro-optic effect, and has an uneven portion formed on the substrate surface, and the substrate has a thickness of 30 μm or less.
In the state where the thickness of the substrate is 200 μm or more, an uneven portion is formed on the surface of the substrate, and after performing heat treatment, the back surface of the substrate is polished in order to make the substrate have a thickness of 30 μm or less. A method for manufacturing an optical element.
請求項1に記載の光学素子の製造方法において、該基板を研磨した後、接着層を介して該基板の裏面に補強板を貼り付けることを特徴とする光学素子の製造方法。   2. The method of manufacturing an optical element according to claim 1, wherein after the substrate is polished, a reinforcing plate is attached to the back surface of the substrate through an adhesive layer. 請求項1又は2に記載の光学素子の製造方法において、該基板表面の凹凸部は、光導波路の少なくとも一部を形成していることを特徴とする光学素子の製造方法。   3. The method of manufacturing an optical element according to claim 1, wherein the uneven portion on the surface of the substrate forms at least a part of an optical waveguide. 請求項1乃至3のいずれかに記載の光学素子の製造方法において、該基板は、ニオブ酸リチウム又はタンタル酸リチウムの少なくとも1つを含むことを特徴とする光学素子の製造方法。   4. The method of manufacturing an optical element according to claim 1, wherein the substrate includes at least one of lithium niobate or lithium tantalate. 請求項1乃至4のいずれかに記載の光学素子の製造方法において、該熱処理は、900〜1200℃の温度で処理することを特徴とする光学素子の製造方法。   5. The method of manufacturing an optical element according to claim 1, wherein the heat treatment is performed at a temperature of 900 to 1200 ° C. 6. 請求項4に記載の光学素子の製造方法において、製造終了時の該基板表面のLi/Nb又はLi/Taの組成比は、製造開始時の当該組成比以上又は0.7以上であることを特徴とする光学素子の製造方法。   5. The method of manufacturing an optical element according to claim 4, wherein the composition ratio of Li / Nb or Li / Ta on the surface of the substrate at the end of production is equal to or higher than the composition ratio at the start of production or 0.7 or more. A method for manufacturing an optical element. 電気光学効果を有する材料で形成された基板と、該基板表面に凹凸部が形成されており、該基板の厚みが30μm以下の厚みである光学素子において、
該基板表面の凹凸部は、該基板の厚みが200μm以上の状態で形成し、熱処理を行った後に、該基板を30μm以下の厚みにしたことを特徴とする光学素子。
In an optical element in which a substrate formed of a material having an electro-optic effect, and an uneven portion is formed on the substrate surface, and the thickness of the substrate is 30 μm or less,
The optical element is characterized in that the uneven portion on the surface of the substrate is formed in a state where the thickness of the substrate is 200 μm or more, and after the heat treatment, the substrate is made 30 μm or less in thickness.
請求項7に記載の光学素子において、該基板表面のLi/Nb又はLi/Taの組成比は、製造に用いた該基板の最初の組成比以上又は0.7以上であることを特徴とする光学素子。
8. The optical element according to claim 7, wherein a composition ratio of Li / Nb or Li / Ta on the surface of the substrate is equal to or higher than an initial composition ratio of the substrate used for manufacturing or 0.7 or higher. Optical element.
JP2005105405A 2005-03-31 2005-03-31 Optical element and manufacturing method thereof Expired - Fee Related JP4667933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105405A JP4667933B2 (en) 2005-03-31 2005-03-31 Optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105405A JP4667933B2 (en) 2005-03-31 2005-03-31 Optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006284964A true JP2006284964A (en) 2006-10-19
JP4667933B2 JP4667933B2 (en) 2011-04-13

Family

ID=37406958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105405A Expired - Fee Related JP4667933B2 (en) 2005-03-31 2005-03-31 Optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4667933B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313033A (en) * 1992-05-08 1993-11-26 Hitachi Metals Ltd Optical waveguide, manufacture thereof and optical element
JPH06289341A (en) * 1992-05-26 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element and its production
JP2001235714A (en) * 1999-12-15 2001-08-31 Ngk Insulators Ltd Traveling-wave optical modulator and its manufacturing method
JP2002040381A (en) * 2000-07-27 2002-02-06 Ngk Insulators Ltd Traveling wave type optical modulator
JP2004145261A (en) * 2002-05-31 2004-05-20 Matsushita Electric Ind Co Ltd Optical element and its manufacturing method
JP2004170711A (en) * 2002-11-20 2004-06-17 Mitsubishi Cable Ind Ltd Polarization reversed crystal, method for manufacturing and processing the same
JP2004219600A (en) * 2003-01-14 2004-08-05 Ngk Insulators Ltd Electrode for optical modulation and optical modulator
JP2004302191A (en) * 2003-03-31 2004-10-28 Sumitomo Osaka Cement Co Ltd Light control element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313033A (en) * 1992-05-08 1993-11-26 Hitachi Metals Ltd Optical waveguide, manufacture thereof and optical element
JPH06289341A (en) * 1992-05-26 1994-10-18 Matsushita Electric Ind Co Ltd Optical waveguide element and its production
JP2001235714A (en) * 1999-12-15 2001-08-31 Ngk Insulators Ltd Traveling-wave optical modulator and its manufacturing method
JP2002040381A (en) * 2000-07-27 2002-02-06 Ngk Insulators Ltd Traveling wave type optical modulator
JP2004145261A (en) * 2002-05-31 2004-05-20 Matsushita Electric Ind Co Ltd Optical element and its manufacturing method
JP2004170711A (en) * 2002-11-20 2004-06-17 Mitsubishi Cable Ind Ltd Polarization reversed crystal, method for manufacturing and processing the same
JP2004219600A (en) * 2003-01-14 2004-08-05 Ngk Insulators Ltd Electrode for optical modulation and optical modulator
JP2004302191A (en) * 2003-03-31 2004-10-28 Sumitomo Osaka Cement Co Ltd Light control element

Also Published As

Publication number Publication date
JP4667933B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4667932B2 (en) Light modulator
JP5083865B2 (en) Optical waveguide substrate and harmonic generation device
JPWO2005045908A1 (en) Substrate bonding method, bonded substrate and direct bonding substrate
WO2005019913A1 (en) Optical waveguide device and traveling wave type opticalmodulator
JP2008250352A (en) Optical element and method for producing the same
JP2002357797A (en) Optical waveguide device, method for manufacturing the same, and traveling waveform optical modulator
JP4954958B2 (en) Optical waveguide device
JP4851122B2 (en) Optical element and manufacturing method thereof
JP4408558B2 (en) Traveling waveform optical modulator and method of manufacturing the same
JP2002040502A (en) Optical waveguide element
JP4667933B2 (en) Optical element and manufacturing method thereof
JP2019105808A (en) Optical element and manufacturing method thereof
JP4653391B2 (en) Manufacturing method of light control element
JP4453894B2 (en) Optical waveguide device and traveling wave optical modulator
JPH06289346A (en) Dielectric substance optical waveguide element and its production
JP4909433B2 (en) Light modulator
JP7295467B2 (en) Optical element and its manufacturing method
JP2581486B2 (en) Optical waveguide device and method of manufacturing the same
JP2006284962A (en) Optical element
JP2007079465A (en) Optical control element and its manufacturing method
JP4875918B2 (en) Optical waveguide device and manufacturing method thereof
KR100721318B1 (en) Fabricating method for quasi-phase- matched waveguides
JP2006065046A (en) Manufacturing method for optical waveguide device and optical waveguide device
JP5556787B2 (en) Manufacturing method of light control element
JP4333534B2 (en) Optical waveguide manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees