JP2004170711A - Polarization reversed crystal, method for manufacturing and processing the same - Google Patents

Polarization reversed crystal, method for manufacturing and processing the same Download PDF

Info

Publication number
JP2004170711A
JP2004170711A JP2002337018A JP2002337018A JP2004170711A JP 2004170711 A JP2004170711 A JP 2004170711A JP 2002337018 A JP2002337018 A JP 2002337018A JP 2002337018 A JP2002337018 A JP 2002337018A JP 2004170711 A JP2004170711 A JP 2004170711A
Authority
JP
Japan
Prior art keywords
domain
inverted
crystal
substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337018A
Other languages
Japanese (ja)
Inventor
Masahiro Koto
雅弘 湖東
Koichi Taniguchi
浩一 谷口
Shigeo Maeda
重雄 前田
Kazuhiro Abe
一博 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002337018A priority Critical patent/JP2004170711A/en
Publication of JP2004170711A publication Critical patent/JP2004170711A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization reversed crystal of which the mechanical strength hardly deteriorates even when the period of polarization reversal is small and a method for manufacturing the same. <P>SOLUTION: The polarization reversed crystal is constructed by forming a polarization reversal structure with polarization reversal regions and polarization nonreversal regions alternately appearing on one plate surface of a ferroelectric crystal substrate and is characterized by having recessing parts disposed at the positions corresponding to the polarization reversal regions on the other plate surface of the substrate. Thereby, in the case a polarization reversal voltage is applied for the purpose of manufacturing the polarization reversed crystal, the thickness w1 of the part to which the voltage is applied gets thin and, as a consequence, the polarization reversal region 11 is prevented from expanding in the substrate surface direction. Because the thickness w0 of the substrate in parts other than the recessing parts 10, on the other hand, remains thick, a deterioration in the mechanical strength of the obtained polarization reversed crystal 1 as a whole is not so significant as that of the conventional one and fracture caused by handling or heat treatment hardly occurs. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、強誘電体結晶基板を用いた分極反転結晶とその製造方法ならびに当該分極反転結晶の加工方法に関する。
【0002】
【従来の技術】
分極反転結晶は、分極反転構造が形成された強誘電体結晶(以下、単に「結晶」とも呼ぶ)であって、該分極反転構造は、結晶の所定の部分の自発分極の方向を反転させ、1つの結晶内に、異なる分極方向の領域を、通常、特定周期で交互に並べたものである。分極反転構造を用いることによって、擬似位相整合(quasi−phase matching)が可能となり、従来の他の位相整合法と比べて、第2高調波発生や光パラメトリック発振などをより効率良く達成できるようになる。
【0003】
分極反転構造の代表的な形成方法としては、基板の上面、下面に、電極を互いに真裏の位置で対向するように配置し、反転用電圧(電界)を印加して、分極方向を反転させる方法が挙げられる(特許文献1)。反転用電圧を好ましく印加するために、液体電極を用いた外部電圧印加法など、種々の方法が提案されている。図7は、前述の方法によって得られる代表的な分極反転構造を有する分極反転結晶を示す図である。この分極反転結晶は、結晶のZ板を用いたものである。Z板とは、結晶のZ軸の方向が基板面に垂直となるようにカット(所謂、Zカット)された結晶基板である。この図の態様では、Z板に分極反転加工が施され、該Z板の上面(図の例では+Z面)には、意図された領域面に−Zの分極が現れ、分極反転された結晶中の領域は結晶基板の裏面にまで達している。図面中、ハッチングを施した部分が分極反転領域11であって、結晶内に描かれた太い矢印は、−Zから+Zに向かっている。
【0004】
【特許文献1】
米国特許第5800767号明細書
【0005】
上述の図7に示すように、従来は、均一な基板厚さを有する結晶基板の上下両表面に電極を配置して、両電極間に電界を印加することにより分極反転領域を形成していた。しかし、この方法では、分極反転領域が結晶基板面方向に広がってしまい易く、小さな反転周期の分極反転結晶を精度よく製造することが困難であった。そのため、反転周期を小さくする必要がある場合には、結晶基板全体の基板厚さを薄くすることによって、分極反転領域の結晶面方向への広がりを防いでいた。
【0006】
【発明が解決しようとする課題】
しかしながら、結晶基板全体について一様に基板厚さを薄くしてしまうと、該基板の機械的強度が低下して、製造工程中のハンドリングが困難になり、基板の破損の原因にもなっていた。さらに、一様に基板厚さを薄くすると、分極反転結晶を製造した後に、例えば熱処理を施して光導波路を製造するなどといった更なる加工を施す場合などに該結晶を破損する原因にもなっていた。本発明は、反転周期が小さくても機械的強度が低下し難い分極反転結晶およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、結晶基板全体を薄くするのではなく、結晶基板の一部に凹部を設けることに着想して本願発明を完成した。すなわち、本発明の特徴は以下のとおりである。
(1)強誘電体結晶基板の一方の板面に、分極反転領域と非分極反転領域とが交互に現れる分極反転構造が形成されてなる分極反転結晶であって、
前記基板の他方の板面には、前記分極反転領域に対応する位置に凹部が設けられていることを特徴とする分極反転結晶。
(2)上記強誘電体結晶基板が、結晶のX軸の方向が基板面と平行になるようにカットされた基板である、上記(1)に記載の分極反転結晶。
(3)上記分極反転構造を通過するように光導波路が形成されている、上記(1)または(2)に記載の分極反転結晶。
(4)さらに、上記凹部内の空間に伝熱コンパウンドが充填されたものである、上記(1)または(2)に記載の分極反転結晶。
(5)さらに、当該分極反転結晶には電界印加手段が設けられていて、前記電界印加手段は、上記強誘電体結晶基板の厚み方向に分極反転領域を挟むように、上記凹部内と凹部外とに配置された電極を備えるものである、上記(1)または(2)に記載の分極反転結晶。
(6)加工具を用いて、上記(1)〜(3)のいずれかに記載の分極反転結晶にさらに加工を施すに際し、前記加工具を当該分極反転結晶に位置決めするためのアライメント用ガイドが上記凹部に嵌め込まれていることを特徴とする、分極反転結晶の加工方法。
(7)強誘電体結晶基板の一方の板面に分極反転領域と非分極反転領域とが交互に現われるように分極反転構造を形成して分極反転結晶とするに際し、
前記基板の他方の板面のうち、前記分極反転領域とすべき領域に対応する位置に凹部を設け、
前記分極反転領域とすべき領域と、凹部内とに、それぞれ電極を配置し、両電極間に、分極反転電圧を印加することを特徴とする、分極反転結晶の製造方法。
(8)上記強誘電体結晶基板が、結晶のX軸の方向が基板面と平行になるようにカットされた基板である、上記(7)に記載の製造方法。
【0008】
本明細書では、明確な説明のために、結晶基板の表裏の基板面をそれぞれ「上面」、「下面」と呼び、それぞれの面に配置する電極を「上部電極」、「下部電極」と呼んでいる。これら上下を用いた呼び方は、表裏の基板面と、それぞれの面に配置される電極とを簡便かつ明確に関係付けて説明するためだけのものであって、例えば、「上面」・「下面」は、「一方の面」・「他方の面」と同じ意味である。
【0009】
【発明の実施の形態】
図1は、本発明の分極反転結晶の模式図である。同図(B)は同図(A)のB−B切断面であり、同図(C)は同図(A)を矢印Cの方向からみた図である。分極反転結晶は、強誘電体結晶基板の一方の板面(上面)に、電界(分極反転電圧)の印加により、分極反転領域11とそれ以外の部分とが交互に、好ましくは一定周期のストライプ状に現れる構造(分極反転構造)を形成したものである。本明細書では強誘電体結晶基板のうち、分極反転領域11以外の部分12を「非分極反転領域」と記載する。図1に記載のように、分極反転領域11は前記一方の板面(上面)のみならず基板中にまで達していてもよい。本発明の分極反転結晶1の他方の面(下面)には、上述した分極反転領域11に対応する位置に凹部10が設けられている。図示した態様では、図1(B)および図1(C)に凹部10が表現されている。
【0010】
「分極反転領域11に対応する位置」とは、分極反転領域11を下面に投影したときに現れる領域に対して、該凹部の開口を一致させることが好ましい態様であるが、本発明の目的が達成される範囲において、開口の大小や中心位置が、分極反転領域からずれていてもよい。例えば、図1に記載の態様では分極反転領域11を下面へ投影したときに現れる領域よりも凹部10の開口の方が大きくなっている。
【0011】
後述するように、分極反転電圧を印加する際、強誘電体結晶基板に凹部10が存在することに起因して、電圧を印加する部分の厚みw1が薄くなるので、分極反転領域11が基板面方向に広がってしまうのを防ぐことができる。一方、凹部10以外の部分の基板の厚みw0は厚いままであるので、得られる分極反転結晶1全体としての機械的強度の低下は従来ほどではなく、ハンドリングで割れたり、熱処理で割れたりし難くなる。
【0012】
上記のような効果を得るために、分極反転領域11が形成された部分の基板厚みw1が凹部10以外の部分の基板厚みw0よりも薄くなるように形成される(すなわち、w0−w1>0)必要があり、好ましくはw0−w1は0.1〜0.8mmであり、より好ましくはw0−w1は0.2〜0.4mmである。
【0013】
w1とw0との関係は厚みの比(w1/w0)で表現することもできる。上述した効果を得るためには、w1/w0は0より大きく1未満である必要があり、好ましくはw1/w0は1/10〜2/3であり、より好ましくはw1/w0は1/5〜1/3である。
【0014】
また、上述した範囲内においてw1、w0それぞれの好ましい範囲は次のとおりである。すなわち、w1は0.1〜0.2mmが好ましく、w0は、好ましくは0.3mm以上、より好ましくは0.3〜1.0mmである。
【0015】
図1には凹部10が矩形状である分極反転結晶が記載されている。しかし、凹部10の形状は特に限定はなく、例えば、円柱状、楕円柱状、多角柱状等、あるいは図3に示すような断面がV字状の凹部等であってもよい。図3に示す態様では、分極反転領域11が形成された部分の基板厚みは均一ではなく、この場合は、上述の好ましい厚さの説明におけるw1を、分極反転領域11が形成された部分の基板厚みの最大値(w12)と最小値(w11)との平均値((w11+w12)/2)であるとみなす。
【0016】
また、凹部10は、(i)単発的な態様であっても、(ii)一括的な態様であってもよい。
図1に示すような単発的な態様(i)では、凹部10は、上部電極(分極反転周期に従って配置されている)に対して、1(上部電極)対1(凹部)、または1(上部電極)対複数(凹部)にて対応させて設けられる。この場合、凹部10は、上部電極の配置パターンと同様のパターンにて、下面に配列することが好ましい。
また、上記(ii)の一括的な態様では、凹部は、前記(i)で配列された単発的な凹部10を隣同士互いに連通させた如く、溝状として設けられる。凹部10同士の連通は、数個だけの連通(残りは単発のまま)、数個毎の連通、不規則な連通、全部の連通であってもよい。凹部10を溝状とする場合、互いに平行に伸びる複数本の溝であってもよい。また、上記(i)、(ii)の組合せとして、一括的な溝の内部底面にさらに単発的な凹部10を設ける態様であってもよい。
【0017】
凹部10を上記(i)の単発的な態様とすることによって、上下電極間の主電界は個別に発生し、該電界の方向性はより明確になるという利点や、基板全体の機械的強度を損なわないという利点があるが、凹部10の加工には手間がかかる。これに対して、上記(ii)の一括的な態様、特に、凹部10全てを連通し溝状とする態様では、研磨工具を端面から端面まで通す溝加工などが可能になり、凹部10の加工が格段に容易になる。また、上記(i)の態様で、凹部10が互いに接近して密に配列されている場合などでは、それらを連通して溝としても、主電界の方向性に大きな劣化はなく、加工の容易性だけが顕著となる場合が多い。凹部10の態様は、これら個々の特長を考慮して選択すればよい。
【0018】
図2は、本発明の分極反転結晶の製造方法において、強誘電体結晶基板の一方の板面(図の態様では上面)に、分極反転構造を形成する工程を模式的に示す図である。本発明の製造方法は、前記基板の他方の板面(下面)のうち、分極反転領域11とすべき領域に対応する位置に凹部10を設けた上で、分極反転領域11とすべき領域と、凹部10内とに、それぞれ電極21、22を配置し、両電極間に、分極反転電圧を印加することを特徴とする。「分極反転領域11とすべき領域に対応する位置」とは、上述したとおりである。このように、凹部10内に一つの電極22を配置することで両電極間の距離(w1)を薄くすることができるので、分極反転構造が短周期であっても精度よく製造することができる。電極21、22を強誘電体結晶基板に配置するに際しては、公知技術を参照し、電極を直接的にまたは導電性の膜(金属薄膜等)などを介して前記結晶基板に接触させればよい。
【0019】
凹部10内に配置する下部電極22は、従来公知の電極を用いて、該凹部10内の任意の部位(凹部底面など)に配置すればよいが、液体電極を用いて該凹部10内全体に充填する態様が好ましい。液体電極を用いた態様は、凹部10内への配置(充填)、凹部10内からの除去が容易であり、凹部10の形状によく追従する点で好ましい。ここで、液体電極としては、公知の液体電極法で用いられている電解液を用いてよいが、高温下での電界印加を行うのであれば、その温度に応じて、沸騰せず、利用可能なものを選択すればよい。例えば、電解液を構成する溶媒としては、水、ポリオール、またはこれらの混合物などが挙げられる。また、電解質材料としては、塩化リチウム、塩化ナトリウム、塩化カリウムなどが挙げられる。またガリウム、インジウム、水銀などの液体金属などを使うことも可能である。
【0020】
本発明に用いられる強誘電体結晶は、公知のものであってよく、例えば、LiNbO、LiTaO、XTiOX(X=K、Rb、Tl、Cs、X=P、As)などの代表的なものや、これらにMgなどの種々の元素をドープしたものが挙げられる。LiNbOやLiTaOは、コングルーエント組成であってもストイキオメトリック組成であってもよい。これらの結晶のなかでも特にMgOドープLiNbOは、耐光損傷性に優れている。
【0021】
上記強誘電体結晶から基板をカットする際には、通常、結晶軸の方向と基板面の方向とをどのように合わせるかに関心が払われる。本発明の分極反転結晶ではどのような方向でカットした基板を用いても特に問題はなく、Zカット板(結晶のZ軸の方向が基板面に垂直となるようにカットされた結晶基板)であっても、Xカット板(X軸が基板面に垂直となるようにカットされた結晶基板)であってもよい。さらに、例えば、X軸が基板面の法線と特定の角度(オフ角度)θをなすようなカット(X軸についてのオフカット(off−cut))によって形成された結晶基板であってもよい。通常は、上記強誘電体結晶基板としては、結晶のX軸の方向が基板面と平行になるようにカットされた基板(すなわち、Xカット板でもなく、X軸についてオフカットされた基板でもない基板)を用い、特に、Zカット板が好ましく用いられる。
【0022】
図3は、本発明の分極反転結晶に光導波路が形成される態様を示す図である。光導波路は、分極反転領域11と非分極反転領域12とが交互に現れる分極反転構造を通過するように形成される。本発明によれば分極反転領域11に対応する部分の基板厚み(図中、w11、w12)を薄くすることができるので、当該厚みを光導波路として適した厚み(好ましくは2〜100μm、より好ましくは2〜10μm)とすることが可能となる。図3において、分極反転領域11においてハッチングを施していない円の部分は、導波路伝播光を模式的に示すものである。本発明のように、分極反転領域11に対応する部分の基板厚みを薄くすることで、分極反転領域11に対応する基板は、上下両方向が空気層で閉じこめられ、閉じこめの強い光導波路を形成することができるという利点がある。分極反転構造を形成した後、さらに光導波路を形成するためにイオン交換等によって屈折率を変化させる手段については従来技術を適宜参照してよい。本態様の如く、本発明の分極反転結晶に光導波路を形成する場合には、円形の断面を有する導波領域が得易くなるという理由により、図3に示したように、基板の幅方向の断面において、基板中央部の基板厚みが厚くなるようなV字型の凹部を形成することが好ましい。このようなV字型の凹部を形成することにより、光導波路の両側面側が空気層の影響により閉じ込めがよくなり、断面が円形に近い(点対称に近い)光導波路を形成し易くなる。この場合、凹部に対応する基板の厚みの最大値w12と最小値w11との差(w12−w11)は、2〜20μmが好ましく、4〜8μmがより好ましい。また、前記w12とw11との比(w12/w11)は、好ましくは2〜10、より好ましくは3〜5である。
【0023】
図4は、本発明の分極反転結晶の一態様を示すものであり、凹部内の空間に伝熱コンパウンド3が充填されている。伝熱コンパウンドは半導体素子製造の分野で通常用いられているものを特に限定なく使用することができるが、熱伝導率が高いもの(好ましくは0.001cal/℃以上)が好ましく、具体例としては、シリコ−ン樹脂や、金属(例;アルミニウム、銅等)粉末含有シリコーン樹脂等を挙げることができる。本発明の分極反転結晶は特に凹部において熱容量が小さくなるので、伝熱コンパウンド3を充填することで、該結晶の温度制御が容易になる。図4の態様では冷源としてのペルチェ素子4上に伝熱コンパウンド3を充填した分極反転結晶が戴置されているが、ペルチェ素子4は必須ではなく、他の冷源(例えば、水冷式放熱板等)であってもよく、また、特に冷源を設けなくてもよい。また、ペルチェ素子4の代わりにヒーターを設けることで、冷却ではなく加熱をすることもできる。
【0024】
図5も、本発明の分極反転結晶の一態様を示すものであり、当該分極反転結晶には、さらに符号51〜53で示される電界印加手段が設けられていている。該電界印加手段は、上記強誘電体結晶基板の厚み方向に分極反転領域11を挟むように、凹部内と凹部外とに配置された電極52、53を備えるものである。図5は、該電極52、53に電力を供給する電源51も示している。前記電極52、53の材質等は特に限定はなく、本発明の分極反転結晶を製造する際に用いた上部電極、下部電極をそのまま用いてもよい。このような構成とすることで、分極反転領域11に電界をさらに印加することができ、波長変換効率の変調が可能となる。特に、本発明の分極反転結晶を用いる場合は、上記電極間の距離は、従来の分極反転結晶を用いる場合よりも小さくなるので、より集中的に電界を印加することができるので、高精度な波長変換効率の変調が可能となる。
【0025】
図6は、本発明の分極反転結晶にさらに加工を施す方法の一態様を示す。当該加工方法は、上述した凹部に、加工のための加工具(図示せず)のアライメント用ガイド6が嵌め込まれていることを特徴とする。アライメント用ガイドは、分極反転結晶に対する加工具の位置決め手段であり、位置決めの態様としては、矩形状、V字型の溝、円柱状等の凹部に、アライメント用ガイド(例えばSiベース基板上にエッチングにより作製した凸部等)を嵌め込んで、前記Si基板上に設置された光学部品(例えばレンズ、ミラー、光ファイバ、レーザーダイオードなど)との最適な光結合位置をセルフアライメントする態様等が挙げられる。図6記載の分極反転結晶の下面には、上述の(ii)として記載した一括型の凹部が溝状に形成されている。該溝状の凹部に嵌め込むことができる形状の部材をアライメント用ガイド6として嵌め込むことで、この分極反転結晶を加工する(例えば、モジュール化する)際に、前記アライメント用ガイド6を位置決め手段として用いることができるので、例えば集光レンズなどといった加工具の位置を再現性よく精度よくセットすることができる。ここで、凹部は必ずしも溝状である必要はなく、例えば、矩形状であってもよい。アライメント用ガイドを用いる加工としては、従来公知の様々な加工から適宜選択することができ、ダイシング加工、エッチング加工等が例示される。
【0026】
【実施例】
以下、実施例を示すことにより本発明をより具体的に説明するが、本発明は実施例の記載により何ら限定されるものではない。
【0027】
[実施例1]
ニオブ酸リチウム結晶(長さ20mm、幅10mm、厚さ0.5mm)の+Z面の表面に、1mm×15mmの電極領域で周期状(隣接する電極同士の間隔;4μm)の電極を形成した。その後、−Z面のうち該電極領域の下面に相当する部分のみをダイシングソーによって切削加工して、その部分の基板厚みを0.2mmとする矩形の凹部を形成した。該凹部にLiCl電解液を導入して上記の電極との間で10kVの電圧(電界)を印加して分極反転を行った。これにより、図1に示すような分極反転結晶を得ることができた(w0=0.5mm、w1=0.2mm)。この分極反転結晶に対してフッ硝酸を用いた選択エッチングを行って反転形状を観察したところ、基板割れを起こすことなくほぼ設計どおりの分極反転構造が得られていたことを確認した。
【0028】
[実施例2]
分極反転領域の基板厚み(w1)を25μmとしたこと以外は、実施例1と同様にして分極反転結晶を製造した。実施例1と同様の方法により、ほぼ設計どおりの分極反転構造が得られていたことを確認した。
【0029】
[実施例3]
分極反転領域の基板厚み(w1)を0.1mmとしたこと以外は、実施例1と同様にして分極反転結晶を製造した。実施例1と同様の方法により、ほぼ設計どおりの分極反転構造が得られていたことを確認した。さらに、凹部内の空間に伝熱コンパウンドとして、シリコーン樹脂に金属アルミニウム粉末を添加したものを充填した。該伝熱コンパウンドの内部に熱電対を設置して、分極反転結晶の結晶温度の制御をしたところ、一様に0.5mm厚みの分極反転結晶を用いたときに比べて温度制御性がよく、温度制御の応答性、安定性が向上した(例として、外気温が5℃急変したとき、伝熱コンパウンドがない場合には制御すべき温度に回復して安定するのに1分要していたのが、伝熱コンパウンドがある場合には、10秒を要するのみであった)。
【0030】
[実施例4]
分極反転領域の基板厚み(w1)を0.15mmとしたこと以外は、実施例1と同様にして分極反転結晶を製造した。実施例1と同様の方法により、ほぼ設計どおりの分極反転構造が得られていたことを確認した。さらに、凹部内に金属電極をスパッタリングによって成膜して、基板上面に設けた電極との間に外部から電界を印加したところ、SHG強度を変調することができた。
【0031】
[実施例5]
基板の下面に形成した各凹部を互いに連通して溝状としたこと以外は、実施例1と同様にして分極反転結晶を製造した。実施例1と同様の方法により、ほぼ設計どおりの分極反転構造が得られていたことを確認した。さらに、上記溝状の凹部にアライメント用ガイドとしてのSi製の凹凸ベースプレートを嵌め込んで、図6のような状態にした。その後、ファイバ調芯・接着、パッケージング作業を行って、モジュールを組立てた。このとき、上記Si製のアライメント用ガイドに合わせて、入力光ファイバと集光レンズを設置することで簡単に高効率な光結合ができた。このとき、アライメント用ガイドなしでモジュールを組み立てた場合よりも組み立て時間が大幅に短縮され、また、再現性よく組み立てができるようになった。すなわち、アライメント用ガイドなしでアライメントを行った場合は30分要していたが、アライメント用ガイドを用いた場合には5分で完了した。上記のようにして、モジュールを10ロット組立てたとき、モジュールの光挿入損失も1dB以下で再現性が得られた。
【0032】
【発明の効果】
本発明の分極反転結晶は、反転周期が小さくても分極反転領域を精度よく形成することができ、かつ、機械的強度にも優れるので、ハンドリング中や更なる加工中の破損を防ぐことができる。
【図面の簡単な説明】
【図1】本発明の分極反転結晶を示す図である。同図(A)は上面からみた図であり、同図(B)は同図(A)におけるB−B切断面を示した図であり、同図(C)は同図(A)のC方向からみた図である。
【図2】本発明の分極反転結晶の製造方法において、分極反転領域を形成する工程を模式的に示す図である。
【図3】本発明の分極反転結晶の一実施態様を示す図である。
【図4】本発明の分極反転結晶の一実施態様を示す図である。
【図5】本発明の分極反転結晶の一実施態様を示す図である。
【図6】本発明の分極反転結晶にさらに加工を施す方法を模式的に示す図である。
【図7】従来の分極反転結晶の一例を示す図である。
【符号の説明】
1 分極反転結晶
10 凹部
11 分極反転領域
12 非分極反転領域
21 上部電極
22 下部電極
3 伝熱コンパウンド
4 ペルチェ素子
51 電源
52 電極
53 電極
6 アライメント用ガイド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a domain-inverted crystal using a ferroelectric crystal substrate, a method for manufacturing the same, and a method for processing the domain-inverted crystal.
[0002]
[Prior art]
The domain-inverted crystal is a ferroelectric crystal in which a domain-inverted structure is formed (hereinafter, also simply referred to as “crystal”), and the domain-inverted structure reverses the direction of spontaneous polarization of a predetermined portion of the crystal. Usually, regions in different polarization directions are alternately arranged at a specific period in one crystal. By using the domain-inverted structure, quasi-phase matching becomes possible, and the second harmonic generation and optical parametric oscillation can be more efficiently achieved as compared with other conventional phase matching methods. Become.
[0003]
As a typical method of forming a domain-inverted structure, a method of arranging electrodes on the upper and lower surfaces of a substrate so as to face each other at a position directly opposite to each other, and applying a reversal voltage (electric field) to reverse the polarization direction. (Patent Document 1). In order to preferably apply the inversion voltage, various methods have been proposed, such as an external voltage application method using a liquid electrode. FIG. 7 is a diagram showing a domain-inverted crystal having a typical domain-inverted structure obtained by the above-described method. This domain-inverted crystal uses a crystal Z plate. The Z plate is a crystal substrate cut (so-called Z cut) such that the direction of the Z axis of the crystal is perpendicular to the substrate surface. In the embodiment of this figure, the Z plate is subjected to polarization reversal processing, and on the upper surface (+ Z plane in the example of the figure) of the Z plate, -Z polarization appears on the intended region surface, and the domain-reversed crystal is obtained. The middle region reaches the back surface of the crystal substrate. In the drawing, the hatched portion is the domain-inverted region 11, and the thick arrow drawn in the crystal goes from -Z to + Z.
[0004]
[Patent Document 1]
US Pat. No. 5,800,767.
Conventionally, as shown in FIG. 7 described above, electrodes are arranged on both upper and lower surfaces of a crystal substrate having a uniform substrate thickness, and a domain-inverted region is formed by applying an electric field between the two electrodes. . However, in this method, the domain-inverted region is likely to spread in the direction of the crystal substrate surface, and it has been difficult to accurately manufacture a domain-inverted crystal having a small inversion period. Therefore, when it is necessary to reduce the inversion cycle, the thickness of the entire crystal substrate is reduced to prevent the domain-inverted region from spreading in the crystal plane direction.
[0006]
[Problems to be solved by the invention]
However, if the thickness of the substrate is reduced uniformly over the entire crystal substrate, the mechanical strength of the substrate is reduced, handling during the manufacturing process becomes difficult, and the substrate is damaged. . Further, if the thickness of the substrate is uniformly reduced, the crystal may be damaged when the domain-inverted crystal is manufactured and then further processed such as, for example, performing a heat treatment to manufacture an optical waveguide. Was. An object of the present invention is to provide a domain-inverted crystal in which the mechanical strength is hardly reduced even when the inversion cycle is small, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The present inventors have completed the present invention based on the idea of providing a concave portion in a part of the crystal substrate instead of making the entire crystal substrate thinner. That is, the features of the present invention are as follows.
(1) A domain-inverted crystal having a domain-inverted structure in which domain-inverted regions and non-domain-inverted regions alternately appear on one surface of a ferroelectric crystal substrate,
A domain-inverted crystal, wherein a concave portion is provided at a position corresponding to the domain-inverted region on the other plate surface of the substrate.
(2) The domain-inverted crystal according to (1), wherein the ferroelectric crystal substrate is a substrate cut so that the X-axis direction of the crystal is parallel to the substrate surface.
(3) The domain-inverted crystal according to (1) or (2), wherein an optical waveguide is formed so as to pass through the domain-inverted structure.
(4) The domain-inverted crystal according to (1) or (2), wherein the space inside the concave portion is filled with a heat transfer compound.
(5) Further, the domain-inverted crystal is provided with an electric field applying means, and the electric field applying means is provided inside and outside the concave portion so as to sandwich the domain-inverted region in the thickness direction of the ferroelectric crystal substrate. The domain-inverted crystal according to the above (1) or (2), comprising an electrode arranged at
(6) When further processing the domain-inverted crystal according to any of (1) to (3) using a processing tool, an alignment guide for positioning the processing tool on the domain-inverted crystal is provided. A method for processing a domain-inverted crystal, wherein the method is fitted into the recess.
(7) When forming a domain-inverted structure such that domain-inverted regions and non-domain-inverted regions alternately appear on one plate surface of a ferroelectric crystal substrate to obtain a domain-inverted crystal,
Of the other plate surface of the substrate, a concave portion is provided at a position corresponding to a region to be the domain-inverted region,
A method for manufacturing a domain-inverted crystal, comprising: arranging electrodes in a region to be the domain-inverted region and in a recess, and applying a domain-inverted voltage between the two electrodes.
(8) The manufacturing method according to (7), wherein the ferroelectric crystal substrate is a substrate cut so that the X-axis direction of the crystal is parallel to the substrate surface.
[0008]
In the present specification, for clear explanation, the front and back substrate surfaces of the crystal substrate are referred to as “upper surface” and “lower surface”, respectively, and the electrodes arranged on each surface are referred to as “upper electrode” and “lower electrode”. In. These names using the upper and lower sides are merely for simply and clearly associating the front and back substrate surfaces with the electrodes arranged on each surface, and are described, for example, as “upper surface” and “lower surface”. "Has the same meaning as" one surface "and" the other surface. "
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic view of a domain-inverted crystal of the present invention. FIG. 1B is a sectional view taken along line BB of FIG. 1A, and FIG. 1C is a diagram of FIG. 1A viewed from the direction of arrow C. The domain-inverted crystal is obtained by applying an electric field (domain-inverted voltage) to one plate surface (upper surface) of the ferroelectric crystal substrate so that the domain-inverted regions 11 and other portions are alternately formed, preferably, in a stripe having a constant period. The structure (polarization inversion structure) that appears in the shape is formed. In this specification, a portion 12 other than the domain-inverted region 11 in the ferroelectric crystal substrate is referred to as a “non-domain-inverted region”. As shown in FIG. 1, the domain-inverted region 11 may reach not only the one plate surface (upper surface) but also the substrate. On the other surface (lower surface) of the domain-inverted crystal 1 of the present invention, a concave portion 10 is provided at a position corresponding to the domain-inverted region 11 described above. In the illustrated embodiment, the recess 10 is illustrated in FIGS. 1B and 1C.
[0010]
The “position corresponding to the domain-inverted region 11” is a preferred mode in which the opening of the concave portion is made to coincide with a region appearing when the domain-inverted region 11 is projected on the lower surface. Within the range achieved, the size and center position of the opening may be shifted from the domain-inverted region. For example, in the embodiment shown in FIG. 1, the opening of the recess 10 is larger than the region that appears when the domain-inverted region 11 is projected onto the lower surface.
[0011]
As will be described later, when the polarization inversion voltage is applied, the thickness w1 of the portion to which the voltage is applied is reduced due to the presence of the concave portion 10 in the ferroelectric crystal substrate. Spreading in the direction can be prevented. On the other hand, since the thickness w0 of the substrate other than the concave portion 10 remains large, the mechanical strength of the obtained domain-inverted crystal 1 as a whole is not reduced as much as in the past, and it is hard to be broken by handling or heat treatment. Become.
[0012]
In order to obtain the above-described effects, the substrate thickness w1 of the portion where the domain-inverted regions 11 are formed is formed to be smaller than the substrate thickness w0 of the portion other than the concave portion 10 (that is, w0−w1> 0). ) Is necessary, preferably w0-w1 is 0.1-0.8 mm, more preferably w0-w1 is 0.2-0.4 mm.
[0013]
The relationship between w1 and w0 can also be expressed by a thickness ratio (w1 / w0). In order to obtain the above-described effects, w1 / w0 needs to be greater than 0 and less than 1, preferably w1 / w0 is 1/10 to 2/3, and more preferably w1 / w0 is 1/5. ~ 1/3.
[0014]
Further, within the above-described range, preferred ranges of w1 and w0 are as follows. That is, w1 is preferably 0.1 to 0.2 mm, w0 is preferably 0.3 mm or more, and more preferably 0.3 to 1.0 mm.
[0015]
FIG. 1 shows a domain-inverted crystal in which the concave portion 10 has a rectangular shape. However, the shape of the concave portion 10 is not particularly limited, and may be, for example, a columnar shape, an elliptical columnar shape, a polygonal columnar shape, or a concave portion having a V-shaped cross section as shown in FIG. In the embodiment shown in FIG. 3, the substrate thickness at the portion where the domain-inverted region 11 is formed is not uniform. In this case, w1 in the above description of the preferred thickness is replaced by w1 in the portion where the domain-inverted region 11 is formed. It is regarded as the average value ((w11 + w12) / 2) of the maximum value (w12) and the minimum value (w11) of the thickness.
[0016]
Further, the recess 10 may be (i) a single mode or (ii) a collective mode.
In the one-shot mode (i) as shown in FIG. 1, the recess 10 has a ratio of 1 (upper electrode) to 1 (recess) or 1 (upper) with respect to the upper electrode (arranged according to the polarization inversion period). Electrodes) are provided corresponding to a plurality of (concave portions). In this case, the concave portions 10 are preferably arranged on the lower surface in a pattern similar to the arrangement pattern of the upper electrodes.
Further, in the collective aspect (ii), the recesses are provided in a groove shape such that adjacent ones of the recesses 10 arranged in (i) communicate with each other. The communication between the concave portions 10 may be only a few communication (the rest remains single shot), a communication every few, an irregular communication, or all communication. When the concave portion 10 is formed in a groove shape, a plurality of grooves extending in parallel with each other may be used. Further, as a combination of the above (i) and (ii), a mode in which a single concave portion 10 is further provided on the inner bottom surface of the collective groove may be adopted.
[0017]
By forming the recess 10 in the one-shot mode of (i), the main electric field between the upper and lower electrodes is generated individually, and the directionality of the electric field becomes clearer, and the mechanical strength of the entire substrate is reduced. Although there is an advantage that it is not damaged, processing of the concave portion 10 is troublesome. On the other hand, in the collective mode (ii) described above, in particular, in the mode in which all of the recesses 10 are communicated and formed in a groove shape, it is possible to form a groove through which the polishing tool is passed from one end face to the other end face. Is much easier. Further, in the above-mentioned embodiment (i), when the recesses 10 are closely arranged close to each other, even if they are connected to form a groove, the directionality of the main electric field does not greatly deteriorate, and processing is easy. Often only gender is significant. The mode of the recess 10 may be selected in consideration of these individual features.
[0018]
FIG. 2 is a diagram schematically showing a step of forming a domain-inverted structure on one plate surface (upper surface in the illustrated embodiment) of a ferroelectric crystal substrate in the method of manufacturing a domain-inverted crystal of the present invention. In the manufacturing method of the present invention, a concave portion 10 is provided at a position corresponding to a region to be a domain-inverted region 11 on the other plate surface (lower surface) of the substrate, and a region to be a domain-inverted region 11 is formed. The electrodes 21 and 22 are arranged in the recess 10 and a polarization inversion voltage is applied between the electrodes. The "position corresponding to the region to be the domain-inverted region 11" is as described above. As described above, by disposing one electrode 22 in the concave portion 10, the distance (w1) between the two electrodes can be reduced, so that even if the domain-inverted structure has a short period, it can be manufactured accurately. . When disposing the electrodes 21 and 22 on the ferroelectric crystal substrate, the electrodes may be brought into contact with the crystal substrate directly or via a conductive film (such as a metal thin film) with reference to a known technique. .
[0019]
The lower electrode 22 disposed in the concave portion 10 may be disposed at an arbitrary portion (the bottom surface of the concave portion, etc.) in the concave portion 10 by using a conventionally known electrode. The filling mode is preferred. The mode using the liquid electrode is preferable in that the arrangement (filling) into the concave portion 10 and the removal from the concave portion 10 are easy, and the shape follows the shape of the concave portion 10 well. Here, as the liquid electrode, an electrolytic solution used in a known liquid electrode method may be used, but if an electric field is applied at a high temperature, it does not boil depending on the temperature and can be used. What is necessary is just to choose. For example, examples of the solvent constituting the electrolyte include water, polyol, and a mixture thereof. Examples of the electrolyte material include lithium chloride, sodium chloride, and potassium chloride. It is also possible to use liquid metals such as gallium, indium, and mercury.
[0020]
Ferroelectric crystal is used in the present invention may be a known, for example, LiNbO 3, LiTaO 3, X A TiOX B O 4 (X A = K, Rb, Tl, Cs, X B = P, Typical examples include As) and those obtained by doping these with various elements such as Mg. LiNbO 3 or LiTaO 3 may have a congruent composition or a stoichiometric composition. Among these crystals, MgO-doped LiNbO 3 is particularly excellent in light damage resistance.
[0021]
When cutting the substrate from the ferroelectric crystal, attention is usually paid to how to match the direction of the crystal axis with the direction of the substrate surface. In the domain-inverted crystal of the present invention, there is no particular problem even if a substrate cut in any direction is used, and a Z-cut plate (a crystal substrate cut so that the direction of the Z axis of the crystal is perpendicular to the substrate surface) is used. Alternatively, an X-cut plate (a crystal substrate cut so that the X-axis is perpendicular to the substrate surface) may be used. Furthermore, for example, a crystal substrate formed by a cut (off-cut about the X-axis) in which the X-axis makes a specific angle (off-angle) θ with the normal to the substrate surface may be used. . Usually, the ferroelectric crystal substrate is not a substrate cut so that the direction of the X-axis of the crystal is parallel to the substrate surface (that is, neither a X-cut plate nor a substrate off-cut about the X-axis). Substrate), and in particular, a Z-cut plate is preferably used.
[0022]
FIG. 3 is a diagram showing an embodiment in which an optical waveguide is formed on the domain-inverted crystal of the present invention. The optical waveguide is formed so as to pass through a domain-inverted structure in which domain-inverted regions 11 and non-domain-inverted regions 12 appear alternately. According to the present invention, the substrate thickness (w11, w12 in the figure) of the portion corresponding to the domain-inverted region 11 can be reduced, so that the thickness is suitable for an optical waveguide (preferably 2 to 100 μm, more preferably). Is 2 to 10 μm). In FIG. 3, a hatched circle in the domain-inverted region 11 schematically shows the waveguide propagation light. By reducing the thickness of the substrate corresponding to the domain-inverted region 11 as in the present invention, the substrate corresponding to the domain-inverted region 11 is confined in both the upper and lower directions by an air layer, and forms a strongly confined optical waveguide. There is an advantage that can be. After forming the domain-inverted structure, the prior art may be appropriately referred to for the means for changing the refractive index by ion exchange or the like in order to further form an optical waveguide. In the case where an optical waveguide is formed in the domain-inverted crystal of the present invention as in this embodiment, a waveguide region having a circular cross section is easily obtained, as shown in FIG. In the cross section, it is preferable to form a V-shaped concave portion such that the substrate thickness at the central portion of the substrate increases. By forming such a V-shaped concave portion, both sides of the optical waveguide are well confined under the influence of the air layer, and an optical waveguide having a cross section close to a circle (close to point symmetry) is easily formed. In this case, the difference (w12−w11) between the maximum value w12 and the minimum value w11 of the thickness of the substrate corresponding to the recess is preferably 2 to 20 μm, and more preferably 4 to 8 μm. The ratio (w12 / w11) between w12 and w11 is preferably 2 to 10, more preferably 3 to 5.
[0023]
FIG. 4 shows one embodiment of the domain-inverted crystal of the present invention, in which the space inside the concave portion is filled with the heat transfer compound 3. As the heat transfer compound, those commonly used in the field of semiconductor element production can be used without any particular limitation, but those having a high thermal conductivity (preferably 0.001 cal / ° C. or more) are preferable. , A silicone resin, and a silicone resin containing a metal (eg, aluminum, copper, etc.) powder. Since the heat capacity of the domain-inverted crystal of the present invention is particularly small in the concave portions, the temperature control of the crystal is facilitated by filling the heat transfer compound 3. In the embodiment of FIG. 4, the domain-inverted crystal filled with the heat transfer compound 3 is placed on the Peltier device 4 as a cold source. However, the Peltier device 4 is not essential and other cold sources (for example, water-cooled heat radiation Plate, etc.), and it is not particularly necessary to provide a cold source. Further, by providing a heater in place of the Peltier element 4, heating can be performed instead of cooling.
[0024]
FIG. 5 also shows an embodiment of the domain-inverted crystal of the present invention, and the domain-inverted crystal is further provided with electric field applying means indicated by reference numerals 51 to 53. The electric field applying means includes electrodes 52 and 53 disposed inside and outside the recess so as to sandwich the domain-inverted region 11 in the thickness direction of the ferroelectric crystal substrate. FIG. 5 also shows a power supply 51 for supplying power to the electrodes 52 and 53. The materials and the like of the electrodes 52 and 53 are not particularly limited, and the upper electrode and the lower electrode used in manufacturing the domain-inverted crystal of the present invention may be used as they are. With such a configuration, it is possible to further apply an electric field to the domain-inverted region 11 and to modulate the wavelength conversion efficiency. In particular, when the domain-inverted crystal of the present invention is used, the distance between the electrodes is smaller than that in the case of using the conventional domain-inverted crystal. Modulation of the wavelength conversion efficiency becomes possible.
[0025]
FIG. 6 shows an embodiment of a method for further processing the domain-inverted crystal of the present invention. The processing method is characterized in that an alignment guide 6 of a processing tool (not shown) for processing is fitted into the recess described above. The alignment guide is a means for positioning the processing tool with respect to the domain-inverted crystal. As a positioning mode, an alignment guide (for example, etching on a Si base substrate) is formed in a rectangular or V-shaped groove or a cylindrical concave portion. And a self-alignment of an optimal optical coupling position with an optical component (for example, a lens, a mirror, an optical fiber, a laser diode, or the like) provided on the Si substrate. Can be On the lower surface of the domain-inverted crystal shown in FIG. 6, the collective concave portion described as (ii) above is formed in a groove shape. A member having a shape that can be fitted into the groove-shaped concave portion is fitted as an alignment guide 6 so that the alignment guide 6 can be positioned when processing (for example, modularizing) the domain-inverted crystal. Therefore, the position of a processing tool such as a condenser lens can be set with high reproducibility and high accuracy. Here, the concave portion does not necessarily have to be groove-shaped, and may be, for example, rectangular. The processing using the alignment guide can be appropriately selected from various known processing, and examples thereof include dicing processing and etching processing.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically by showing examples, but the present invention is not limited to the description of the examples.
[0027]
[Example 1]
On the surface of the + Z plane of a lithium niobate crystal (length: 20 mm, width: 10 mm, thickness: 0.5 mm), electrodes having a period of 1 mm × 15 mm (interval between adjacent electrodes; 4 μm) were formed. Thereafter, only a portion of the -Z surface corresponding to the lower surface of the electrode region was cut by a dicing saw to form a rectangular recess having a substrate thickness of 0.2 mm at that portion. A LiCl electrolytic solution was introduced into the concave portion, and a voltage (electric field) of 10 kV was applied between the concave portion and the electrode to perform polarization inversion. Thus, a domain-inverted crystal as shown in FIG. 1 was obtained (w0 = 0.5 mm, w1 = 0.2 mm). When this polarization-inverted crystal was subjected to selective etching using hydrofluoric nitric acid to observe the inverted shape, it was confirmed that a domain-inverted structure almost as designed was obtained without causing substrate cracking.
[0028]
[Example 2]
A domain-inverted crystal was manufactured in the same manner as in Example 1, except that the substrate thickness (w1) of the domain-inverted region was 25 μm. It was confirmed that a domain-inverted structure almost as designed was obtained by the same method as in Example 1.
[0029]
[Example 3]
A domain-inverted crystal was manufactured in the same manner as in Example 1, except that the substrate thickness (w1) of the domain-inverted region was set to 0.1 mm. It was confirmed that a domain-inverted structure almost as designed was obtained by the same method as in Example 1. Further, the space in the recess was filled with a silicone resin to which metal aluminum powder was added as a heat transfer compound. When a thermocouple was installed inside the heat transfer compound to control the crystal temperature of the domain-inverted crystal, the temperature controllability was better than when a domain-inverted crystal having a uniform thickness of 0.5 mm was used, Improved responsiveness and stability of temperature control (for example, when the outside air temperature suddenly changed by 5 ° C, it took 1 minute to recover to the temperature to be controlled and stabilize if there was no heat transfer compound. However, it took only 10 seconds when there was a heat transfer compound).
[0030]
[Example 4]
A domain-inverted crystal was manufactured in the same manner as in Example 1, except that the substrate thickness (w1) of the domain-inverted region was set to 0.15 mm. It was confirmed that a domain-inverted structure almost as designed was obtained by the same method as in Example 1. Further, when a metal electrode was formed in the recess by sputtering and an electric field was externally applied between the metal electrode and the electrode provided on the upper surface of the substrate, the SHG intensity could be modulated.
[0031]
[Example 5]
A domain-inverted crystal was manufactured in the same manner as in Example 1, except that the concave portions formed on the lower surface of the substrate were connected to each other to form a groove. It was confirmed that a domain-inverted structure almost as designed was obtained by the same method as in Example 1. Further, a concave / convex base plate made of Si as an alignment guide was fitted into the groove-shaped concave portion to obtain a state as shown in FIG. Thereafter, fiber alignment, bonding, and packaging were performed to assemble the module. At this time, high efficiency optical coupling was easily achieved by installing the input optical fiber and the condenser lens in accordance with the alignment guide made of Si. At this time, the assembling time is greatly reduced as compared with the case where the module is assembled without the alignment guide, and the assembly can be performed with good reproducibility. In other words, when alignment was performed without an alignment guide, it took 30 minutes, but when alignment was used, it was completed in 5 minutes. As described above, when 10 lots of modules were assembled, reproducibility was obtained with an optical insertion loss of 1 dB or less.
[0032]
【The invention's effect】
The domain-inverted crystal of the present invention can accurately form a domain-inverted region even with a small inversion period, and has excellent mechanical strength, so that damage during handling or further processing can be prevented. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a domain-inverted crystal of the present invention. FIG. 2A is a view from above, FIG. 2B is a view showing a cross section taken along line BB in FIG. 2A, and FIG. It is the figure seen from the direction.
FIG. 2 is a view schematically showing a step of forming a domain-inverted region in the method for producing a domain-inverted crystal of the present invention.
FIG. 3 is a diagram showing one embodiment of the domain-inverted crystal of the present invention.
FIG. 4 is a diagram showing one embodiment of the domain-inverted crystal of the present invention.
FIG. 5 is a view showing one embodiment of the domain-inverted crystal of the present invention.
FIG. 6 is a diagram schematically showing a method of further processing a domain-inverted crystal of the present invention.
FIG. 7 is a diagram illustrating an example of a conventional domain-inverted crystal.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 domain-inverted crystal 10 concave portion 11 domain-inverted region 12 non-domain-inverted region 21 upper electrode 22 lower electrode 3 heat transfer compound 4 Peltier element 51 power supply 52 electrode 53 electrode 6 alignment guide

Claims (8)

強誘電体結晶基板の一方の板面に、分極反転領域と非分極反転領域とが交互に現れる分極反転構造が形成されてなる分極反転結晶であって、
前記基板の他方の板面には、前記分極反転領域に対応する位置に凹部が設けられていることを特徴とする分極反転結晶。
A domain-inverted crystal in which a domain-inverted structure in which domain-inverted regions and non-domain-inverted regions alternately appear on one surface of the ferroelectric crystal substrate,
A domain-inverted crystal, wherein a concave portion is provided at a position corresponding to the domain-inverted region on the other plate surface of the substrate.
上記強誘電体結晶基板が、結晶のX軸の方向が基板面と平行になるようにカットされた基板である、請求項1に記載の分極反転結晶。The domain-inverted crystal according to claim 1, wherein the ferroelectric crystal substrate is a substrate cut so that the X-axis direction of the crystal is parallel to the substrate surface. 上記分極反転構造を通過するように光導波路が形成されている、請求項1または2に記載の分極反転結晶。3. The domain-inverted crystal according to claim 1, wherein an optical waveguide is formed so as to pass through the domain-inverted structure. さらに、上記凹部内の空間に伝熱コンパウンドが充填されたものである、請求項1または2に記載の分極反転結晶。3. The domain-inverted crystal according to claim 1, wherein a space inside the concave portion is filled with a heat transfer compound. さらに、当該分極反転結晶には電界印加手段が設けられていて、前記電界印加手段は、上記強誘電体結晶基板の厚み方向に分極反転領域を挟むように、上記凹部内と凹部外とに配置された電極を備えるものである、請求項1または2に記載の分極反転結晶。Further, an electric field applying means is provided on the domain-inverted crystal, and the electric field applying means is arranged inside and outside the concave portion so as to sandwich the domain-inverted region in the thickness direction of the ferroelectric crystal substrate. 3. The domain-inverted crystal according to claim 1, further comprising an electrode provided. 加工具を用いて、請求項1〜3のいずれかに記載の分極反転結晶にさらに加工を施すに際し、前記加工具を当該分極反転結晶に位置決めするためのアライメント用ガイドが上記凹部に嵌め込まれていることを特徴とする、分極反転結晶の加工方法。When further processing the domain-inverted crystal according to any one of claims 1 to 3, using a processing tool, an alignment guide for positioning the processing tool on the domain-inverted crystal is fitted into the recess. A method of processing a domain-inverted crystal. 強誘電体結晶基板の一方の板面に分極反転領域と非分極反転領域とが交互に現われるように分極反転構造を形成して分極反転結晶とするに際し、
前記基板の他方の板面のうち、前記分極反転領域とすべき領域に対応する位置に凹部を設け、
前記分極反転領域とすべき領域と、凹部内とに、それぞれ電極を配置し、両電極間に、分極反転電圧を印加することを特徴とする、分極反転結晶の製造方法。
In forming a domain-inverted structure such that domain-inverted regions and non-domain-inverted regions alternately appear on one plate surface of the ferroelectric crystal substrate to form a domain-inverted crystal,
Of the other plate surface of the substrate, a concave portion is provided at a position corresponding to a region to be the domain-inverted region,
A method for manufacturing a domain-inverted crystal, comprising: arranging electrodes in a region to be the domain-inverted region and in a recess, and applying a domain-inverted voltage between the two electrodes.
上記強誘電体結晶基板が、結晶のX軸の方向が基板面と平行になるようにカットされた基板である、請求項7に記載の製造方法。The manufacturing method according to claim 7, wherein the ferroelectric crystal substrate is a substrate cut so that the direction of the X axis of the crystal is parallel to the substrate surface.
JP2002337018A 2002-11-20 2002-11-20 Polarization reversed crystal, method for manufacturing and processing the same Pending JP2004170711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337018A JP2004170711A (en) 2002-11-20 2002-11-20 Polarization reversed crystal, method for manufacturing and processing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337018A JP2004170711A (en) 2002-11-20 2002-11-20 Polarization reversed crystal, method for manufacturing and processing the same

Publications (1)

Publication Number Publication Date
JP2004170711A true JP2004170711A (en) 2004-06-17

Family

ID=32700686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337018A Pending JP2004170711A (en) 2002-11-20 2002-11-20 Polarization reversed crystal, method for manufacturing and processing the same

Country Status (1)

Country Link
JP (1) JP2004170711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284964A (en) * 2005-03-31 2006-10-19 Sumitomo Osaka Cement Co Ltd Manufacturing method of optical element
US8193004B2 (en) 2004-03-18 2012-06-05 Sumitomo Osaka Cement Co., Ltd. Method for forming ferroelectric spontaneous polarization reversal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193004B2 (en) 2004-03-18 2012-06-05 Sumitomo Osaka Cement Co., Ltd. Method for forming ferroelectric spontaneous polarization reversal
US8293543B2 (en) 2004-03-18 2012-10-23 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
US8524509B2 (en) 2004-03-18 2013-09-03 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
US8669121B2 (en) 2004-03-18 2014-03-11 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
JP2006284964A (en) * 2005-03-31 2006-10-19 Sumitomo Osaka Cement Co Ltd Manufacturing method of optical element
JP4667933B2 (en) * 2005-03-31 2011-04-13 住友大阪セメント株式会社 Optical element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN1083112C (en) Fabrication of patterned poled dielectric structures and devices
US7436579B1 (en) Mobile charge induced periodic poling and device
US20060001948A1 (en) Wavelength converting devices
JP2013029826A (en) Optical device and manufacturing method of optical device
US5521750A (en) Process for forming proton exchange layer and wavelength converting element
US20210026222A1 (en) Wavelength conversion optical device and method for manufacturing wavelength conversion optical device
JPH08339002A (en) Second harmonic wave generating element and its production
JP2004170711A (en) Polarization reversed crystal, method for manufacturing and processing the same
JP2008224972A (en) Optical element and method for manufacturing the same
JPWO2004081647A1 (en) Method for producing domain-inverted crystal
JP2008268547A (en) Laser device, wavelength conversion element, and manufacturing method thereof
US7630415B2 (en) Micro crystal fiber lasers and method of making frequency-doubling crystal fibers
JP2009180898A (en) Method for forming polarization reversal structure and apparatus for forming polarization reversal structure
JP2008209451A (en) Wavelength conversion element
EP1686415A1 (en) Wavelength conversion element having multi-grating and light generating device using it, and wavelength conversion element having columnar ferroelectic single crystal and light generating device using it
JP3318770B2 (en) Manufacturing method of optical waveguide type wavelength converter
JP2012208393A (en) Wavelength conversion element and manufacturing method for the same
KR100721318B1 (en) Fabricating method for quasi-phase- matched waveguides
JP5428132B2 (en) Optical element manufacturing method and optical element
KR0161897B1 (en) Fabrication method of pole-inversion layer of lithium niobate crystal
JP2011203601A (en) Method of producing wavelength conversion element
JP5592444B2 (en) Laser module manufacturing method
JP2004163619A (en) Method for manufacturing poled crystal with domain inversion
JP4413329B2 (en) Method for producing thick-walled poled crystals
JP2003207811A (en) Polarization inverted crystal and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421