JPH06102554A - Optical element and production of optical element and production of optical waveguide - Google Patents

Optical element and production of optical element and production of optical waveguide

Info

Publication number
JPH06102554A
JPH06102554A JP4252598A JP25259892A JPH06102554A JP H06102554 A JPH06102554 A JP H06102554A JP 4252598 A JP4252598 A JP 4252598A JP 25259892 A JP25259892 A JP 25259892A JP H06102554 A JPH06102554 A JP H06102554A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
substrate
refractive index
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4252598A
Other languages
Japanese (ja)
Inventor
Kazuhisa Yamamoto
和久 山本
Kiminori Mizuuchi
公典 水内
Hiroaki Yamamoto
博昭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4252598A priority Critical patent/JPH06102554A/en
Publication of JPH06102554A publication Critical patent/JPH06102554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the surface roughening of an optical waveguide, to lessen loss and to obtain the linearity approximately equal to the linearity of a substrate in the process for production of the optical waveguide and the optical element, such as optical wavelength conversion element. CONSTITUTION:Mask patterns by Ta 6 are formed on an LiTaO3 substrate 1 and thereafter, a high-refractive index layer 5 is formed by executing a proton exchange method in pyrophosphoric acid added with lithium phosphate. This high-refractive index layer 5 is heat treated at 460 deg.C for 10 seconds by an IR heater to restore crystallinity, by which the optical waveguide having high nonlinearity and good confinement is produced. Then, the optical waveguide which is low in loss and high in nonlirear optical effect is obtd. by diluting phosphoric acid with a lithium salt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒ−レント光を利用
する光情報処理分野、あるいは光応用計測制御分野に使
用する光素子および光導波路およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element and an optical waveguide used in the field of optical information processing utilizing coherent light, or in the field of optical application measurement control, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図7に従来の光素子として光導波路を基
本とした光波長変換素子の構成図を示す。以下0.84μm
の波長の基本波に対する高調波発生(波長0.42μm)に
ついて図を用いて詳しく述べる。(K.Mizuuchi, K.Yama
moto and T.Taniuchi, AppliedPhysics Letters, Vol 5
8, 2732ページ, 1991年6月号、参照).図7に示され
るようにLiTaO3基板1aに光導波路2が形成され、さら
に光導波路2には周期的に分極の反転した層3(分極反
転層)が形成されている。基本波P1と発生する高調波
P2の伝搬定数の不整合を分極反転層3および非分極反
転層4の周期構造で補償することにより高効率に高調波
P2を出すことができる。光導波路2の入射面10に基
本波P1を入射すると、光導波路2から高調波P2が効
率良く発生され、光波長変換素子として動作する。
2. Description of the Related Art FIG. 7 shows a block diagram of an optical wavelength conversion element based on an optical waveguide as a conventional optical element. 0.84 μm or less
The harmonic generation (wavelength 0.42 μm) with respect to the fundamental wave of the wavelength is described in detail with reference to the drawings. (K.Mizuuchi, K.Yama
moto and T. Taniuchi, Applied Physics Letters, Vol 5
See page 8, 2732, June 1991,). As shown in FIG. 7, an optical waveguide 2 is formed on a LiTaO 3 substrate 1a, and a layer 3 (polarization inversion layer) whose polarization is periodically inverted is further formed on the optical waveguide 2. By compensating for the mismatch of the propagation constants of the fundamental wave P1 and the generated harmonic wave P2 with the periodic structure of the polarization inversion layer 3 and the non-polarization inversion layer 4, the harmonic wave P2 can be generated with high efficiency. When the fundamental wave P1 is incident on the incident surface 10 of the optical waveguide 2, the harmonic P2 is efficiently generated from the optical waveguide 2 and operates as an optical wavelength conversion element.

【0003】このような従来の光波長変換素子は燐酸を
用いたプロトン交換法により作製された光導波路2を基
本構成要素としていた。この素子の製造方法について説
明する。まずLiTaO3基板1aに通常のフォトプロセスと
ドライエッチングを用いてTaを周期状にパターニング
する。次にTaパターンが形成されたLiTaO3基板1aに
260℃、30分間、燐酸中でプロトン交換を行いTa
で覆われていないスリット直下に厚み0.8μmのプロ
トン交換層を形成する。次に590℃の温度で10分間
熱処理する。熱処理の上昇レートは10℃/分、冷却レ
ートは50℃/分である。これにより分極反転層が形成
される。プロトン交換層直下はLiが減少しておりキュ
リー温度が低下するため部分的に分極反転を行うことが
できる。次にHF:HNF3の1:1混合液にて2分間
エッチングしTaを除去する。さらに上記分極反転層中
にプロトン交換を用いて光導波路を形成する。光導波路
用マスクとしてTaをストライプ状にパターニングを行
うことでTaマスクに幅4μm、長さ12mmのスリッ
トを形成する。このTaマスクで覆われた基板に260
℃、16分間プロトン交換を行い0.5μmの高屈折率
層を形成する。Taマスクを除去した後380℃で10
分間熱処理を行う。プロトン交換された保護マスクのス
リット直下の領域は屈折率が0.03程度上昇した光導
波路2となる。この従来の方法により作製される光波長
変換素子は波長0.84μmの基本波P1に対して、光導波
路2の長さを9mm、基本波P1のパワーを27mWに
したとき高調波P2のパワー0.13mW、変換効率
0.5%が得られていた。この場合1W当りの変換効率
は18%/Wである。
Such a conventional light wavelength conversion element has an optical waveguide 2 manufactured by a proton exchange method using phosphoric acid as a basic constituent element. A method of manufacturing this element will be described. First, Ta is periodically patterned on the LiTaO 3 substrate 1a by using a normal photoprocess and dry etching. Next, the LiTaO 3 substrate 1a on which the Ta pattern was formed was subjected to proton exchange in phosphoric acid at 260 ° C. for 30 minutes to form Ta.
A 0.8 μm-thick proton exchange layer is formed immediately below the slit not covered with. Then, heat treatment is performed at a temperature of 590 ° C. for 10 minutes. The rising rate of heat treatment is 10 ° C./min, and the cooling rate is 50 ° C./min. As a result, the domain inversion layer is formed. Just below the proton exchange layer, Li is reduced and the Curie temperature is lowered, so that polarization inversion can be partially performed. Then, Ta is removed by etching with a 1: 1 mixed solution of HF: HNF 3 for 2 minutes. Further, an optical waveguide is formed in the polarization inversion layer by using proton exchange. By patterning Ta as an optical waveguide mask in a stripe shape, a slit having a width of 4 μm and a length of 12 mm is formed in the Ta mask. 260 on the substrate covered with this Ta mask
Proton exchange is performed at 16 ° C. for 16 minutes to form a 0.5 μm high refractive index layer. After removing the Ta mask, 10 at 380 ° C
Heat treatment for minutes. The region directly under the slit of the proton-exchanged protective mask becomes the optical waveguide 2 whose refractive index is increased by about 0.03. The optical wavelength conversion device manufactured by this conventional method has a fundamental wave P1 having a wavelength of 0.84 μm, a power of the harmonic wave P2 of 0..0 when the length of the optical waveguide 2 is 9 mm and the power of the fundamental wave P1 is 27 mW. 13 mW and a conversion efficiency of 0.5% were obtained. In this case, the conversion efficiency per 1 W is 18% / W.

【0004】次に従来の他の例としてLiNbO3X板へのプ
ロトン交換について説明する。光学研磨されたLiNbO3
板を燐酸中260℃、1時間熱処理し高屈折率層を形成
していた。これにより厚み2μmの高屈折率層が形成さ
れていた。
Next, proton exchange to a LiNbO 3 X plate will be described as another conventional example. Optically polished LiNbO 3 X
The plate was heat-treated in phosphoric acid at 260 ° C. for 1 hour to form a high refractive index layer. As a result, a high refractive index layer having a thickness of 2 μm was formed.

【0005】[0005]

【発明が解決しようとする課題】上記のようなプロトン
交換法により形成された光導波路を基本とした光波長変
換素子では光導波路を作製するためのプロトン交換時に
LiTaO3の結晶性が損なわれ非線形光学効果がなくなって
いた。図8に作製された光波長変換素子の断面図を示
す。最初にプロトン交換された高屈折率層5が非線形光
学効果を失う。アニール処理により高屈折率層5は広が
り光導波路2となるが、その状態でも非線形性は失われ
たままである。そのため変換効率が理論にたいして1/
6程度に低下してしまうといった問題があった。一方、
アニール処理時間を例えば1時間程度に長くすれば非線
形性は回復するが作製される光導波路の厚みが5μm以
上になるなど閉じ込めが悪く実用上問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An optical wavelength conversion element based on an optical waveguide formed by the above-mentioned proton exchange method is used at the time of proton exchange for producing an optical waveguide.
The crystallinity of LiTaO 3 was impaired and the nonlinear optical effect disappeared. FIG. 8 shows a cross-sectional view of the manufactured light wavelength conversion element. The first proton-exchanged high refractive index layer 5 loses the nonlinear optical effect. The high-refractive index layer 5 expands to become the optical waveguide 2 by the annealing treatment, but the nonlinearity is still lost even in that state. Therefore, the conversion efficiency is 1 /
There was a problem that it decreased to about 6. on the other hand,
If the annealing time is lengthened to, for example, about 1 hour, the nonlinearity is recovered, but the optical waveguide to be manufactured has a thickness of 5 μm or more, resulting in poor confinement and a practical problem.

【0006】また、LiNbO3X板に長時間プロトン交換を
行うと面荒れが生じていた。そのため光導波路では伝搬
損失が増加し、また、フレネルレンズでは透過損失の原
因となっていた。
Further, when the LiNbO 3 X plate was subjected to proton exchange for a long time, surface roughness occurred. Therefore, the propagation loss increases in the optical waveguide and the transmission loss occurs in the Fresnel lens.

【0007】そこで本発明は、表面荒れをなくし、損失
を少ない光素子の製造方法および光導波路の製造方法を
提供することを目的とする。
Therefore, an object of the present invention is to provide a method of manufacturing an optical element and a method of manufacturing an optical waveguide which eliminates surface roughness and reduces loss.

【0008】[0008]

【課題を解決するための手段】本発明は、上記問題点を
解決するため光素子の製造方法に新たな工夫を加えるこ
とにより非線形光学効果の劣化がなく、かつ低損失な光
素子の製造方法を提供するものである。つまり、本発明
はリチウム塩を加えた燐酸中でLiNbxTa1-xO3(0≦x≦
1)基板を熱処理し、前記LiNbxTa1-xO3(0≦x≦1)基板
に高屈折率層を形成するという手段を有するものであ
る。
In order to solve the above problems, the present invention provides a method for manufacturing an optical element which is free from deterioration of the nonlinear optical effect by adding a new device to the method of manufacturing an optical element. Is provided. That is, in the present invention, LiNb x Ta 1-x O 3 (0 ≦ x ≦
1) A means for heat-treating the substrate to form a high refractive index layer on the LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) substrate.

【0009】[0009]

【作用】本発明の光素子の製造方法は燐酸にリチウム塩
で希釈を行うことで、LiNbO3またはLiTaO3に対するダメ
ージを大幅に緩和し、表面荒れなく、非線形光学効果等
の劣化もない高品質な光素子を形成できる。また、本発
明の光導波路の製造方法によれば損失なく閉じ込めのよ
い光導波路を作製することができる。
[Function] According to the method of manufacturing an optical element of the present invention, by diluting phosphoric acid with a lithium salt, damage to LiNbO 3 or LiTaO 3 is significantly mitigated, and the surface is not roughened and the nonlinear optical effect is not deteriorated. Optical elements can be formed. Further, according to the method of manufacturing an optical waveguide of the present invention, an optical waveguide that is well confined without loss can be manufactured.

【0010】[0010]

【実施例】本発明の光導波路の製造方法の第1の実施例
を図1を用いて説明する。1は強誘電体基板であるLiNb
O3基板,6はLiNbO3基板1の+Z面上に形成された保護
マスクとなるTa膜でTaの膜厚30nmである。13はフォト
プロセスおよびエッチングにより保護マスク6上に形成
されたスリットである。上記LiNbO3基板1は燐酸を主成
分とする酸8中に浸されてる。燐酸はオルト燐酸(H3PO
4)、ピロ燐酸(H4P2O7)の総称であり、ちなみに215℃
以上の温度では燐酸8はオルト燐酸(PKa=2.2)とピロ燐
酸(PKa=1.7)が混在している。また、この酸8には燐酸
(100g)に加えてリチウム塩の一種である燐酸リチ
ウムが20gが混入されている。これにより燐酸の酸性
が弱められており、LiNbO3基板1に損傷を与えないよう
になっている。酸8が入れられた石英ビーカ15は温度
コントローラ付のヒータ16により常にTc=250℃の温
度に保たれている。LiNbO3基板1を4分間熱処理を行い
引き出した後流水で洗浄を行う。このようにして厚み0.
5μmの高屈折率層7が形成され、この高屈折率層7が光
導波路となる。
EXAMPLE A first example of the method for manufacturing an optical waveguide of the present invention will be described with reference to FIG. 1 is LiNb which is a ferroelectric substrate
The O 3 substrate 6 is a Ta film which is a protective mask formed on the + Z surface of the LiNbO 3 substrate 1 and has a Ta film thickness of 30 nm. Reference numeral 13 is a slit formed on the protective mask 6 by a photo process and etching. The LiNbO 3 substrate 1 is immersed in an acid 8 containing phosphoric acid as a main component. Phosphoric acid is orthophosphoric acid (H 3 PO
4 ) and pyrophosphoric acid (H 4 P 2 O 7 ) are generic names, and by the way, 215 ℃
At the above temperatures, phosphoric acid 8 is a mixture of orthophosphoric acid (PKa = 2.2) and pyrophosphoric acid (PKa = 1.7). In addition to phosphoric acid (100 g), 20 g of lithium phosphate, which is a kind of lithium salt, is mixed in the acid 8. As a result, the acidity of phosphoric acid is weakened so that the LiNbO 3 substrate 1 is not damaged. The quartz beaker 15 containing the acid 8 is always kept at a temperature of Tc = 250 ° C. by a heater 16 with a temperature controller. The LiNbO 3 substrate 1 is heat-treated for 4 minutes, extracted, and washed with running water. In this way the thickness is 0.
A high-refractive index layer 7 having a thickness of 5 μm is formed, and this high-refractive index layer 7 serves as an optical waveguide.

【0011】酸8での処理によりΔn=0.14程度の高屈
折率層を形成できる。また燐酸は水に可溶なためプロト
ン交換後の洗浄も容易である。さらに燐酸は安価であ
る。また300℃以上の高温でさえも燐酸は蒸発が少い上
に融点が室温以下であるのでたとえ蒸発しても固化して
周囲に付着し作業を防げることもない。これに対して、
安息香酸等の他の有機酸は蒸発物が固化して周囲に付着
し作業を妨げるだけでなく、水に不溶なため水洗もでき
ず問題となる。
By the treatment with acid 8, a high refractive index layer having Δn = 0.14 can be formed. Further, since phosphoric acid is soluble in water, washing after proton exchange is easy. Furthermore, phosphoric acid is inexpensive. Further, even at a high temperature of 300 ° C. or higher, phosphoric acid has little evaporation and its melting point is below room temperature, so even if it evaporates, it solidifies and adheres to the surroundings to prevent work. On the contrary,
Other organic acids such as benzoic acid not only hinder the work by solidifying the evaporate and adhering to the surroundings, but they are insoluble in water and cannot be washed with water, which poses a problem.

【0012】次に本発明の光素子形成方法の第2の実施
例について図2を用いて説明する。第2の実施例では光
素子としてマイクロレンズを形成する方法を示してい
る。図2はマイクロレンズ作製工程を示す断面図で、図
1におけるLiNbO3基板1上のスリット3がレンズとなる
円形部9に変わっている。なお、この実施例ではX板を
用いている。第1の実施例と同様に燐酸中でプロトン交
換を行う。図3にプロトン交換時間に対するプロトン交
換深さの関係を示す。図3よりT=280℃の温度では6.3
時間の熱処理を行うことにより10μmの深さの高屈折率
層5が得られる。これに対して10μmの深さを得るため
にはT=230℃ではほぼ100時間かかり、高温処理が製造
時間の短縮に大いに寄与していることがわかる。この実
施例ではLiNbO3基板1には表面荒れが見られず、それに
よる散乱も発生しなかった。つまり、リチウム塩を燐酸
に添加することにより、+x面または−x面は化学損傷
を受けることなく長時間のプロトン交換を行うことが可
能となった。また同様にフレネルレンズ,グレーティン
グレンズなどの形成にも使用できる。
Next, a second embodiment of the optical element forming method of the present invention will be described with reference to FIG. The second embodiment shows a method of forming a microlens as an optical element. FIG. 2 is a cross-sectional view showing a microlens manufacturing process, in which the slit 3 on the LiNbO 3 substrate 1 in FIG. 1 is changed to a circular portion 9 which becomes a lens. The X plate is used in this embodiment. Proton exchange is carried out in phosphoric acid as in the first embodiment. FIG. 3 shows the relationship between the proton exchange time and the proton exchange depth. From Figure 3, 6.3 at temperature T = 280 ℃
By performing heat treatment for a time, the high refractive index layer 5 having a depth of 10 μm can be obtained. On the other hand, it takes almost 100 hours at T = 230 ° C to obtain the depth of 10 μm, and it can be seen that the high temperature treatment greatly contributes to the reduction of the manufacturing time. In this example, no surface roughness was observed on the LiNbO 3 substrate 1, and scattering due to it was not generated. That is, by adding the lithium salt to phosphoric acid, it became possible to perform proton exchange for a long time without chemical damage on the + x plane or the −x plane. It can also be used to form Fresnel lenses and grating lenses.

【0013】ところで熱処理を行う温度が170℃以下で
は拡散定数が低く工業的に問題である。また熱処理を行
う温度が300℃以上では酸の状態が大きく変化し易く再
現性が悪くなる。
By the way, if the temperature for heat treatment is 170 ° C. or lower, the diffusion constant is low, which is an industrial problem. Further, when the temperature for heat treatment is 300 ° C. or higher, the acid state is apt to change greatly and the reproducibility deteriorates.

【0014】本発明の光導波路の製造方法の第3の実施
例について図を用いて説明を行う。図4に本発明の光導
波路の製造方法の工程図を示す。図4(a)でZ板のLi
TaO3基板1aに光導波路用マスクとしてTa6をストラ
イプ状にパターニングを行いTa6に幅4μm、長さ1
2mmのスリットを形成した。次に同図(b)で260
℃、20分間、燐酸リチウム30%を加えピロ燐酸中で
LiTaO3基板1aに対してプロトン交換を行った。これに
より厚み0.6μmの高屈折率層5が形成された。次に
同図(c)でTaマスク6を除去した後、赤外線加熱装
置を用いて460℃で10秒熱処理を行った。昇温レー
トは10℃/秒である。昇温レートが遅いと高屈折率層
は広がってしまうため100℃/分以上が望ましい。ア
ニール処理によりロスが減少した上に高屈折率層5に非
線形性が戻る。プロトン交換された保護マスクのスリッ
ト直下の領域は屈折率が0.03程度上昇した高屈折率
層2となる。光は高屈折率層2を伝搬し、これが光導波
路2となる。光導波路2の非線形光学定数はLiTaO3基板
1aと同じ26pm/vであった。また、厚みは1.6μm
と薄いため閉じ込めの良い光導波路2が形成できた。さ
らに、伝搬損失0.2dB/cmと従来の1dB/cmに比べて大幅に
改善できた。
A third embodiment of the optical waveguide manufacturing method of the present invention will be described with reference to the drawings. FIG. 4 shows a process chart of the method for manufacturing an optical waveguide of the present invention. In Fig. 4 (a), the Li of Z plate
Ta6 is patterned into stripes on the TaO 3 substrate 1a as an optical waveguide mask, and Ta6 has a width of 4 μm and a length of 1
A 2 mm slit was formed. Next, in FIG.
℃, 20 minutes, add 30% lithium phosphate in pyrophosphoric acid
Proton exchange was performed on the LiTaO 3 substrate 1a. As a result, the high refractive index layer 5 having a thickness of 0.6 μm was formed. Next, after removing the Ta mask 6 in the same figure (c), heat treatment was performed at 460 ° C. for 10 seconds using an infrared heating device. The heating rate is 10 ° C./sec. If the temperature rising rate is slow, the high refractive index layer will spread, so 100 ° C./min or more is desirable. The annealing process reduces the loss and restores the high refractive index layer 5 with nonlinearity. The region immediately below the slit of the proton-exchanged protective mask becomes the high refractive index layer 2 having a refractive index increased by about 0.03. The light propagates through the high refractive index layer 2 and becomes the optical waveguide 2. The nonlinear optical constant of the optical waveguide 2 was 26 pm / v, which is the same as that of the LiTaO 3 substrate 1a. The thickness is 1.6 μm.
Since it is thin, the optical waveguide 2 with good confinement can be formed. Furthermore, the propagation loss was 0.2 dB / cm, which was a significant improvement over the conventional 1 dB / cm.

【0015】次に第4の実施例として本発明の光素子の
製造方法について図を使って説明する。ここでは光素子
として光波長変換素子を取り上げている。図5はその製
造工程図である。同図(a)でまずLiTaO3基板1aに通
常のフォトプロセスとドライエッチングを用いてTa6
aを周期状にパターニングする。次に同図(b)でTa
6aによるパターンが形成されたLiTaO3基板1aに26
0℃、30分間、燐酸リチウムを加えたピロ燐酸中でプ
ロトン交換を行いスリット直下に厚み0.8μmのプロ
トン交換層を形成した後、590℃の温度で10分間熱
処理する。熱処理の上昇レートは10℃/分、冷却レー
トは50℃/分である。これにより分極反転層3が形成
される。冷却レートが遅いと不均一反転が生じるので3
0℃/分以上が望ましい。プロトン交換層はLiが減少
しておりキュリー温度が低下するため部分的に分極反転
ができる。次にHF:HNF3の1:1混合液にて2分
間エッチングしTa6aを除去する。次に上記分極反転
層3に対してプロトン交換を用いて光導波路2を形成す
る。同図(c)で光導波路用マスクとしてTaをストラ
イプ状にパターニングを行った後、Taマスクに幅4μ
m、長さ12mmのスリットが形成されたものに260
℃、16分間、燐酸リチウムを加えた燐酸中でプロトン
交換を行った。これにより厚み0.45μmの高屈折率
層5が形成される。次に同図(d)でTaマスクを除去
した後、赤外線加熱装置を用いて420℃で30秒熱処
理を行った。熱処理により均一化されロスが減少した上
に高屈折率層5に非線形性が戻る。熱処理により高屈折
率層5は広がり屈折率が0.03程度上昇した高屈折率
層2となる。光は高屈折率層2を伝搬し、これが光導波
路2となる。最後に蒸着によりSiO2を3000A付加し
た。
Next, a method of manufacturing an optical element according to the present invention will be described as a fourth embodiment with reference to the drawings. Here, an optical wavelength conversion element is taken as an optical element. FIG. 5 is a manufacturing process diagram thereof. In the same figure (a), first, Ta6 was applied to the LiTaO 3 substrate 1a by using a normal photoprocess and dry etching.
Pattern a in a periodic pattern. Next, in FIG.
26 on the LiTaO 3 substrate 1a on which the pattern of 6a is formed.
Proton exchange is performed in pyrophosphoric acid containing lithium phosphate at 0 ° C. for 30 minutes to form a 0.8 μm-thick proton exchange layer immediately below the slit, and then heat treatment is performed at a temperature of 590 ° C. for 10 minutes. The rising rate of heat treatment is 10 ° C./min, and the cooling rate is 50 ° C./min. Thereby, the domain inversion layer 3 is formed. If the cooling rate is slow, non-uniform inversion occurs, so 3
0 ° C./min or more is desirable. Since the Li content of the proton exchange layer is reduced and the Curie temperature is lowered, polarization inversion can be partially performed. Next, Ta6a is removed by etching with a 1: 1 mixed solution of HF: HNF 3 for 2 minutes. Next, the optical waveguide 2 is formed on the polarization inversion layer 3 by using proton exchange. In the same figure (c), Ta is patterned into a stripe shape as an optical waveguide mask, and then a Ta mask having a width of 4 μm is formed.
260 with m and 12 mm long slits
Proton exchange was carried out in phosphoric acid containing lithium phosphate at 16 ° C. for 16 minutes. As a result, the high refractive index layer 5 having a thickness of 0.45 μm is formed. Next, after removing the Ta mask in the same figure (d), heat treatment was performed at 420 ° C. for 30 seconds using an infrared heating device. The heat treatment uniformizes the loss and reduces the loss, and the high refractive index layer 5 returns to the non-linearity. By the heat treatment, the high-refractive index layer 5 becomes the high-refractive index layer 2 in which the widening refractive index is increased by about 0.03. The light propagates through the high refractive index layer 2 and becomes the optical waveguide 2. Finally, 3000 A of SiO 2 was added by vapor deposition.

【0016】上記のような工程により非線形性の大きな
光導波路2が製造された。非線形光学定数はLiTaO3基板
1と同程度である。この光導波路2の厚みdは1.8μ
mであり分極反転層3の厚み2.0μmに比べ小さく有
効に波長変換される。分極反転層3の周期は10.8μ
mであり波長0.84nmに対して動作する。また、こ
の光導波路2の非分極反転層4と分極反転層3の屈折率
変化はなく、光が導波する場合の伝搬損失は小さい。光
導波路2に垂直な面を光学研磨し入射部および出射部を
形成した。このようにして光波長変換素子が製造でき
る。また、この素子の長さは9mmである。基本波P1
として半導体レーザ光(波長0.84μm)を入射部よ
り導波させたところシングルモード伝搬し、波長0.4
2μmの高調波P2が出射部より基板外部に取り出され
た。光導波路2の伝搬損失は1dB/cmと小さく高調波P2
が有効に取り出された。低損失化の原因の1つとして燐
酸により均一な光導波路が形成されたことがある。基本
波40mWの入力で1mWの高調波(波長0.42μ
m)を得た。この場合の変換効率は2.5%であり従来
のものにくらべて5倍の高効率化が図られている。図6
に420℃の温度での熱処理時間と光導波路厚みとの関
係を示す。熱処理時間が4分以内だと3μm以下の閉じ
込めの良い光導波路が形成でき実用的である。また、1
分以内の熱処理を行うことにより2μm以下の光導波路
の作製も可能となり光波長変換素子用光導波路の製造方
法として最適である。このような短時間処理を行うには
急速加熱が可能な赤外線加熱装置が適している。
The optical waveguide 2 having a large non-linearity was manufactured by the steps as described above. The nonlinear optical constant is about the same as that of LiTaO 3 substrate 1. The thickness d of this optical waveguide 2 is 1.8 μm.
m, which is smaller than the thickness of the domain inversion layer 3 of 2.0 μm, and the wavelength is effectively converted. The period of the domain inversion layer 3 is 10.8μ
m and operates for a wavelength of 0.84 nm. Further, there is no change in the refractive index of the non-polarization inversion layer 4 and the polarization inversion layer 3 of the optical waveguide 2, and the propagation loss when light is guided is small. A plane perpendicular to the optical waveguide 2 was optically polished to form an incident portion and an emission portion. In this way, the light wavelength conversion element can be manufactured. The length of this element is 9 mm. Fundamental wave P1
As a result, when a semiconductor laser light (wavelength 0.84 μm) is guided from the incident portion, single mode propagation is performed, and the wavelength 0.4
The harmonic P2 of 2 μm was taken out of the substrate from the emitting portion. The propagation loss of the optical waveguide 2 is as small as 1 dB / cm and the harmonic wave P2
Was effectively taken out. One of the causes of low loss is that phosphoric acid forms a uniform optical waveguide. Input of 40 mW of fundamental wave, harmonic of 1 mW (wavelength 0.42μ
m) was obtained. The conversion efficiency in this case is 2.5%, which is 5 times higher than the conventional one. Figure 6
Shows the relationship between the heat treatment time at a temperature of 420 ° C. and the thickness of the optical waveguide. When the heat treatment time is within 4 minutes, an optical waveguide having a good confinement of 3 μm or less can be formed, which is practical. Also, 1
It is possible to manufacture an optical waveguide having a thickness of 2 μm or less by performing heat treatment within a minute, which is the most suitable method for manufacturing an optical waveguide for an optical wavelength conversion element. An infrared heating device capable of rapid heating is suitable for performing such a short-time treatment.

【0017】なお、実施例ではリチウム塩として燐酸リ
チウムを用いたが他のリチウム塩である安息香酸リチウ
ム等でもかまわない。また、燐酸としては100%のピ
ロ燐酸、または100%のオルト燐酸でも使用可能であ
る。
In the examples, lithium phosphate was used as the lithium salt, but other lithium salts such as lithium benzoate may be used. As phosphoric acid, 100% pyrophosphoric acid or 100% orthophosphoric acid can also be used.

【0018】[0018]

【発明の効果】以上説明したように本発明の光素子形成
方法によればリチウム塩で希釈した燐酸を用いてプロト
ン交換を行うことでLiNbxTa1-xO3(0≦x≦1)基板に、
屈折率変化量のおおきな高屈折率層を損失なく形成でき
る。
As described above, according to the optical element forming method of the present invention, LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) is obtained by performing proton exchange using phosphoric acid diluted with a lithium salt. On the board,
A high refractive index layer having a large amount of change in refractive index can be formed without loss.

【0019】また、この方法は高屈折率変化層を表面荒
れなく作製できるために、より閉じ込めの良い光導波路
や位相変化量が大きなマイクロレンズ等が作製できる。
Further, according to this method, since the high refractive index change layer can be formed without surface roughness, an optical waveguide with better confinement and a microlens with a large amount of phase change can be formed.

【0020】また、本発明の光導波路の製造方法によれ
ば、大きな非線形性を有しなおかつ閉じ込めの良い光導
波路を形成することができる。
Further, according to the method of manufacturing an optical waveguide of the present invention, it is possible to form an optical waveguide having large non-linearity and good confinement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光導波路の製造方法の
工程図
FIG. 1 is a process diagram of a method of manufacturing an optical waveguide according to a first embodiment of the present invention.

【図2】本発明の第2の実施例のフレネルレンズの製造
方法の工程図
FIG. 2 is a process drawing of a method for manufacturing a Fresnel lens according to a second embodiment of the present invention.

【図3】熱処理時間と光導波路厚みの関係を示す特性図FIG. 3 is a characteristic diagram showing the relationship between heat treatment time and optical waveguide thickness.

【図4】本発明の第3の実施例の光導波路の製造方法の
工程図
FIG. 4 is a process chart of a method for manufacturing an optical waveguide according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の光素子の製造方法の工
程図
FIG. 5 is a process chart of a method for manufacturing an optical element according to a fourth embodiment of the present invention.

【図6】熱処理時間と光導波路厚みの関係を示す図FIG. 6 is a diagram showing the relationship between heat treatment time and optical waveguide thickness.

【図7】従来の光素子である光波長変換素子の構成図FIG. 7 is a configuration diagram of an optical wavelength conversion element which is a conventional optical element.

【図8】従来の方法により製造された光波長変換素子の
断面図
FIG. 8 is a sectional view of an optical wavelength conversion device manufactured by a conventional method.

【符号の説明】[Explanation of symbols]

1 LiNbO3基板 2 光導波路 3 分極反転層 5 高屈折率層 6 保護マスク 8 酸 P1 基本波 P2 高調波1 LiNbO 3 substrate 2 optical waveguide 3 polarization inversion layer 5 high refractive index layer 6 protective mask 8 acid P1 fundamental wave P2 harmonic

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウム塩を加えた燐酸中で、LiNbxTa1-x
O3(0≦x≦1)基板を熱処理することで形成された高屈
折率層を備えたことを特徴とする光素子。
1. LiNb x Ta 1-x in phosphoric acid containing lithium salt
An optical device comprising a high refractive index layer formed by heat-treating an O 3 (0 ≦ x ≦ 1) substrate.
【請求項2】リチウム塩を加えた燐酸中で、LiNbxTa1-x
O3(0≦x≦1)基板を熱処理し、前記LiNbxTa1-xO3(0≦
x≦1)基板に高屈折率層を形成することを特徴とする光
素子の製造方法。
2. LiNb x Ta 1-x in phosphoric acid containing lithium salt
The O 3 (0 ≦ x ≦ 1) substrate is heat-treated, and the LiNb x Ta 1-x O 3 (0 ≦ x
x ≦ 1) A method of manufacturing an optical element, which comprises forming a high refractive index layer on a substrate.
【請求項3】リチウム塩を加えた燐酸中で、LiNbxTa1-x
O3(0≦x≦1)基板を熱処理を行い、前記LiNbxTa1-xO
3(0≦x≦1)基板に高屈折率層を形成した後、前記基板
をアニール処理することを特徴とする光導波路の製造方
法。
3. LiNb x Ta 1-x in phosphoric acid containing lithium salt
The O 3 (0 ≦ x ≦ 1) substrate is heat-treated to obtain the LiNb x Ta 1-x O
3 (0 ≦ x ≦ 1) After forming a high refractive index layer on a substrate, the substrate is annealed, and a method of manufacturing an optical waveguide.
【請求項4】LiNbxTa1-xO3(0≦x≦1)基板の+X面ま
たは−X面を用いることを特徴とする請求項2記載の光
素子の製造方法。
4. The method of manufacturing an optical element according to claim 2, wherein the + X plane or the −X plane of a LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) substrate is used.
【請求項5】アニール処理として、400℃以上の温度
でなおかつ4分以内の熱処理を行う請求項3の光導波路
の製造方法。
5. The method of manufacturing an optical waveguide according to claim 3, wherein a heat treatment at a temperature of 400 ° C. or higher for 4 minutes or less is performed as the annealing treatment.
【請求項6】リチウム塩が燐酸リチウムである請求項2
記載の光素子の製造方法。
6. The lithium salt is lithium phosphate.
A method for manufacturing the optical element described in claim 1.
【請求項7】リチウム塩が燐酸リチウムである請求項3
記載の光導波路の製造方法。
7. The lithium salt is lithium phosphate.
A method for manufacturing the optical waveguide described.
JP4252598A 1992-09-22 1992-09-22 Optical element and production of optical element and production of optical waveguide Pending JPH06102554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4252598A JPH06102554A (en) 1992-09-22 1992-09-22 Optical element and production of optical element and production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252598A JPH06102554A (en) 1992-09-22 1992-09-22 Optical element and production of optical element and production of optical waveguide

Publications (1)

Publication Number Publication Date
JPH06102554A true JPH06102554A (en) 1994-04-15

Family

ID=17239601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252598A Pending JPH06102554A (en) 1992-09-22 1992-09-22 Optical element and production of optical element and production of optical waveguide

Country Status (1)

Country Link
JP (1) JPH06102554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365680A (en) * 2001-06-05 2002-12-18 Ngk Insulators Ltd Three-dimensional optical waveguide, optical waveguide device, higher harmonic generator and method of manufacturing three-dimensional optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365680A (en) * 2001-06-05 2002-12-18 Ngk Insulators Ltd Three-dimensional optical waveguide, optical waveguide device, higher harmonic generator and method of manufacturing three-dimensional optical waveguide

Similar Documents

Publication Publication Date Title
JPH06242478A (en) Formation of domain inversion structure of ferroelectric substance
EP0573712B1 (en) Method of manufacturing wavelength conversion device
US5205904A (en) Method to fabricate frequency doubler devices
JPH06102554A (en) Optical element and production of optical element and production of optical waveguide
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JP2502818B2 (en) Optical wavelength conversion element
JP2718259B2 (en) Short wavelength laser light source
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JPH0566440A (en) Laser light source
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2660217B2 (en) Manufacturing method of wavelength conversion element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2538161B2 (en) Method for manufacturing optical waveguide and lens
JPH07120798A (en) Formation of optical wavelength conversion element
JPH0792514A (en) Wavelength conversion solid-state laser element
JP2003215379A (en) Method for producing optical waveguide element
Makio et al. Fabrication of periodically inverted domain structures in LiTaO3 using proton exchange
JP3052654B2 (en) Optical wavelength conversion element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JP3036243B2 (en) Optical wavelength conversion element
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JPH04264534A (en) Production of wavelength converting element
JPH05241216A (en) Second harmonic wave generating element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101