JP2538161B2 - Method for manufacturing optical waveguide and lens - Google Patents

Method for manufacturing optical waveguide and lens

Info

Publication number
JP2538161B2
JP2538161B2 JP4097601A JP9760192A JP2538161B2 JP 2538161 B2 JP2538161 B2 JP 2538161B2 JP 4097601 A JP4097601 A JP 4097601A JP 9760192 A JP9760192 A JP 9760192A JP 2538161 B2 JP2538161 B2 JP 2538161B2
Authority
JP
Japan
Prior art keywords
acid
refractive index
temperature
substrate
pka
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4097601A
Other languages
Japanese (ja)
Other versions
JPH05142438A (en
Inventor
和久 山本
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4097601A priority Critical patent/JP2538161B2/en
Publication of JPH05142438A publication Critical patent/JPH05142438A/en
Application granted granted Critical
Publication of JP2538161B2 publication Critical patent/JP2538161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコヒーレント光を利用す
る光情報処理分野、あるいは光応用計測制御分野に使用
する光導波路およびレンズの製造に用いる方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method used for manufacturing optical waveguides and lenses used in the field of optical information processing utilizing coherent light or in the field of optical measurement and control.

【0002】[0002]

【従来の技術】従来、強誘電体基板であるLiNbO3基板に
CrまたはAl膜などを蒸着しフォトプロセスおよびエッチ
ングにより幅数μmのスリットを開けたものを安息香酸
中で熱処理を行い高屈折率層(屈折率差Δn=0.13程
度)を形成していた。(シ゛ェー・エル・シ゛ャッケル,シー・イー・ライス及びシ
゛ェー・シ゛ェー・ヘ゛セルカ、フ゜ロトン イクスチェンシ゛ フォア ハイーインテ゛ックス ウェイフ゛
カ゛イツ゛ インLiNbO3",アフ゜ライト゛ フィシ゛ックスレター,41巻、7号、607
−608頁(1982年)(J.L.Jackel,C.E.Rice and J.J.Vese
lka, Proton Exchange for High−index Waveguidesin
LiNbO3",Appl.Phys.Lett,Vol 41,No.7.pp607−608(198
2)、特開昭60−7403号公報参照)
2. Description of the Related Art LiNbO 3 substrates, which are conventional ferroelectric substrates,
A high refractive index layer (refractive index difference Δn = 0.13) was formed by vapor-depositing a Cr or Al film, etc., and opening a slit having a width of several μm by photoprocess and etching, and heat-treating it in benzoic acid. (J-El Jacquel, CIE Rice and J-Je Beselka, Proton Exchange Fore High Indices Waves In-LiNbO3 ", Affixes Letters, 41, No. 7, 607
−608 (1982) (JLJackel, CE Rice and JJVese
lka, Proton Exchange for High-index Waveguidesin
LiNbO 3 ", Appl.Phys.Lett, Vol 41, No.7.pp 607−608 (198
2) , refer to JP-A-60-7403 )

【0003】以下、光素子として光導波路形成について
説明する。図4に従来のプロトン交換方法を用いた光導
波路形成の具体的構成を示す。1は強誘電体基板である
LiNbO3基板,2は保護マスクとなるAl膜,3はフォトプロ
セスおよびエッチングにより保護マスク2上に形成され
たスリットである。上記LiNbO3基板1は安息香酸4中に
浸されている。ちなみに安息香酸4の解離指数は4.12で
融点122℃,沸点248℃である。安息香酸4が入れられた
石英ビーカ5はヒータ6により熱処理温度Tcが200℃の
温度に保たれており安息香酸4はこの温度では液体であ
る。この安息香酸4中でLiNbO3基板1を60分熱処理を行
った後、メタノールにより洗浄を行う。こうして安息香
酸4中の水素とLiNbO3基板1中のリチウムが交換し、高
屈折率層7が形成される。この高屈折率層7が0.5μm程
度の光導波路となる。
The formation of an optical waveguide as an optical element will be described below. FIG. 4 shows a specific structure for forming an optical waveguide using a conventional proton exchange method. 1 is a ferroelectric substrate
A LiNbO 3 substrate, 2 is an Al film that serves as a protective mask, and 3 is a slit formed on the protective mask 2 by photoprocess and etching. The LiNbO 3 substrate 1 is immersed in benzoic acid 4. By the way, the dissociation index of benzoic acid 4 is 4.12, which has a melting point of 122 ° C and a boiling point of 248 ° C. The heat treatment temperature Tc of the quartz beaker 5 containing the benzoic acid 4 is kept at 200 ° C. by the heater 6, and the benzoic acid 4 is liquid at this temperature. The LiNbO 3 substrate 1 is heat-treated in this benzoic acid 4 for 60 minutes, and then washed with methanol. In this way, the hydrogen in the benzoic acid 4 and the lithium in the LiNbO 3 substrate 1 are exchanged, and the high refractive index layer 7 is formed. This high refractive index layer 7 becomes an optical waveguide of about 0.5 μm.

【0004】[0004]

【発明が解決しようとする課題】上記のような酸として
安息香酸を用いた光素子形成方法では、安息香酸の解離
指数PKaが4.12と大きく溶液中の水素濃度が低いため、L
iNbO3基板1に屈折率差Δnが0.13以上の高屈折率層7を
形成するのは困難である。また沸点が248℃にあるため
それ以上高温にして拡散定数を高めることが困難となり
素子の作製に時間がかかるなどの問題もあった。
In the method for forming an optical element using benzoic acid as an acid as described above, the dissociation index PKa of benzoic acid is as large as 4.12 and the hydrogen concentration in the solution is low, so that L
It is difficult to form the high refractive index layer 7 having a refractive index difference Δn of 0.13 or more on the iNbO 3 substrate 1. Further, since the boiling point is 248 ° C., it is difficult to raise the diffusion constant to a higher temperature and it takes time to manufacture the device.

【0005】そこで本発明は、LiNbxTa1-xO3(0≦x≦
1)基板に高屈折率層を形成する光導波路およびレンズ
の製造方法を提供することを目的とする。
Therefore, in the present invention, LiNb x Ta 1-x O 3 (0≤x≤
1) Optical waveguide and lens forming high refractive index layer on substrate
It aims at providing the manufacturing method of.

【0006】[0006]

【課題を解決するための手段】本発明の光導波路および
レンズの製造方法は、上記問題点を解決するため、解離
指数PKaが1.0≦PKa≦2.2の範囲であり、また250℃以上
の温度で液体であり、なおかつ水に可溶な酸(リン酸を
除く)中で、LiNbxTa1-x3(0≦x≦1)基板に、
温度Tが250℃≦T≦300℃の範囲で熱処理を行
い、前記LiNbxTa1-x3(0≦x≦1)基板に高屈折
率層を形成するものである。
The optical waveguide of the present invention and
In order to solve the above problems, the lens manufacturing method has a dissociation index PKa in the range of 1.0 ≦ PKa ≦ 2.2, a liquid at a temperature of 250 ° C. or higher, and a water-soluble acid (phosphoric acid
Except) , LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) substrate,
Heat treatment is performed at a temperature T in the range of 250 ° C. ≦ T ≦ 300 ° C. to form a high refractive index layer on the LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) substrate.

【0007】[0007]

【作用】本発明は上記手段により酸中での熱処理時にお
いて水素濃度が高いためLiNbO3基板に容易に0.13以上
の屈折率差Δnを持つ高屈折率層を形成できる。LiNbO3
基板に限らず、LiNbxTa1-xO3(0≦x≦1)基板の各組成
で、従来の方法によって得られる以上の屈折率変化量の
大きな高屈折率層を形成できる上に、しかも高温処理が
可能となるため素子の作製時間を大幅に短縮することが
できる。さらに酸は水に可溶であるため、非常に取り扱
いやすく作業性も向上する。
According to the present invention, since the hydrogen concentration is high during the heat treatment in an acid by the above means, a high refractive index layer having a refractive index difference Δn of 0.13 or more can be easily formed on a LiNbO 3 substrate. LiNbO 3
Not only the substrate but also the composition of LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) substrate can form a high refractive index layer having a large amount of change in refractive index more than that obtained by the conventional method . Moreover, since high-temperature treatment is possible, the time required to manufacture the device can be greatly reduced. Furthermore, since the acid is soluble in water, it is very easy to handle and the workability is improved.

【0008】[0008]

【実施例】本発明の第1の実施例を図1を用いて説明す
る。この第1の実施例では光素子として光導波路の形成
について説明する。1は強誘電体基板であるLiNbO3
板,2はLiNbO3基板1の+Z面上に形成された保護マス
クとなるTi−Au膜でTiの膜厚500Å,Auの膜厚500Åであ
る。3はフォトプロセスおよびエッチングにより保護マ
スク2上に形成されたスリットである。上記LiNbO3基板
1はリン酸8中に浸されてる。リン酸はオルトリン酸
(H3PO4)、ピロリン酸(H4P2O7)の総称であり、ちなみ
に215℃以上の温度ではリン酸8はオルトリン酸(PKa=
2.2)とピロリン酸(PKa=1.7)が混在している。リン酸8
が入れられた石英ビーカ5は温度コントローラ付のヒー
タ6により常にTc=250℃の温度に保たれている。LiNbO
3基板1を4分間熱処理を行い引き出した後流水で洗浄
を行う。このようにして厚み0.5μmの高屈折率層7が形
成され、この高屈折率層7が光導波路となる。
EXAMPLE A first example of the present invention will be described with reference to FIG. In this first embodiment, formation of an optical waveguide as an optical element will be described. Reference numeral 1 is a LiNbO 3 substrate which is a ferroelectric substrate, and 2 is a Ti-Au film which is a protective mask formed on the + Z plane of the LiNbO 3 substrate 1 and has a Ti film thickness of 500Å and an Au film thickness of 500Å. Reference numeral 3 is a slit formed on the protective mask 2 by a photo process and etching. The LiNbO 3 substrate 1 is immersed in phosphoric acid 8. Phosphoric acid is a general term for orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), and phosphoric acid 8 is orthophosphoric acid (PKa =
2.2) and pyrophosphoric acid (PKa = 1.7) are mixed. Phosphoric acid 8
The quartz beaker 5 containing is always kept at a temperature of Tc = 250 ° C. by a heater 6 with a temperature controller. LiNbO
3 Substrate 1 is heat-treated for 4 minutes, pulled out, and washed with running water. In this way, the high refractive index layer 7 having a thickness of 0.5 μm is formed, and this high refractive index layer 7 becomes an optical waveguide.

【0009】リン酸8は解離指数PKaが2程度と低く、
水素濃度が高いためΔn=0.14程度の高屈折率層を形成
できる。またリン酸8は水に可溶なためプロトン交換後
の洗浄も容易である。さらにリン酸4は安価である。ま
た300℃以上の高温でさえもリン酸4は蒸発が少い上に
融点が室温以下であるのでたとえ蒸発しても固化して周
囲に付着し作業を防げることもない。これに対して、安
息香酸は蒸発物が固化して周囲に付着し作業を妨げるだ
けでなく、水に不溶なため水洗もできず問題となる。
Dissociation index PKa of phosphoric acid 8 is as low as about 2,
Since the hydrogen concentration is high, a high refractive index layer with Δn = 0.14 can be formed. Further, since phosphoric acid 8 is soluble in water, it is easy to wash it after the proton exchange. Furthermore, phosphoric acid 4 is inexpensive. Further, even at a high temperature of 300 ° C. or higher, phosphoric acid 4 has little evaporation and its melting point is room temperature or less, so even if it evaporates, it solidifies and adheres to the surroundings to prevent work. On the other hand, benzoic acid not only hinders the work by solidifying the evaporate and adhering to the surroundings, but it is insoluble in water and cannot be washed with water, which is a problem.

【0010】なおLiNbO31の+Z面または−Z面は酸に
よる特に化学損傷を受けにくく長時間のプロトン交換を
行うには有利である。次に本発明の第2の実施例につい
て図2を用いて説明する。第2の実施例では光素子とし
てマイクロレンズを形成する方法を示している。図2は
マイクロレンズ形成工程を示す断面図で、図1における
LiNbO3基板1上のスリット3がレンズとなる円形部9に
変わっている。第1の実施例と同様にリン酸8中でプロ
トン交換を行う。
The + Z plane or the −Z plane of LiNbO 3 1 is particularly resistant to chemical damage by acid and is advantageous for long-term proton exchange. Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment shows a method of forming a microlens as an optical element. FIG. 2 is a cross-sectional view showing a microlens forming step, which is similar to
The slit 3 on the LiNbO 3 substrate 1 is changed to a circular portion 9 which becomes a lens. Proton exchange is carried out in phosphoric acid 8 as in the first embodiment.

【0011】図3にプロトン交換時間に対するプロトン
交換深さの関係を示す。図3よりT=280℃の温度では6.
3時間の熱処理を行うことにより10μmの深さの高屈折率
層7が得られる。これに対して10μmの深さを得るため
にはT=230℃の安息香酸ではほぼ100時間かかり、高温
処理が製造時間の短縮に大いに寄与していることがわか
る。また同様にフレネルレンズ,グレーティングレンズ
などの形成にも使用できる。
FIG. 3 shows the relationship between the proton exchange time and the proton exchange depth. From Fig. 3, at the temperature of T = 280 ℃ 6.
By performing the heat treatment for 3 hours, the high refractive index layer 7 having a depth of 10 μm can be obtained. On the other hand, it takes almost 100 hours to obtain a depth of 10 μm with benzoic acid at T = 230 ° C, and it can be seen that the high temperature treatment greatly contributes to shortening the manufacturing time. It can also be used to form Fresnel lenses and grating lenses.

【0012】なお実施例では強誘電体基板として良質の
結晶が得易いLiNbO3基板を用いたが他にLiTaO3なども使
用できる。LiTaO3はLiNbO3に比べて拡散定数が小さいた
め高温処理が極めて有効となる。また解離指数PKaが1.0
≦PKa≦4.0で250℃以上の温度で液体であり、なおかつ
水に可溶な酸としてリン酸を用いたが、他のヒ酸(解離
指数2.2)などでも可能である。ただし解離指数PKaが1
以下の酸では化学損傷を起こし易く使用できない。また
250℃以上で液体の酸を用いることにより蒸気も少なく
安定に再現性良く高温でのプロトン交換が行える。ま
た、高屈折率層(Δne=0.14以上)を化学損傷をほとん
ど受けずに得るためには酸の解離指数PKaが1.0≦PKa≦
4.0の範囲であることは望ましい。特に解離指数2.2以下
の酸は作製される屈折率層の屈折率変化が大きく効果が
ある。
In the embodiment, a LiNbO 3 substrate which is easy to obtain a good quality crystal is used as the ferroelectric substrate, but LiTaO 3 or the like can be used. Since LiTaO 3 has a smaller diffusion constant than LiNbO 3 , high temperature treatment is extremely effective. The dissociation index PKa is 1.0
Phosphoric acid was used as a water-soluble acid that was liquid at a temperature of 250 ° C. or higher with ≦ PKa ≦ 4.0, but other arsenic acids (dissociation index 2.2) and the like are also possible. However, dissociation index PKa is 1
The following acids are prone to chemical damage and cannot be used. Also
By using a liquid acid at 250 ° C or higher, there is little vapor, and stable and reproducible proton exchange can be performed at high temperature. Further, in order to obtain the high refractive index layer (Δne = 0.14 or more) with almost no chemical damage, the acid dissociation index PKa is 1.0 ≦ PKa ≦
A range of 4.0 is desirable. In particular, an acid having a dissociation index of 2.2 or less is effective because the refractive index layer produced has a large change in the refractive index.

【0013】ところで熱処理を行う温度が170℃以下で
は拡散定数が低く工業的に問題である。また熱処理を行
う温度が300℃以上では酸の状態が大きく変化し易く再
現性が悪くなる。
By the way, if the temperature for heat treatment is 170 ° C. or lower, the diffusion constant is low, which is an industrial problem. Further, when the temperature for heat treatment is 300 ° C. or higher, the acid state is apt to change greatly and the reproducibility deteriorates.

【0014】[0014]

【発明の効果】本発明の光導波路およびレンズの製造方
によれば、解離指数PKaが1.0≦PKa≦2.2の範囲で、25
0℃以上で液体であり、なおかつ水に可溶な酸(リン酸
を除く)を用いてプロトン交換を行うことで、LiNbxTa
1-xO3(0≦x≦1)基板の各組成で従来の方法によって得
られる以上の屈折率変化量の大きな高屈折率層を形成で
きる上に、高温処理ができプロトン交換時間を大幅に短
縮できる。さらに酸は水に可溶であるため、非常に取り
扱いやすく作業性も向上する。
EFFECT OF THE INVENTION Manufacturing Method of Optical Waveguide and Lens of the Present Invention
According to the method , when the dissociation index PKa is 1.0 ≦ PKa ≦ 2.2 , 25
Acid that is liquid at 0 ° C or higher and soluble in water (phosphoric acid
By performing the proton exchange with the exception), LiNb x Ta
1-x O 3 (0 ≦ x ≦ 1) Obtained by conventional method for each composition of substrate
In addition to being able to form a high-refractive-index layer having a large amount of change in the refractive index, the high-temperature treatment can be performed and the proton exchange time can be greatly shortened. Furthermore, since the acid is soluble in water, it is very easy to handle and the workability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための図FIG. 1 is a diagram for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を用いたマイクロレンズ
形成工程を説明するための図
FIG. 2 is a diagram for explaining a microlens forming process using a second embodiment of the present invention.

【図3】プロトン交換時間に対するプロトン交換深さの
関係を示す図
FIG. 3 is a diagram showing the relationship between proton exchange time and proton exchange depth.

【図4】従来の光素子形成方法を説明するための図FIG. 4 is a diagram for explaining a conventional optical element forming method.

【符号の説明】[Explanation of symbols]

1 LiNbO3 2 保護マスク 3 スリット 7 高屈折率層 8 リン酸1 LiNbO 3 2 Protective mask 3 Slit 7 High refractive index layer 8 Phosphoric acid

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−7403(JP,A) 日本化学会著「化学便覧基礎編改訂2 版」基礎編2、昭和50、6、20丸善発 行、P.993〜999 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-7403 (JP, A) "Chemical Handbook Basic Edition Revised 2nd Edition" by The Chemical Society of Japan, Basic Edition 2, Showa 50, 6, 20 Maruzen, P. 993-999

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 解離指数PKaが1.0≦PKa≦2.2の範囲であ
り、また250℃以上の温度で液体であり、なおかつ水に
可溶な酸(リン酸を除く)中で、LiNbxTa1-x
3(0≦x≦1)基板に、温度Tが250℃≦T≦300℃
の範囲で熱処理を行い、前記LiNbxTa1-x3(0≦
x≦1)基板に高屈折率層を形成することを特徴とする
導波路の製造方法
1. LiNb x Ta 1 in a dissociation index PKa in the range of 1.0 ≦ PKa ≦ 2.2, a liquid at a temperature of 250 ° C. or higher, and a water-soluble acid (excluding phosphoric acid). -x O
3 (0 ≤ x ≤ 1) Temperature T is 250 ℃ ≤ T ≤ 300 ℃
And heat treatment is performed in the range of LiNb x Ta 1-x O 3 (0 ≦
x ≦ 1) light characterized by forming a high refractive index layer on the substrate
Method of manufacturing waveguide .
【請求項2】 解離指数PKaが1.0≦PKa≦2.2の範囲であ
り、また250℃以上の温度で液体であり、なおかつ水に
可溶な酸(リン酸を除く)中で、LiNbxTa1-x
3(0≦x≦1)基板に、温度Tが250℃≦T≦300℃
の範囲で熱処理を行い、前記LiNbxTa1-x3(0≦
x≦1)基板に高屈折率層を形成することを特徴とする
ンズの製造方法
2. LiNb x Ta 1 in a dissociation index PKa in the range of 1.0 ≦ PKa ≦ 2.2, a liquid at a temperature of 250 ° C. or higher, and a water-soluble acid (excluding phosphoric acid). -x O
3 (0 ≤ x ≤ 1) Temperature T is 250 ℃ ≤ T ≤ 300 ℃
And heat treatment is performed in the range of LiNb x Ta 1-x O 3 (0 ≦
Les characterized by forming the high refractive index layer x ≦ 1) substrate
Manufacturing method .
JP4097601A 1992-04-17 1992-04-17 Method for manufacturing optical waveguide and lens Expired - Lifetime JP2538161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4097601A JP2538161B2 (en) 1992-04-17 1992-04-17 Method for manufacturing optical waveguide and lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097601A JP2538161B2 (en) 1992-04-17 1992-04-17 Method for manufacturing optical waveguide and lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60118309A Division JPS61275806A (en) 1985-05-31 1985-05-31 Formation of optical element

Publications (2)

Publication Number Publication Date
JPH05142438A JPH05142438A (en) 1993-06-11
JP2538161B2 true JP2538161B2 (en) 1996-09-25

Family

ID=14196759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097601A Expired - Lifetime JP2538161B2 (en) 1992-04-17 1992-04-17 Method for manufacturing optical waveguide and lens

Country Status (1)

Country Link
JP (1) JP2538161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876666B2 (en) * 2001-08-30 2007-02-07 株式会社村田製作所 Optical device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607403A (en) * 1983-06-28 1985-01-16 Canon Inc Forming method of thin film type optical waveguide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本化学会著「化学便覧基礎編改訂2版」基礎編2、昭和50、6、20丸善発行、P.993〜999

Also Published As

Publication number Publication date
JPH05142438A (en) 1993-06-11

Similar Documents

Publication Publication Date Title
JPH103100A (en) Optical waveguide parts, optical parts, manufacture of optical waveguide parts, and manufacture of periodic polarization inversion structure
JP2538161B2 (en) Method for manufacturing optical waveguide and lens
CN114690316B (en) Etching process method for waveguide in quantum communication
EP0863117A2 (en) A process for forming a microstructure in a substrate of a ferroelectric single crystal
JP3138549B2 (en) Method of fabricating ridge type on optical crystal substrate or thin film on the substrate
JPH0574802B2 (en)
US5194117A (en) Lithium niobate etchant
JPH0736070A (en) Wavelength converting element and its production
EP0936481B1 (en) A method of processing a substrate made of a ferroelectric single crystalline material
JPH06174908A (en) Production of waveguide type diffraction grating
JP2958408B2 (en) Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same
EP0445930B1 (en) Lithium niobate etchant
JPH0797170B2 (en) Optical element manufacturing method
JPH0774843B2 (en) Optical element manufacturing method
JPH0731287B2 (en) Method of forming optical element
JPH06230443A (en) Waveguide type second higher harmonic generating element and its production
JPH0756039A (en) Production of proton exchange waveguide
JPH05333224A (en) Production of optical waveguide
JPH11162255A (en) Working method of ferroelectric crystal substrate
JP2004045536A (en) Member with optical waveguide and its manufacture method
JPH0715528B2 (en) Method for producing tapered optical waveguide
JPH10300964A (en) Formation of light guide
JPH06160927A (en) Waveguide type second harmonic wave generating element and its production
JPH0664996A (en) Production of thin film of lithium niobate single crystal
JPH07325228A (en) Optical device and liquid phase epitaxial growth method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term