JP2007079465A - Optical control element and its manufacturing method - Google Patents

Optical control element and its manufacturing method Download PDF

Info

Publication number
JP2007079465A
JP2007079465A JP2005270605A JP2005270605A JP2007079465A JP 2007079465 A JP2007079465 A JP 2007079465A JP 2005270605 A JP2005270605 A JP 2005270605A JP 2005270605 A JP2005270605 A JP 2005270605A JP 2007079465 A JP2007079465 A JP 2007079465A
Authority
JP
Japan
Prior art keywords
substrate
electrode
control element
control
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005270605A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ishikawa
泰弘 石川
Takashi Jinriki
孝 神力
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2005270605A priority Critical patent/JP2007079465A/en
Publication of JP2007079465A publication Critical patent/JP2007079465A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical control element with high productivity and its manufacturing method by preventing a thin plate and an electrode on the thin plate from being broken in a polishing process for a substrate, a wafer heating process, and further a substrate cutting process etc., when the optical control element using the substrate which is made thin is manufactured. <P>SOLUTION: The manufacturing method for the optical control element which has a thin plate 1 of ≤50 μm in thickness formed of the substrate having electrooptical effect, an optical waveguide formed on the thin plate, and electrodes 3 and 4 for control which modulates an optical wave propagated in the optical waveguide is characterized in that when the electrodes for control are formed on the substrate, a protection electrode 12 is formed of the same material with the electrode for control on a substrate surface except the electrodes for control. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光制御素子及びその製造方法に関し、特に、電気光学効果を有する基板で形成され、厚みが50μm以下の薄板を用いた光制御素子に関する。   The present invention relates to a light control element and a method for manufacturing the same, and particularly relates to a light control element using a thin plate having a thickness of 50 μm or less formed of a substrate having an electro-optic effect.

従来、光通信分野や光測定分野において、電気光学効果を有する基板上に光導波路や変調電極を形成した導波路型光変調器などの光制御素子が多用されている。
光変調周波数の広帯域化を実現するためには、変調信号であるマイクロ波と光波との速度整合を図ることが重要であり、これまでに、様々な方法が考案されている。具体例を挙げれば、バッファ層の厚膜化、電極の高アスペクト化やリッジ構造などがこれにあたる。
Conventionally, in the optical communication field and the optical measurement field, a light control element such as a waveguide type light modulator in which an optical waveguide or a modulation electrode is formed on a substrate having an electro-optic effect is widely used.
In order to realize a wider optical modulation frequency, it is important to match the speed of the modulation signal microwave and the light wave, and various methods have been devised so far. Specific examples include thicker buffer layers, higher aspect ratios of electrodes, and ridge structures.

また、以下の特許文献1又は2においては、30μm以下の厚みを有する極めて薄い基板(以下、「第1基板」という。)に、光導波路並びに変調電極を組み込み、第1基板より誘電率の低い他の基板を接合し、マイクロ波に対する実効屈折率を下げ、マイクロ波と光波との速度整合を図ることが行われている。
特開昭64−18121号公報 特開2003−215519号公報
In Patent Document 1 or 2 below, an optical waveguide and a modulation electrode are incorporated in an extremely thin substrate (hereinafter referred to as “first substrate”) having a thickness of 30 μm or less, and the dielectric constant is lower than that of the first substrate. Other substrates are bonded to reduce the effective refractive index with respect to the microwave, thereby achieving speed matching between the microwave and the light wave.
JP-A 64-18121 JP 2003-215519 A

これらのように、薄板化された第1基板を用いることで、光制御素子の設計自由度が飛躍的に高まり、例えばバッファ層を用いずとも、広帯域かつ低駆動電圧の光変調器などが作製可能となる。またさらに、マイクロ波の伝搬速度低減の観点からは、誘電率の低い材料を基板に用いることと同義に、第1基板を具体的には150μm以下とすることで、特に26GHz以上の領域においてマイクロ波自身の誘電体損(tanδ)の影響を低減できることが以下の非特許文献1により公開され、光変調器の広帯域化に適用されている。
Y.Yamane et.al., “Investigation of sandblast machining techniques for broadband LN modulators”, Sumitomo Osaka Cement Technical report 2002, pp49-54 (2003)
By using the thinned first substrate like this, the design flexibility of the light control element is dramatically increased. For example, an optical modulator having a wide band and a low driving voltage can be manufactured without using a buffer layer. It becomes possible. Furthermore, from the viewpoint of reducing the propagation speed of microwaves, it is synonymous with the use of a material having a low dielectric constant for the substrate. Specifically, the first substrate is specifically set to 150 μm or less, and particularly in the region of 26 GHz or more The following non-patent document 1 discloses that the influence of the dielectric loss (tan δ) of the wave itself can be reduced, and is applied to widening the bandwidth of the optical modulator.
Y. Yamane et.al., “Investigation of sandblast machining techniques for broadband LN modulators”, Sumitomo Osaka Cement Technical report 2002, pp49-54 (2003)

他方、図1に示すように、光変調器などの光制御素子においては、電気光学効果を有する基板1上に、光導波路2を形成し、該光導波路を伝搬する光波を変調するための制御用電極が形成されている。制御用電極は、図1のように、信号電極3や接地電極4などからなり、光変調に寄与しない領域には、基板表面又は基板表面に形成されたバッファ層が剥き出しの状態となっている。   On the other hand, as shown in FIG. 1, in an optical control element such as an optical modulator, an optical waveguide 2 is formed on a substrate 1 having an electro-optic effect, and control for modulating a light wave propagating through the optical waveguide is performed. An electrode is formed. As shown in FIG. 1, the control electrode is made up of the signal electrode 3, the ground electrode 4, and the like, and the substrate surface or the buffer layer formed on the substrate surface is exposed in a region that does not contribute to light modulation. .

図1のような光制御素子は、通常、1枚のウェハ(電気光学効果を有する数インチφの基板)の中に、複数の光制御素子が作り込まれ、最後に該ウェハを切断することで、個々の光制御素子が製造されている。また、上述したような基板の厚みが薄い光制御素子においては、ウェハの状態で基板の裏面を研磨して薄板化が行われている。さらに、薄板化した基板に対し、不純物をドーピングしたり、所定温度で加熱し基板の歪みを除去するなど、ウェハ加熱処理も行われている。   In the light control element as shown in FIG. 1, usually, a plurality of light control elements are formed in one wafer (a substrate of several inches φ having an electro-optic effect), and finally the wafer is cut. Thus, individual light control elements are manufactured. Further, in the light control element having the thin substrate as described above, the back surface of the substrate is polished in a wafer state to reduce the thickness. Further, a wafer heating process is also performed, such as doping impurities on the thinned substrate or heating the substrate at a predetermined temperature to remove distortion of the substrate.

研磨工程においては、図2に示すように、ウェハ状の基板1に制御用電極3,4を形成した後、ワックスなどの接着剤10で研磨ダミー基板11に基板1を固定し、基板1の裏面を研磨している。しかしながら、研磨工程時には、制御用電極3,4が離散的に配置されているのみであるため、基板1と接着剤10との接合部に掛る研磨時の応力が図2のAやBの部分などに集中し、制御用電極の一部が基板1から剥離するなどの破損が生ずる。   In the polishing step, as shown in FIG. 2, after the control electrodes 3 and 4 are formed on the wafer-like substrate 1, the substrate 1 is fixed to the polishing dummy substrate 11 with an adhesive 10 such as wax. The back side is polished. However, since the control electrodes 3 and 4 are only discretely arranged at the time of the polishing process, the stress at the time of polishing applied to the joint portion between the substrate 1 and the adhesive 10 is a portion indicated by A or B in FIG. Such as a part of the control electrode is peeled off from the substrate 1.

また、薄板化された基板に対するウェハ加熱工程や基板切断工程などにおいては、制御用電極の形成部分とこれらが形成されていない部分とでは、熱応力や機械的強度が異なり、基板1が容易に破損するなどの問題を生じていた。   Further, in the wafer heating process and the substrate cutting process for the thinned substrate, the thermal stress and mechanical strength are different between the portion where the control electrode is formed and the portion where these are not formed, and the substrate 1 can be easily formed. It was causing problems such as damage.

本発明が解決しようとする課題は、上述したような問題を解決し、薄板化された基板を利用した光制御素子の製造時に、基板の研磨工程やウェハ加熱工程、さらには基板切断工程などにおいて、薄板や薄板上の電極が破損することを防止し、生産性の高い光制御素子及びその製造方法を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, in the production of a light control element using a thinned substrate, in the polishing process of the substrate, the wafer heating process, and further in the substrate cutting process. An object of the present invention is to provide a light control element with high productivity and a method for manufacturing the same, by preventing the thin plate and the electrode on the thin plate from being damaged.

上記課題を解決するため、請求項1に係る発明では、電気光学効果を有する基板で形成され、厚みが50μm以下の薄板と、該薄板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有する光制御素子の製造方法において、該基板に制御用電極を形成する際に、制御用電極以外の基板表面に、制御用電極と同じ材料で保護電極を形成することを特徴とする。
本発明における「保護電極」とは、光制御素子の駆動や動作に関係する電極ではないが、光制御素子の製造時に、薄板化された基板に加わる熱応力や機械的応力を緩和したり、基板の機械的強度を高める働きをする電極を意味する。
In order to solve the above-mentioned problem, in the invention according to claim 1, a thin plate having a thickness of 50 μm or less formed of a substrate having an electro-optic effect, an optical waveguide formed on the thin plate, and propagating through the optical waveguide In the manufacturing method of the light control element having the control electrode for modulating the light wave, when forming the control electrode on the substrate, the protective electrode is made of the same material as the control electrode on the substrate surface other than the control electrode It is characterized by forming.
`` Protective electrode '' in the present invention is not an electrode related to the drive or operation of the light control element, but when manufacturing the light control element, the thermal stress and mechanical stress applied to the thinned substrate are relaxed, It means an electrode that functions to increase the mechanical strength of the substrate.

請求項2に係る発明では、請求項1に記載の光制御素子の製造方法において、該保護電極には溝が形成されていることを特徴とする。   The invention according to claim 2 is characterized in that, in the method for manufacturing a light control element according to claim 1, a groove is formed in the protective electrode.

請求項3に係る発明では、請求項1又は2に記載の光制御素子の製造方法において、該保護電極を形成した後、基板の裏面の研磨工程、ウェハ加熱工程、又は基板切断工程のいずれかを行うことを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing a light control element according to the first or second aspect, after the formation of the protective electrode, any one of a polishing process of the back surface of the substrate, a wafer heating process, or a substrate cutting process. It is characterized by performing.

請求項4に係る発明では、電気光学効果を有する基板で形成され、厚みが50μm以下の薄板と、該薄板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有する光制御素子において、該制御用電極以外の基板表面に、制御用電極と同じ材料で形成された保護電極を有することを特徴とする。   In the invention according to claim 4, a thin plate formed of a substrate having an electro-optic effect and having a thickness of 50 μm or less, an optical waveguide formed on the thin plate, and a control for modulating a light wave propagating through the optical waveguide A light control element having a control electrode has a protective electrode formed of the same material as the control electrode on a substrate surface other than the control electrode.

請求項5に係る発明では、請求項4に記載の光制御素子において、該保護電極は、該制御用電極を構成する接地電極に電気的に接続されていることを特徴とする。   The invention according to claim 5 is the light control element according to claim 4, wherein the protective electrode is electrically connected to a ground electrode constituting the control electrode.

請求項1に係る発明により、基板に制御用電極を形成する際に、制御用電極以外の基板表面に、制御用電極と同じ材料で保護電極を形成するため、基板の機械的強度を高めると共に、基板に熱応力や機械的応力が加わった際にも、保護電極は制御電極と同じ機械的また熱的特性を有するため、基板が破損するなどの不具合を生じることも無い。しかも、保護電極は、制御用電極と同じ形成方法で形成することが可能であるため、製造工程が複雑化することも無い。   According to the first aspect of the invention, when the control electrode is formed on the substrate, the protective electrode is formed of the same material as the control electrode on the surface of the substrate other than the control electrode, thereby increasing the mechanical strength of the substrate. Even when thermal stress or mechanical stress is applied to the substrate, the protective electrode has the same mechanical and thermal characteristics as the control electrode, so that the substrate does not break down. Moreover, since the protective electrode can be formed by the same formation method as the control electrode, the manufacturing process is not complicated.

請求項2に係る発明により、保護電極には溝が形成されているため、基板の研磨時などで基板を接着剤で研磨ダミー基板に接合させる際に、接着剤が該溝に入り込み、基板全体に効率よく接着剤が広がると共に、接合時の接合強度をより高くすることが可能となる。また、基板に熱応力や機械的応力が加わった際には、該溝によりこれらの応力が伝達されるのを阻止することが基板の破損を効果的に抑制することができる。   According to the second aspect of the present invention, since the protective electrode has a groove, the adhesive enters the groove when the substrate is bonded to the polishing dummy substrate with an adhesive during polishing of the substrate, and the entire substrate In addition, the adhesive spreads efficiently and the bonding strength at the time of bonding can be further increased. Further, when thermal stress or mechanical stress is applied to the substrate, it is possible to effectively prevent the substrate from being damaged by preventing the stress from being transmitted by the groove.

請求項3に係る発明により、保護電極を形成した後、基板の裏面の研磨工程、ウェハ加熱工程、又は基板切断工程のいずれかを行うため、薄板化した基板が破損し易い研磨工程、ウェハ加熱工程、又は基板切断工程において、効果的に基板を保護することが可能となる。   According to the third aspect of the present invention, after forming the protective electrode, any one of the polishing process on the back surface of the substrate, the wafer heating process, or the substrate cutting process is performed. In the process or the substrate cutting process, the substrate can be effectively protected.

請求項4に係る発明により、光制御素子が、制御用電極以外の基板表面に、制御用電極と同じ材料で形成された保護電極を有しているため、光制御素子の製造時に基板が破損するなどの不具合を排除することが可能となる。また、光制御素子が完成した後でも、光制御素子を構成する薄板の機械的強度を高め、温度変化による熱応力歪みや機械的衝撃・加圧による機械的応力歪みなどに対しても、薄板の破損や局所的な変形を効果的に抑制することが可能となる。   According to the invention of claim 4, since the light control element has a protective electrode formed of the same material as the control electrode on the substrate surface other than the control electrode, the substrate is damaged at the time of manufacturing the light control element. This makes it possible to eliminate problems such as In addition, even after the light control element is completed, the mechanical strength of the thin plate constituting the light control element is increased, and the thin plate is also resistant to thermal stress distortion due to temperature changes and mechanical stress distortion due to mechanical shock and pressurization. It is possible to effectively suppress the breakage and local deformation.

請求項5に係る発明により、保護電極は、制御用電極を構成する接地電極に電気的に接続されているため、保護電極が浮遊電極として動作せず、電気的にも安定な構造となる。   According to the fifth aspect of the present invention, since the protective electrode is electrically connected to the ground electrode constituting the control electrode, the protective electrode does not operate as a floating electrode and has an electrically stable structure.

以下、本発明を好適例を用いて詳細に説明する。
本発明は、電気光学効果を有する基板で形成され、厚みが50μm以下の薄板と、該薄板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有する光制御素子の製造方法において、該基板に制御用電極を形成する際に、制御用電極以外の基板表面に、制御用電極と同じ材料で保護電極を形成することを特徴とする。
Hereinafter, the present invention will be described in detail using preferred examples.
The present invention includes a thin plate having a thickness of 50 μm or less formed of a substrate having an electro-optic effect, an optical waveguide formed on the thin plate, and a control electrode for modulating a light wave propagating through the optical waveguide. In the method for manufacturing a light control element, a protective electrode is formed of the same material as the control electrode on the substrate surface other than the control electrode when the control electrode is formed on the substrate.

電気光学効果を有する基板としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能である。特に、電気光学効果の高いニオブ酸リチウム(LN)やタンタル酸リチウム(LT)結晶が好適に利用される。   As the substrate having an electro-optic effect, for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used. In particular, lithium niobate (LN) or lithium tantalate (LT) crystals having a high electro-optic effect are preferably used.

光導波路は、基板上にTiなどの不純物を熱拡散して形成される。また、制御用電極を形成するには、TiやAuなどの下地層を蒸着法で形成し、フォトリソグラフィー法により所定の電極パターンを残して下地層をマスクし、電解メッキ法によりAu電極を形成する。その後、フォトレジスト膜や下地層の一部をウェットエッチングにより除去する。   The optical waveguide is formed by thermally diffusing impurities such as Ti on the substrate. In order to form the control electrode, an underlayer such as Ti or Au is formed by a vapor deposition method, a predetermined electrode pattern is left by a photolithography method, the underlayer is masked, and an Au electrode is formed by an electrolytic plating method. To do. Thereafter, the photoresist film and a part of the base layer are removed by wet etching.

本発明に係る光制御素子の特徴は、図3に示すように、基板1上に形成された制御用電極3,4以外に、保護電極12を有することである。このような保護電極は、制御用電極と同じ方法で形成され、生産性の観点からは、制御用電極と同時に形成することが好ましい。   A feature of the light control element according to the present invention is that it has a protective electrode 12 in addition to the control electrodes 3 and 4 formed on the substrate 1 as shown in FIG. Such a protective electrode is formed by the same method as the control electrode, and is preferably formed simultaneously with the control electrode from the viewpoint of productivity.

保護電極12は、基板1上の制御用電極が形成されていない領域において、制御用電極の信号電極や信号電極と接地電極とのギャップなどを変形又は無くさない範囲において、可能な限り、基板1の表面を覆うように形成されている。また、基板1と制御用電極との間にSiOなどによるバッファ層(不図示)を形成しない場合には、基板1の表面に形成された光導波路と保護電極とが直接接することが無いように、保護電極の形状を決めることが好ましい。 The protective electrode 12 is formed on the substrate 1 as much as possible within the range where the control electrode signal electrode and the gap between the signal electrode and the ground electrode are not deformed or eliminated in the region where the control electrode is not formed. It is formed so as to cover the surface. Further, when a buffer layer (not shown) made of SiO 2 or the like is not formed between the substrate 1 and the control electrode, the optical waveguide formed on the surface of the substrate 1 and the protective electrode are not in direct contact with each other. Furthermore, it is preferable to determine the shape of the protective electrode.

このような保護電極12を形成することにより、基板1を接着剤10を介して研磨ダミー基板11に接合し、研磨した際でも、制御用電極3,4が破損されることを防ぎ、極めて安定して光制御素子を製造することが可能となる。   By forming such a protective electrode 12, even when the substrate 1 is bonded to the polishing dummy substrate 11 via the adhesive 10 and polished, the control electrodes 3 and 4 are prevented from being damaged and extremely stable. Thus, the light control element can be manufactured.

図4は、ウェハ基板20に複数の光制御素子を形成した状態を示す図である。
各光制御素子は、制御用電極の一部である信号電極3を有しており、図4においては、各素子内の接地電極や保護電極に関しては、図示が省略されている。光制御素子以外のウェハ基板上にも、網掛けの領域に保護電極21が形成されている。好ましくは、図4に示すように保護電極内に複数の溝22,23を10〜30μm程度の深さで形成する。
FIG. 4 is a view showing a state in which a plurality of light control elements are formed on the wafer substrate 20.
Each light control element has a signal electrode 3 that is a part of the control electrode. In FIG. 4, the ground electrode and the protective electrode in each element are not shown. A protective electrode 21 is also formed in a shaded area on the wafer substrate other than the light control element. Preferably, as shown in FIG. 4, a plurality of grooves 22 and 23 are formed in the protective electrode at a depth of about 10 to 30 μm.

図4のよに、ウェハ全体に保護電極21が形成されているため、ウェハ基板20を薄板化した際でも、機械的強度を高くすることができ、しかも、ウェハ加熱工程や基板切断工程において、ウェハ基板20に熱応力や機械的応力が加わっても、応力歪みが発生する領域が少なく、基板自体の破損が抑制される。   As shown in FIG. 4, since the protective electrode 21 is formed on the entire wafer, the mechanical strength can be increased even when the wafer substrate 20 is thinned. In addition, in the wafer heating process and the substrate cutting process, Even if thermal stress or mechanical stress is applied to the wafer substrate 20, there are few areas where stress distortion occurs, and the substrate itself is prevented from being damaged.

保護電極に形成された溝22,23により、基板の研磨時などで基板を接着剤で研磨ダミー基板に接合させる際に、接着剤が該溝に入り込み、スピンコートなどでウェハ基板20を回転させても基板全体に効率よく接着剤が広がる。しかも、溝に入り込んだ接着剤により、接合時の接合強度をより高くすることが可能となる。
また、ウェハ加熱工程や基板切断工程のように、ウェハ基板20に熱応力や機械的応力が加わった際には、該溝によりこれらの応力が基板全体に伝達されるのを阻止するため、基板の破損を効果的に抑制することができる。
When the substrate is bonded to the polishing dummy substrate with an adhesive when the substrate is polished by the grooves 22 and 23 formed in the protective electrode, the adhesive enters the groove and rotates the wafer substrate 20 by spin coating or the like. However, the adhesive spreads efficiently over the entire substrate. In addition, the bonding strength at the time of bonding can be further increased by the adhesive that has entered the groove.
Further, when thermal stress or mechanical stress is applied to the wafer substrate 20 as in the wafer heating process or the substrate cutting process, the groove prevents the stress from being transmitted to the entire substrate by the groove. Can be effectively suppressed.

図5は、各光制御素子に保護電極を形成した他の例を示す図である。
基板上の保護電極は、制御用電極の接地電極4と一体的に形成することも可能である。図5に示すように、信号電極3及び信号電極3と接地電極4とのギャップを除き、全ての基板上を領域Cで示したように覆うことも可能であるが、この場合には、光導波路2を伝搬する光波が保護電極により吸収されないように、保護電極と基板との間にバッファ層を形成する必要がある。
他方、領域Dで示したように、光導波路2の部分を除くように保護電極を形成することも可能である。
FIG. 5 is a diagram showing another example in which a protective electrode is formed on each light control element.
The protective electrode on the substrate can be formed integrally with the ground electrode 4 of the control electrode. As shown in FIG. 5, it is possible to cover all the substrates as shown by the region C except for the signal electrode 3 and the gap between the signal electrode 3 and the ground electrode 4. It is necessary to form a buffer layer between the protective electrode and the substrate so that the light wave propagating through the waveguide 2 is not absorbed by the protective electrode.
On the other hand, as indicated by the region D, the protective electrode can be formed so as to exclude the portion of the optical waveguide 2.

本発明は、50μm以下の厚みを有する基板を使用する光制御素子には、特に、好適に使用できるものであるが、これに限らず、50μm以上の厚みの基板に対して、本発明を適用しても、一定の効果を奏することは可能である。
なお、50μm以下の厚みを有する基板(薄板)を用いる場合には、光制御素子としての機械的強度をより一層高めるため、補強板を薄板の裏面に、接着剤又は直接接合法を使用して接合させる。
The present invention can be suitably used particularly for a light control element using a substrate having a thickness of 50 μm or less, but is not limited thereto, and the present invention is applied to a substrate having a thickness of 50 μm or more. Even so, it is possible to achieve a certain effect.
When a substrate (thin plate) having a thickness of 50 μm or less is used, an adhesive or a direct bonding method is used on the back surface of the thin plate to further increase the mechanical strength as the light control element. Join.

本発明に係る光制御素子及びその製造法によれば、薄板化された基板を利用した光制御素子の製造時に、基板の研磨工程やウェハ加熱工程、さらには基板切断工程などにおいて、薄板や薄板上の電極が破損することを防止し、生産性の高い光制御素子及びその製造方法を提供することが可能となる。   According to the light control element and the method of manufacturing the same according to the present invention, a thin plate or a thin plate can be used in a substrate polishing process, a wafer heating process, or a substrate cutting process when manufacturing a light control element using a thinned substrate. It is possible to prevent the upper electrode from being damaged and to provide a light control element with high productivity and a method for manufacturing the same.

従来の光制御素子の概略図を示す。The schematic of the conventional light control element is shown. 従来の光制御素子の基板研磨時の様子を示す図である。It is a figure which shows the mode at the time of board | substrate grinding | polishing of the conventional light control element. 本発明に係る光制御素子の基板研磨時の様子を示す図である。It is a figure which shows the mode at the time of board | substrate grinding | polishing of the light control element based on this invention. ウェハ基板に保護電極を形成した状態を示す図である。It is a figure which shows the state which formed the protective electrode in the wafer substrate. 光制御素子に保護電極を形成した状態を示す図である。It is a figure which shows the state which formed the protective electrode in the light control element.

符号の説明Explanation of symbols

1 基板
2 光導波路
3 信号電極
4 接地電極
10 接着剤
11 研磨ダミー基板
12,21 保護電極
20 ウェハ基板
22,23 溝
DESCRIPTION OF SYMBOLS 1 Substrate 2 Optical waveguide 3 Signal electrode 4 Ground electrode 10 Adhesive 11 Polishing dummy substrate 12, 21 Protective electrode 20 Wafer substrate 22, 23 Groove

Claims (5)

電気光学効果を有する基板で形成され、厚みが50μm以下の薄板と、該薄板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有する光制御素子の製造方法において、
該基板に制御用電極を形成する際に、制御用電極以外の基板表面に、制御用電極と同じ材料で保護電極を形成することを特徴とする光制御素子の製造方法。
An optical control element formed of a substrate having an electro-optic effect and having a thickness of 50 μm or less, an optical waveguide formed on the thin plate, and a control electrode for modulating a light wave propagating through the optical waveguide In the manufacturing method of
A method for producing a light control element, comprising: forming a control electrode on a substrate surface other than the control electrode by using the same material as the control electrode when forming the control electrode on the substrate.
請求項1に記載の光制御素子の製造方法において、該保護電極には溝が形成されていることを特徴とする光制御素子の製造方法。   2. The method of manufacturing a light control element according to claim 1, wherein a groove is formed in the protective electrode. 請求項1又は2に記載の光制御素子の製造方法において、該保護電極を形成した後、基板の裏面の研磨工程、ウェハ加熱工程、又は基板切断工程のいずれかを行うことを特徴とする光制御素子の製造方法。   3. The light control element manufacturing method according to claim 1, wherein after the protective electrode is formed, any one of a polishing process of a back surface of the substrate, a wafer heating process, and a substrate cutting process is performed. A method for manufacturing a control element. 電気光学効果を有する基板で形成され、厚みが50μm以下の薄板と、該薄板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有する光制御素子において、
該制御用電極以外の基板表面に、制御用電極と同じ材料で形成された保護電極を有することを特徴とする光制御素子。
An optical control element formed of a substrate having an electro-optic effect and having a thickness of 50 μm or less, an optical waveguide formed on the thin plate, and a control electrode for modulating a light wave propagating through the optical waveguide In
A light control element comprising a protective electrode formed of the same material as the control electrode on a substrate surface other than the control electrode.
請求項4に記載の光制御素子において、該保護電極は、該制御用電極を構成する接地電極に電気的に接続されていることを特徴とする光制御素子。
5. The light control element according to claim 4, wherein the protective electrode is electrically connected to a ground electrode constituting the control electrode.
JP2005270605A 2005-09-16 2005-09-16 Optical control element and its manufacturing method Pending JP2007079465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270605A JP2007079465A (en) 2005-09-16 2005-09-16 Optical control element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270605A JP2007079465A (en) 2005-09-16 2005-09-16 Optical control element and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011234596A Division JP5556787B2 (en) 2011-10-26 2011-10-26 Manufacturing method of light control element

Publications (1)

Publication Number Publication Date
JP2007079465A true JP2007079465A (en) 2007-03-29

Family

ID=37939797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270605A Pending JP2007079465A (en) 2005-09-16 2005-09-16 Optical control element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007079465A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008686A (en) * 2008-06-26 2010-01-14 Fujitsu Ltd Optical modulating element and its method for manufacturing
JP2012027500A (en) * 2011-10-26 2012-02-09 Sumitomo Osaka Cement Co Ltd Method for manufacturing optical control element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316311A (en) * 1998-05-01 1999-11-16 Oki Electric Ind Co Ltd Waveguide type optical element and its production
JP2001235714A (en) * 1999-12-15 2001-08-31 Ngk Insulators Ltd Traveling-wave optical modulator and its manufacturing method
JP2003021815A (en) * 2001-07-10 2003-01-24 Fdk Corp Optical waveguide device
JP2003156723A (en) * 2001-09-05 2003-05-30 Ngk Insulators Ltd Optical waveguide device, optical modulator, mounting structure for optical modulator, and support member for optical waveguide substrate
JP2003295140A (en) * 2002-03-29 2003-10-15 Japan Science & Technology Corp Optical frequency comb generator and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316311A (en) * 1998-05-01 1999-11-16 Oki Electric Ind Co Ltd Waveguide type optical element and its production
JP2001235714A (en) * 1999-12-15 2001-08-31 Ngk Insulators Ltd Traveling-wave optical modulator and its manufacturing method
JP2003021815A (en) * 2001-07-10 2003-01-24 Fdk Corp Optical waveguide device
JP2003156723A (en) * 2001-09-05 2003-05-30 Ngk Insulators Ltd Optical waveguide device, optical modulator, mounting structure for optical modulator, and support member for optical waveguide substrate
JP2003295140A (en) * 2002-03-29 2003-10-15 Japan Science & Technology Corp Optical frequency comb generator and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008686A (en) * 2008-06-26 2010-01-14 Fujitsu Ltd Optical modulating element and its method for manufacturing
JP2012027500A (en) * 2011-10-26 2012-02-09 Sumitomo Osaka Cement Co Ltd Method for manufacturing optical control element

Similar Documents

Publication Publication Date Title
US6819851B2 (en) Optical waveguide device and a travelling-wave optical modulator
EP1455219A1 (en) Optical waveguide device, and traveling wave form optical modulator
EP1542063A1 (en) Optical modulator
JP2008089936A (en) Optical control element
JP2008250258A (en) Optical control device
JP4954958B2 (en) Optical waveguide device
JP2007101641A (en) Optical modulator and method of manufacturing same
JP2001235714A (en) Traveling-wave optical modulator and its manufacturing method
JP4936838B2 (en) Light control device
US6950580B2 (en) Optical waveguide devices and travelling wave type optical modulators
JP2007079465A (en) Optical control element and its manufacturing method
JP4453894B2 (en) Optical waveguide device and traveling wave optical modulator
EP1441250A2 (en) Electrode systems for optical modulation and optical modulators
JP3762320B2 (en) Manufacturing method of optical modulator
JP5556787B2 (en) Manufacturing method of light control element
JP7346876B2 (en) Optical waveguide device
JP2009086336A (en) Optical waveguide type device
JP5494400B2 (en) Optical waveguide device
JP2003270601A (en) Method of manufacturing optical modulator
JPH11352350A (en) Production of optical waveguide element
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP4875918B2 (en) Optical waveguide device and manufacturing method thereof
JP3275888B2 (en) Optical waveguide device
JP4667933B2 (en) Optical element and manufacturing method thereof
JP4899948B2 (en) Optical element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726