JP2012027500A - Method for manufacturing optical control element - Google Patents

Method for manufacturing optical control element Download PDF

Info

Publication number
JP2012027500A
JP2012027500A JP2011234596A JP2011234596A JP2012027500A JP 2012027500 A JP2012027500 A JP 2012027500A JP 2011234596 A JP2011234596 A JP 2011234596A JP 2011234596 A JP2011234596 A JP 2011234596A JP 2012027500 A JP2012027500 A JP 2012027500A
Authority
JP
Japan
Prior art keywords
substrate
control element
electrode
light control
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011234596A
Other languages
Japanese (ja)
Other versions
JP5556787B2 (en
Inventor
Yasuhiro Ishikawa
泰弘 石川
Takashi Jinriki
孝 神力
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2011234596A priority Critical patent/JP5556787B2/en
Publication of JP2012027500A publication Critical patent/JP2012027500A/en
Application granted granted Critical
Publication of JP5556787B2 publication Critical patent/JP5556787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical control element and a method for manufacturing the same that achieve high productivity by preventing thin substrates and electrodes on the thin substrates from being damaged in a substrate polishing, wafer heating, or further substrate cutting process, during manufacture of optical control elements using a thinned substrate.SOLUTION: In a method for manufacturing an optical control element that forms a plurality of optical control elements on a wafer substrate 20 having electro-optic effect, the optical control element comprises: an optical waveguide formed on the wafer substrate 20; and a control electrode for modulating a light wave propagating through the optical waveguide. A protective electrode 21 is formed using the same material as the control electrode on the wafer substrate 20 in a region outside a region where the optical control element is formed when the control electrode is formed on the wafer substrate 20. A plurality of grooves 22 and 23 are formed in the protective electrode 21.

Description

本発明は、光制御素子の製造方法に関し、特に、電気光学効果を有するウェハ基板上に形成された光制御素子の製造方法に関する。   The present invention relates to a method for manufacturing a light control element, and more particularly to a method for manufacturing a light control element formed on a wafer substrate having an electro-optic effect.

従来、光通信分野や光測定分野において、電気光学効果を有する基板上に光導波路や変調電極を形成した導波路型光変調器などの光制御素子が多用されている。
光変調周波数の広帯域化を実現するためには、変調信号であるマイクロ波と光波との速度整合を図ることが重要であり、これまでに、様々な方法が考案されている。具体例を挙げれば、バッファ層の厚膜化、電極の高アスペクト化やリッジ構造などがこれにあたる。
Conventionally, in the optical communication field and the optical measurement field, a light control element such as a waveguide type light modulator in which an optical waveguide or a modulation electrode is formed on a substrate having an electro-optic effect is widely used.
In order to realize a wider optical modulation frequency, it is important to match the speed of the modulation signal microwave and the light wave, and various methods have been devised so far. Specific examples include thicker buffer layers, higher aspect ratios of electrodes, and ridge structures.

また、以下の特許文献1又は2においては、30μm以下の厚みを有する極めて薄い基板(以下、「第1基板」という。)に、光導波路並びに変調電極を組み込み、第1基板より誘電率の低い他の基板を接合し、マイクロ波に対する実効屈折率を下げ、マイクロ波と光波との速度整合を図ることが行われている。   In Patent Document 1 or 2 below, an optical waveguide and a modulation electrode are incorporated in an extremely thin substrate (hereinafter referred to as “first substrate”) having a thickness of 30 μm or less, and has a lower dielectric constant than the first substrate. Other substrates are bonded to reduce the effective refractive index with respect to the microwave, thereby achieving speed matching between the microwave and the light wave.

これらのように、薄板化された第1基板を用いることで、光制御素子の設計自由度が飛躍的に高まり、例えばバッファ層を用いずとも、広帯域かつ低駆動電圧の光変調器などが作製可能となる。またさらに、マイクロ波の伝搬速度低減の観点からは、誘電率の低い材料を基板に用いることと同義に、第1基板を具体的には150μm以下とすることで、特に26GHz以上の領域においてマイクロ波自身の誘電体損(tanδ)の影響を低減できることが以下の非特許文献1により公開され、光変調器の広帯域化に適用されている。   By using the thinned first substrate like this, the design flexibility of the light control element is dramatically increased. For example, an optical modulator having a wide band and a low driving voltage can be manufactured without using a buffer layer. It becomes possible. Furthermore, from the viewpoint of reducing the propagation speed of microwaves, it is synonymous with the use of a material having a low dielectric constant for the substrate. Specifically, the first substrate is specifically set to 150 μm or less, and particularly in the region of 26 GHz or more. The following non-patent document 1 discloses that the influence of the dielectric loss (tan δ) of the wave itself can be reduced, and is applied to widening the bandwidth of the optical modulator.

他方、図1に示すように、光変調器などの光制御素子においては、電気光学効果を有する基板1上に、光導波路2を形成し、該光導波路を伝搬する光波を変調するための制御用電極が形成されている。制御用電極は、図1のように、信号電極3や接地電極4などからなり、光変調に寄与しない領域には、基板表面又は基板表面に形成されたバッファ層が剥き出しの状態となっている。   On the other hand, as shown in FIG. 1, in an optical control element such as an optical modulator, an optical waveguide 2 is formed on a substrate 1 having an electro-optic effect, and control for modulating a light wave propagating through the optical waveguide is performed. An electrode is formed. As shown in FIG. 1, the control electrode is made up of the signal electrode 3, the ground electrode 4, and the like, and the substrate surface or the buffer layer formed on the substrate surface is exposed in a region that does not contribute to light modulation. .

図1のような光制御素子は、通常、1枚のウェハ(電気光学効果を有する数インチφの基板)の中に、複数の光制御素子が作り込まれ、最後に該ウェハを切断することで、個々の光制御素子が製造されている。また、上述したような基板の厚みが薄い光制御素子においては、ウェハの状態で基板の裏面を研磨して薄板化が行われている。さらに、薄板化した基板に対し、不純物をドーピングしたり、所定温度で加熱し基板の歪みを除去するなど、ウェハ加熱処理も行われている。   In the light control element as shown in FIG. 1, usually, a plurality of light control elements are formed in one wafer (a substrate of several inches φ having an electro-optic effect), and finally the wafer is cut. Thus, individual light control elements are manufactured. Further, in the light control element having the thin substrate as described above, the back surface of the substrate is polished in a wafer state to reduce the thickness. Further, a wafer heating process is also performed, such as doping impurities on the thinned substrate or heating the substrate at a predetermined temperature to remove distortion of the substrate.

研磨工程においては、図2に示すように、ウェハ状の基板1に制御用電極3,4を形成した後、ワックスなどの接着剤10で研磨ダミー基板11に基板1を固定し、基板1の裏面を研磨している。しかしながら、研磨工程時には、制御用電極3,4が離散的に配置されているのみであるため、基板1と接着剤10との接合部に掛る研磨時の応力が図2のAやBの部分などに集中し、制御用電極の一部が基板1から剥離するなどの破損が生ずる。   In the polishing step, as shown in FIG. 2, after the control electrodes 3 and 4 are formed on the wafer-like substrate 1, the substrate 1 is fixed to the polishing dummy substrate 11 with an adhesive 10 such as wax. The back side is polished. However, since the control electrodes 3 and 4 are only discretely arranged at the time of the polishing process, the stress at the time of polishing applied to the joint portion between the substrate 1 and the adhesive 10 is a portion indicated by A or B in FIG. Such as a part of the control electrode is peeled off from the substrate 1.

また、薄板化された基板に対するウェハ加熱工程や基板切断工程などにおいては、制御用電極の形成部分とこれらが形成されていない部分とでは、熱応力や機械的強度が異なり、基板1が容易に破損するなどの問題を生じていた。   Further, in the wafer heating process and the substrate cutting process for the thinned substrate, the thermal stress and mechanical strength are different between the portion where the control electrode is formed and the portion where these are not formed, and the substrate 1 can be easily formed. It was causing problems such as damage.

特開昭64−18121号公報JP-A 64-18121 特開2003−215519号公報JP 2003-215519 A

Y.Yamane et.al., “Investigationof sandblast machining techniques for broadband LN modulators”,Sumitomo Osaka Cement Technical report 2002, pp49-54 (2003)Y. Yamane et.al., “Investigation of sandblast machining techniques for broadband LN modulators”, Sumitomo Osaka Cement Technical report 2002, pp49-54 (2003)

本発明が解決しようとする課題は、上述したような問題を解決し、薄板化された基板を利用した光制御素子の製造時に、基板の研磨工程やウェハ加熱工程、さらには基板切断工程などにおいて、薄板や薄板上の電極が破損することを防止し、生産性の高い光制御素子の製造方法を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, in the production of a light control element using a thinned substrate, in the polishing process of the substrate, the wafer heating process, and further in the substrate cutting process. Another object of the present invention is to provide a method of manufacturing a light control element with high productivity by preventing the thin plate and the electrode on the thin plate from being damaged.

上記課題を解決するため、請求項1に係る発明では、電気光学効果を有するウェハ基板に複数の光制御素子を形成する、光制御素子の製造方法において、該光制御素子は、該ウェハ基板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有し、該ウェハ基板に制御用電極を形成する際に、該ウェハ基板上の、該光制御素子が形成されている領域以外の領域に、制御用電極と同じ材料で保護電極を形成し、該保護電極には複数の溝が形成されていることを特徴とする。
本発明における「保護電極」とは、光制御素子の駆動や動作に関係する電極ではないが、光制御素子の製造時に、薄板化された基板に加わる熱応力や機械的応力を緩和したり、基板の機械的強度を高める働きをする電極を意味する。
In order to solve the above-mentioned problem, in the invention according to claim 1, in the method of manufacturing a light control element, a plurality of light control elements are formed on a wafer substrate having an electro-optic effect. An optical waveguide formed on the wafer substrate, and a control electrode for modulating a light wave propagating through the optical waveguide, and the optical control on the wafer substrate when the control electrode is formed on the wafer substrate. A protective electrode is formed of the same material as the control electrode in a region other than the region where the element is formed, and a plurality of grooves are formed in the protective electrode.
`` Protective electrode '' in the present invention is not an electrode related to the drive or operation of the light control element, but when manufacturing the light control element, the thermal stress and mechanical stress applied to the thinned substrate are relaxed, It means an electrode that functions to increase the mechanical strength of the substrate.

請求項2に係る発明では、請求項1に記載の光制御素子の製造方法において、該保護電極を形成した後、該ウェハ基板の裏面の研磨工程、ウェハ加熱工程、又は基板切断工程のいずれかを行うことを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing a light control element according to the first aspect, after the formation of the protective electrode, any one of a polishing step of the back surface of the wafer substrate, a wafer heating step, or a substrate cutting step. It is characterized by performing.

請求項3に係る発明では、請求項1に記載の光制御素子の製造方法において、該保護電極の複数の溝は10〜30μm程度の深さであることを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing a light control element according to the first aspect, the plurality of grooves of the protective electrode have a depth of about 10 to 30 μm.

請求項4に係る発明では、請求項1乃至3のいずれかに記載の光制御素子の製造方法において、該光制御素子は、厚みが50μm以下の薄板から形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing a light control element according to any one of the first to third aspects, the light control element is formed from a thin plate having a thickness of 50 μm or less.

請求項1に係る発明により、ウェハ基板に制御用電極を形成する際に、ウェハ基板上の、光制御素子が形成されている領域以外の領域に、制御用電極と同じ材料で保護電極を形成するため、基板の機械的強度を高めると共に、基板に熱応力や機械的応力が加わった際にも、保護電極は制御電極と同じ機械的また熱的特性を有するため、基板が破損するなどの不具合を生じることも無い。しかも、保護電極は、制御用電極と同じ形成方法で形成することが可能であるため、製造工程が複雑化することも無い。さらに、保護電極には複数の溝が形成されているため、基板の研磨時などで基板を接着剤で研磨ダミー基板に接合させる際に、接着剤が該溝に入り込み、基板全体に効率よく接着剤が広がると共に、接合時の接合強度をより高くすることが可能となる。また、基板に熱応力や機械的応力が加わった際には、該溝によりこれらの応力が伝達されるのを阻止することができ、基板の破損を効果的に抑制することができる。   According to the first aspect of the present invention, when the control electrode is formed on the wafer substrate, the protective electrode is formed of the same material as the control electrode in the region other than the region where the light control element is formed on the wafer substrate. In order to increase the mechanical strength of the substrate, the protective electrode has the same mechanical and thermal characteristics as the control electrode even when thermal stress or mechanical stress is applied to the substrate. There is no problem. Moreover, since the protective electrode can be formed by the same formation method as the control electrode, the manufacturing process is not complicated. Furthermore, since a plurality of grooves are formed in the protective electrode, when the substrate is bonded to the polishing dummy substrate with an adhesive, for example, when the substrate is polished, the adhesive enters the groove and efficiently adheres to the entire substrate. As the agent spreads, it becomes possible to further increase the bonding strength at the time of bonding. Further, when thermal stress or mechanical stress is applied to the substrate, it is possible to prevent the stress from being transmitted by the groove, and to effectively prevent the substrate from being damaged.

請求項2に係る発明により、保護電極を形成した後、基板の裏面の研磨工程、ウェハ加熱工程、又は基板切断工程のいずれかを行うため、薄板化した基板が破損し易い研磨工程、ウェハ加熱工程、又は基板切断工程において、効果的に基板を保護することが可能となる。   According to the second aspect of the present invention, after the protective electrode is formed, the polishing process, the wafer heating, and the thinned substrate are easily damaged in order to perform any one of the polishing process on the back surface of the substrate, the wafer heating process, or the substrate cutting process. In the process or the substrate cutting process, the substrate can be effectively protected.

請求項3に係る発明により、保護電極の複数の溝は10〜30μm程度の深さであるため、板の研磨時などで基板を接着剤で研磨ダミー基板に接合させる際に、接着剤が該溝に入り込み、基板全体に効率よく接着剤が広がると共に、接合時の接合強度をより高くすることが可能となる。また、基板に熱応力や機械的応力が加わった際には、該溝によりこれらの応力が伝達されるのを阻止することができ、基板の破損をより効果的に抑制することができる。   According to the invention of claim 3, since the plurality of grooves of the protective electrode have a depth of about 10 to 30 μm, when the substrate is bonded to the polishing dummy substrate with an adhesive during polishing of the plate, the adhesive is It is possible to enter the groove and efficiently spread the adhesive throughout the substrate, and to increase the bonding strength at the time of bonding. In addition, when thermal stress or mechanical stress is applied to the substrate, it is possible to prevent the stress from being transmitted by the groove, and it is possible to more effectively suppress breakage of the substrate.

請求項4に係る発明により、該光制御素子は、厚みが50μm以下の薄板から形成されているため、薄板化された基板に対するウェハ加熱工程や基板切断工程などにおいて生じていた、制御用電極の形成部分とこれらが形成されていない部分とでは、熱応力や機械的強度が異なり、基板が容易に破損するなどの問題をより好適に解決することができる。   According to the invention of claim 4, since the light control element is formed from a thin plate having a thickness of 50 μm or less, the control electrode that has occurred in the wafer heating process or the substrate cutting process on the thinned substrate is provided. The thermal stress and mechanical strength are different between the formed portion and the portion where these are not formed, and problems such as the substrate being easily damaged can be solved more suitably.

従来の光制御素子の概略図を示す。The schematic of the conventional light control element is shown. 従来の光制御素子の基板研磨時の様子を示す図である。It is a figure which shows the mode at the time of board | substrate grinding | polishing of the conventional light control element. 本発明に係る製造方法により製造した光制御素子の基板研磨時の様子を示す図である。It is a figure which shows the mode at the time of board | substrate grinding | polishing of the light control element manufactured with the manufacturing method which concerns on this invention. ウェハ基板に保護電極を形成した状態を示す図である。It is a figure which shows the state which formed the protective electrode in the wafer substrate. 光制御素子に保護電極を形成した状態を示す図である。It is a figure which shows the state which formed the protective electrode in the light control element.

以下、本発明を好適例を用いて詳細に説明する。
本発明は、電気光学効果を有するウェハ基板に複数の光制御素子を形成する、光制御素子の製造方法において、該光制御素子は、該ウェハ基板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有し、該ウェハ基板に制御用電極を形成する際に、該ウェハ基板上の、該光制御素子が形成されている領域以外の領域に、制御用電極と同じ材料で保護電極を形成し、該保護電極には複数の溝が形成されていることを特徴とする。また、好ましくは、該光制御素子は、厚みが50μm以下の薄板から形成されていることを特徴とする。
Hereinafter, the present invention will be described in detail using preferred examples.
The present invention relates to a method of manufacturing a light control element in which a plurality of light control elements are formed on a wafer substrate having an electro-optic effect, the light control element comprising: an optical waveguide formed on the wafer substrate; and the optical waveguide A control electrode for modulating the light wave propagating through the wafer substrate, and when forming the control electrode on the wafer substrate, the region on the wafer substrate other than the region where the light control element is formed A protective electrode is formed of the same material as the control electrode, and a plurality of grooves are formed in the protective electrode. Preferably, the light control element is formed of a thin plate having a thickness of 50 μm or less.

電気光学効果を有する基板としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能である。特に、電気光学効果の高いニオブ酸リチウム(LN)やタンタル酸リチウム(LT)結晶が好適に利用される。   As the substrate having an electro-optic effect, for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used. In particular, lithium niobate (LN) or lithium tantalate (LT) crystals having a high electro-optic effect are preferably used.

光導波路は、基板上にTiなどの不純物を熱拡散して形成される。また、制御用電極を形成するには、TiやAuなどの下地層を蒸着法で形成し、フォトリソグラフィー法により所定の電極パターンを残して下地層をマスクし、電解メッキ法によりAu電極を形成する。その後、フォトレジスト膜や下地層の一部をウェットエッチングにより除去する。   The optical waveguide is formed by thermally diffusing impurities such as Ti on the substrate. In order to form the control electrode, an underlayer such as Ti or Au is formed by a vapor deposition method, a predetermined electrode pattern is left by a photolithography method, the underlayer is masked, and an Au electrode is formed by an electrolytic plating method. To do. Thereafter, the photoresist film and a part of the base layer are removed by wet etching.

本発明に係る製造方法により製造される光制御素子の特徴は、図3に示すように、基板1上に形成された制御用電極3,4以外に、保護電極12を有することである。このような保護電極は、制御用電極と同じ方法で形成され、生産性の観点からは、制御用電極と同時に形成することが好ましい。   As shown in FIG. 3, the light control element manufactured by the manufacturing method according to the present invention has a protective electrode 12 in addition to the control electrodes 3 and 4 formed on the substrate 1. Such a protective electrode is formed by the same method as the control electrode, and is preferably formed simultaneously with the control electrode from the viewpoint of productivity.

保護電極12は、基板1上の制御用電極が形成されていない領域において、制御用電極の信号電極や信号電極と接地電極とのギャップなどを変形又は無くさない範囲において、可能な限り、基板1の表面を覆うように形成されている。また、基板1と制御用電極との間にSiOなどによるバッファ層(不図示)を形成しない場合には、基板1の表面に形成された光導波路と保護電極とが直接接することが無いように、保護電極の形状を決めることが好ましい。 The protective electrode 12 is formed on the substrate 1 in the region where the control electrode is not formed on the substrate 1 as much as possible within a range that does not deform or eliminate the signal electrode of the control electrode or the gap between the signal electrode and the ground electrode. It is formed so as to cover the surface. Further, when a buffer layer (not shown) made of SiO 2 or the like is not formed between the substrate 1 and the control electrode, the optical waveguide formed on the surface of the substrate 1 and the protective electrode are not in direct contact with each other. In addition, it is preferable to determine the shape of the protective electrode.

このような保護電極12を形成することにより、基板1を接着剤10を介して研磨ダミー基板11に接合し、研磨した際でも、制御用電極3,4が破損されることを防ぎ、極めて安定して光制御素子を製造することが可能となる。   By forming such a protective electrode 12, even when the substrate 1 is bonded to the polishing dummy substrate 11 via the adhesive 10 and polished, the control electrodes 3 and 4 are prevented from being damaged and extremely stable. Thus, the light control element can be manufactured.

図4は、ウェハ基板20に複数の光制御素子を形成した状態を示す図である。
各光制御素子は、制御用電極の一部である信号電極3を有しており、図4においては、各素子内の接地電極や保護電極に関しては、図示が省略されている。光制御素子以外のウェハ基板上にも、網掛けの領域に保護電極21が形成されている。好ましくは、図4に示すように保護電極内に複数の溝22,23を10〜30μm程度の深さで形成する。
FIG. 4 is a view showing a state in which a plurality of light control elements are formed on the wafer substrate 20.
Each light control element has a signal electrode 3 that is a part of the control electrode. In FIG. 4, the ground electrode and the protective electrode in each element are not shown. A protective electrode 21 is also formed in a shaded area on the wafer substrate other than the light control element. Preferably, as shown in FIG. 4, a plurality of grooves 22 and 23 are formed in the protective electrode at a depth of about 10 to 30 μm.

図4のように、ウェハ全体に保護電極21が形成されているため、ウェハ基板20を薄板化した際でも、機械的強度を高くすることができ、しかも、ウェハ加熱工程や基板切断工程において、ウェハ基板20に熱応力や機械的応力が加わっても、応力歪みが発生する領域が少なく、基板自体の破損が抑制される。   As shown in FIG. 4, since the protective electrode 21 is formed on the entire wafer, the mechanical strength can be increased even when the wafer substrate 20 is thinned. In addition, in the wafer heating process and the substrate cutting process, Even if thermal stress or mechanical stress is applied to the wafer substrate 20, there are few areas where stress distortion occurs, and the substrate itself is prevented from being damaged.

保護電極に形成された溝22,23により、基板の研磨時などで基板を接着剤で研磨ダミー基板に接合させる際に、接着剤が該溝に入り込み、スピンコートなどでウェハ基板20を回転させても基板全体に効率よく接着剤が広がる。しかも、溝に入り込んだ接着剤により、接合時の接合強度をより高くすることが可能となる。
また、ウェハ加熱工程や基板切断工程のように、ウェハ基板20に熱応力や機械的応力が加わった際には、該溝によりこれらの応力が基板全体に伝達されるのを阻止するため、基板の破損を効果的に抑制することができる。
When the substrate is bonded to the polishing dummy substrate with an adhesive when the substrate is polished by the grooves 22 and 23 formed in the protective electrode, the adhesive enters the groove and rotates the wafer substrate 20 by spin coating or the like. However, the adhesive spreads efficiently over the entire substrate. In addition, the bonding strength at the time of bonding can be further increased by the adhesive that has entered the groove.
Further, when thermal stress or mechanical stress is applied to the wafer substrate 20 as in the wafer heating process or the substrate cutting process, the groove prevents the stress from being transmitted to the entire substrate by the groove. Can be effectively suppressed.

図5は、各光制御素子に保護電極を形成した他の例を示す図である。
基板上の保護電極は、制御用電極の接地電極4と一体的に形成することも可能である。図5に示すように、信号電極3及び信号電極3と接地電極4とのギャップを除き、全ての基板上を領域Cで示したように覆うことも可能であるが、この場合には、光導波路2を伝搬する光波が保護電極により吸収されないように、保護電極と基板との間にバッファ層を形成する必要がある。
他方、領域Dで示したように、光導波路2の部分を除くように保護電極を形成することも可能である。
FIG. 5 is a diagram showing another example in which a protective electrode is formed on each light control element.
The protective electrode on the substrate can be formed integrally with the ground electrode 4 of the control electrode. As shown in FIG. 5, it is possible to cover all the substrates as shown by the region C except for the signal electrode 3 and the gap between the signal electrode 3 and the ground electrode 4. It is necessary to form a buffer layer between the protective electrode and the substrate so that the light wave propagating through the waveguide 2 is not absorbed by the protective electrode.
On the other hand, as indicated by the region D, the protective electrode can be formed so as to exclude the portion of the optical waveguide 2.

本発明は、50μm以下の厚みを有する基板を使用する光制御素子には、特に、好適に使用できるものであるが、これに限らず、50μm以上の厚みの基板に対して、本発明を適用しても、一定の効果を奏することは可能である。
なお、50μm以下の厚みを有する基板(薄板)を用いる場合には、光制御素子としての機械的強度をより一層高めるため、補強板を薄板の裏面に、接着剤又は直接接合法を使用して接合させる。
The present invention can be suitably used particularly for a light control element using a substrate having a thickness of 50 μm or less, but is not limited thereto, and the present invention is applied to a substrate having a thickness of 50 μm or more. Even so, it is possible to achieve a certain effect.
When a substrate (thin plate) having a thickness of 50 μm or less is used, an adhesive or a direct bonding method is used on the back surface of the thin plate to further increase the mechanical strength as the light control element. Join.

本発明に係る光制御素子及びその製造法によれば、薄板化された基板を利用した光制御素子の製造時に、基板の研磨工程やウェハ加熱工程、さらには基板切断工程などにおいて、薄板や薄板上の電極が破損することを防止し、生産性の高い光制御素子の製造方法を提供することが可能となる。   According to the light control element and the method of manufacturing the same according to the present invention, a thin plate or a thin plate can be used in a substrate polishing process, a wafer heating process, or a substrate cutting process when manufacturing a light control element using a thinned substrate. It is possible to prevent the upper electrode from being damaged and provide a method for manufacturing a light control element with high productivity.

1 基板
2 光導波路
3 信号電極
4 接地電極
10 接着剤
11 研磨ダミー基板
12,21 保護電極
20 ウェハ基板
22,23 溝
DESCRIPTION OF SYMBOLS 1 Substrate 2 Optical waveguide 3 Signal electrode 4 Ground electrode 10 Adhesive 11 Polishing dummy substrate 12, 21 Protective electrode 20 Wafer substrate 22, 23 Groove

Claims (4)

電気光学効果を有するウェハ基板に複数の光制御素子を形成する、光制御素子の製造方法において、
該光制御素子は、該ウェハ基板上に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御用電極とを有し、
該ウェハ基板に制御用電極を形成する際に、該ウェハ基板上の、該光制御素子が形成されている領域以外の領域に、制御用電極と同じ材料で保護電極を形成し、該保護電極には複数の溝が形成されていることを特徴とする光制御素子の製造方法。
In a method for manufacturing a light control element, wherein a plurality of light control elements are formed on a wafer substrate having an electro-optic effect.
The light control element has an optical waveguide formed on the wafer substrate, and a control electrode for modulating a light wave propagating through the optical waveguide,
When forming the control electrode on the wafer substrate, a protective electrode is formed of the same material as the control electrode on a region other than the region where the light control element is formed on the wafer substrate. A method of manufacturing a light control element, wherein a plurality of grooves are formed in the.
請求項1に記載の光制御素子の製造方法において、
該保護電極を形成した後、該ウエハ基板の裏面の研磨工程、ウェハ加熱工程、又は基板切断工程のいずれかを行うことを特徴とする光制御素子の製造方法。
In the manufacturing method of the light control element according to claim 1,
A method of manufacturing a light control element, wherein after forming the protective electrode, any one of a polishing step, a wafer heating step, and a substrate cutting step on the back surface of the wafer substrate is performed.
請求項1に記載の光制御素子の製造方法において、
該保護電極の複数の溝は10〜30μm程度の深さであることを特徴とする光制御素子の製造方法。
In the manufacturing method of the light control element according to claim 1,
The method of manufacturing a light control element, wherein the plurality of grooves of the protective electrode have a depth of about 10 to 30 μm.
請求項1乃至3のいずれかに記載の光制御素子の製造方法において、
該光制御素子は、厚みが50μm以下の薄板から形成されていることを特徴とする光制御素子の形成方法。
In the manufacturing method of the light control element according to any one of claims 1 to 3,
The method for forming a light control element, wherein the light control element is formed from a thin plate having a thickness of 50 μm or less.
JP2011234596A 2011-10-26 2011-10-26 Manufacturing method of light control element Expired - Fee Related JP5556787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234596A JP5556787B2 (en) 2011-10-26 2011-10-26 Manufacturing method of light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234596A JP5556787B2 (en) 2011-10-26 2011-10-26 Manufacturing method of light control element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005270605A Division JP2007079465A (en) 2005-09-16 2005-09-16 Optical control element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012027500A true JP2012027500A (en) 2012-02-09
JP5556787B2 JP5556787B2 (en) 2014-07-23

Family

ID=45780394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234596A Expired - Fee Related JP5556787B2 (en) 2011-10-26 2011-10-26 Manufacturing method of light control element

Country Status (1)

Country Link
JP (1) JP5556787B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316311A (en) * 1998-05-01 1999-11-16 Oki Electric Ind Co Ltd Waveguide type optical element and its production
JP2007079465A (en) * 2005-09-16 2007-03-29 Sumitomo Osaka Cement Co Ltd Optical control element and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316311A (en) * 1998-05-01 1999-11-16 Oki Electric Ind Co Ltd Waveguide type optical element and its production
JP2007079465A (en) * 2005-09-16 2007-03-29 Sumitomo Osaka Cement Co Ltd Optical control element and its manufacturing method

Also Published As

Publication number Publication date
JP5556787B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US6819851B2 (en) Optical waveguide device and a travelling-wave optical modulator
JP3753236B2 (en) Method for manufacturing thin film substrate for wavelength conversion element and method for manufacturing wavelength conversion element
EP1542063A1 (en) Optical modulator
TWI607257B (en) Optical parts
JP2012078375A (en) Optical waveguide element
JP4954958B2 (en) Optical waveguide device
JP2007101641A (en) Optical modulator and method of manufacturing same
JP4851122B2 (en) Optical element and manufacturing method thereof
JP4936838B2 (en) Light control device
US6950580B2 (en) Optical waveguide devices and travelling wave type optical modulators
JP5556787B2 (en) Manufacturing method of light control element
JP2007079465A (en) Optical control element and its manufacturing method
JP2004341147A (en) Optical waveguide device and traveling waveform optical modulator
JP3762320B2 (en) Manufacturing method of optical modulator
JP2004219600A (en) Electrode for optical modulation and optical modulator
JP2009086336A (en) Optical waveguide type device
JPH06289347A (en) Optical waveguide element and its manufacture
JP5494400B2 (en) Optical waveguide device
JP3999589B2 (en) Method for manufacturing thin film substrate for wavelength conversion element, thin film substrate for wavelength conversion element, and method for manufacturing wavelength conversion element
JPH11352350A (en) Production of optical waveguide element
JP2003270601A (en) Method of manufacturing optical modulator
JP4875918B2 (en) Optical waveguide device and manufacturing method thereof
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP6107331B2 (en) Optical waveguide device
JP4667933B2 (en) Optical element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees