JP2004045536A - Member with optical waveguide and its manufacture method - Google Patents

Member with optical waveguide and its manufacture method Download PDF

Info

Publication number
JP2004045536A
JP2004045536A JP2002200280A JP2002200280A JP2004045536A JP 2004045536 A JP2004045536 A JP 2004045536A JP 2002200280 A JP2002200280 A JP 2002200280A JP 2002200280 A JP2002200280 A JP 2002200280A JP 2004045536 A JP2004045536 A JP 2004045536A
Authority
JP
Japan
Prior art keywords
optical waveguide
ridge
optical
refractive index
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002200280A
Other languages
Japanese (ja)
Inventor
Shigeo Maeda
前田 重雄
Koichi Taniguchi
谷口 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002200280A priority Critical patent/JP2004045536A/en
Publication of JP2004045536A publication Critical patent/JP2004045536A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member with an optical waveguide formed thereon by using an ion exchange method, in which the refractive index distribution on a cross section perpendicular to the optical waveguide, especially, the refractive index distribution in the width direction of the optical waveguide can be controlled so as to be nearly a concentric circle, and to provide its manufacture method. <P>SOLUTION: The member with the optical waveguide is an optical member 1 having a ridge-shaped part functioning as the optical waveguide 2. The ridge-shaped part is constituted so that its refractive index may get larger consecutively or stepwise from the outer surface layer of the ridge-shaped part toward a center part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路付き部材およびその製造方法に関する。
【0002】
【従来の技術】
最近、光ディスクの高密度化、レーザプリンタの高精度化による短波長レーザ光源の要望が高まっている。これらを実現するものとして青色半導体レーザや第二次高調波(SHG)素子が注目されている。SHG素子は擬似位相整合により高出力のレーザ光を発生する素子である。基本波となるレーザ光を透過させるとその半分の波長の二次高調波を発生する光学非線形性を有するKTiOPO(KTP)、LiNbO(LN)やLiTaO(LT)などといった誘電体からなる結晶基板や、石英などの光導波路用ガラスからなる基板などを光学部材として、該部材に周期的分極反転構造とイオン交換三次元導波路とを形成することによりSHG素子が製造される。
【0003】
イオン交換三次元導波路は、上記LN結晶やLT結晶のZ−cut板等の表面に、通常、帯状に形成される。その場合、該光導波路部分の屈折率を周囲よりも高くするために、その部分には外部から特定の元素が導入される。そして、該元素導入のための代表的な方法の1つとしてイオン交換法が挙げられる。例えば、光学部材がLiNbO結晶基板の場合では、プロトン源として安息香酸やピロリン酸を用いて、以下の反応式で示されるイオン交換法によってプロトンHが導入される。
LiNbO + xH → HLi1−xNbO + xLi
【0004】
当該イオン交換法によるプロトンの導入の工程は次のとおりである。
先ず、図4(a)に示すように、光学部材(基板)1の上面のうち光導波路とすべきパターン部分11だけを露出させて、上面のそれ以外の部分は全てマスク層4(ハッチングを施した部分)で覆う。
次に、図4(b)に示すように、液状交換源(LiNbOに対しては、安息香酸、ピロリン酸など)50を加熱して、反応温度(160℃〜260℃)にまで至らしめた後に、室温にて保持した上記マスクされた光学部材1を、加熱した液状交換源50に浸漬して、前記反応温度のまま所定時間保持する。イオン交換は、この反応温度で浸漬保持される間に主として進行し、マスク層4から露出しているパターン部分11と液状交換源50との間で、リチウムイオンとプロトンHとの交換(プロトン交換)が行われ、その部分が光導波路となる。
【0005】
このような方法で形成した光導波路の屈折率分布(光導波路に垂直な断面)の模式図(屈折率の等しい点を一つの線で結んだ図)を図6(A)に示す。この図から明らかなように、厚み方向に着目すると、光学部材の表面付近で屈折率が最大であり、幅方向に着目すると、ほとんど屈折率に差がない。このような歪な屈折率の分布の光導波路を有する光導波路付き部材には以下のような問題点が存在する。
【0006】
(1)屈折率分布の非対称性に起因する基本波とSHGとのオーバーラップの低下、およびそれに伴うSHGへの変換効率の低下。
(2)基板表面が高濃度にプロトン交換され、リチウムイオンが欠乏することによる非線型光学効果の低下に起因する、SHGへの変換効率の低下。
【0007】
このような問題点による弊害を軽減するための製造方法として、所謂逆プロトン交換法を用いた製造方法が提案されている。その製造プロセスを図5に模式的に示す。すなわち、光学部材1にマスク層4とレジスト層3とを形成し(同図(A)〜(C))、所定のパターンを形成した後、上述の方法でプロトン交換を行ってからマスク層4を除去し(同図(D)〜(G))、その後、光学部材1に取り込まれたプロトンをさらにリチウムイオン等といった、プロトン交換された部分21よりも屈折率を低下させるイオンと交換する、所謂逆プロトン交換を行うのである(同図(H);具体的な方法は後述)。図6(B)は、この方法により得られた光導波路の屈折率分布の模式図である。厚み方向に着目すると、逆プロトン交換の結果、表面付近の屈折率が下がり、結果的に、厚み方向に進むにつれて一度屈折率が大きくなって、再び小さくなる、という理想的な分布が実現し得る。しかしながら、この方法では、光学部材の幅方向の屈折率を制御できないので、屈折率分布は依然、歪んだままであって、理想的な分布(同心円形;図7参照)には程遠い。
【0008】
【発明が解決しようとする課題】
本発明は、上記(1)、(2)の弊害を軽減し得る光導波路付き部材、すなわち、光導波路に垂直な断面における屈折率分布が同心円に近くなるように、特に光導波路の幅方向の屈折率分布を制御し得る光導波路付き部材の製造方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明者らは光導波路の物理的構造をも検討して、以下の特徴を有する本発明を完成した。
(1)光導波路としてのリッジ型部分を有する光学部材であって、該リッジ型部分は、その屈折率が、該リッジ型部分の外面表層から中心部に向かって連続的または段階的に大きくなるように構成されてなる光導波路付き部材。
(2)上記光学部材が、強誘電体結晶からなる板状物であるか、または光学ガラスからなる板状物である上記(1)に記載の光導波路付き部材。
(3)光学部材にリッジ型部分を形成する工程[A]と、前記リッジ型部分全体をプロトン交換する工程[B]と、工程[A]、[B]の後に該リッジ型部分の外面表層を逆プロトン交換する工程[C]とを有する光導波路付き部材の製造方法。
(4)上記工程[A]、[B]が、上記リッジ型部分を形成すべき領域をプロトン交換し、その後に、選択エッチングを施す工程である、上記(3)に記載の製造方法。
(5)光学部材にリッジ型部分を形成する工程[A]と、前記リッジ型部分の外面表層を前記光学部材の屈折率を低下させるイオンでイオン交換する工程[D]とを有する光導波路付き部材の製造方法。
(6)上記光学部材がLiNbOまたはLiTaOからなる強誘電体結晶であり、前記光学部材の屈折率を低下させるイオンが、マグネシウムイオンまたはリチウムイオンである上記(5)に記載の製造方法。
【0010】
【発明の実施の形態】
本発明の光導波路付き部材は、光導波路としてのリッジ型部分を有する光学部材であって、該リッジ型部分の外面表層から中心部に向かって屈折率が連続的または段階的に大きくなるように構成されてなることを特徴とする。図1は、本発明の光導波路付き部材の一例を示す図である。同図(A)は斜視図であり、同図(B)は、(A)のI−I断面図である。
【0011】
光導波路2としての「リッジ型部分」とは、光学部材1(例えば、誘電体結晶からなる板状物)の一面に対して光導波路として機能し得る様、稜線状に突起している部分をいう。図2は、光導波路2の屈折率分布(光導波路に垂直な断面)の模式図(屈折率の等しい点を一つの線で結んだ図)である。光導波路2をリッジ型にして、その外面表層から中心部に向かって屈折率を大きくすることは、結果的に光導波路2の高さ方向および幅方向の屈折率分布の両方を制御することに相当する(その手段の例は後述する)。したがって、図2(A)のように光導波路2としてのリッジ型部分は直方体の構造であってもよいが、同図(B)のように、光導波路2自体が半円形の断面形状を有しているのが好ましい。なお、図2(A)、(B)のような屈折率分布は例示であって、このような分布を達成することが本発明の完成にとって必須ではないことは言うまでもない。例えば、光導波路2としてのリッジ型部分の外面表層から中心部への屈折率の変化は連続的であっても段階的であってもよく、また、その変化率はリッジ型部分の各部において同一であっても異なっていてもよい。
【0012】
上述のような光導波路を有することを特徴とする本発明の光導波路付き部材の製造方法を以下、さらに説明する。
【0013】
本発明で用いる光学部材の材料は、イオン交換によって光導波路が形成可能な材料であればよく、強誘電体結晶、光学ガラスなどが挙げられる。
強誘電体結晶としては、例えば、LiNbO、LiTaO、XTiOX(X=K、Rb、Tl、Cs、X=P、As)などの代表的なものや、これらにMgなどの種々の元素をドープしたものが挙げられる。
光学ガラスとしては、石英ガラス、パイレックス(登録商標)ガラス、ソーダガラスなどが挙げられる。
【0014】
光学部材の形態は、最終製品となる素子・デバイスと同様の形状であっても、該素子・デバイスへ分断する前の大面積の基板・ウエハ・母材として、ロッド状、板状などを呈してもよい。例えば、円板状のLiNbO結晶ウエハに光導波路を形成し、個々の素子へ分断するような場合、もとのウエハの大きさとしては、厚さ0.1mm〜1.0mm程度、ウエハ直径は2インチ〜5インチ程度のものが例示される。
【0015】
光学部材の好ましい態様として、LiNbO結晶などの強誘電体結晶に、擬似位相整合法を適用した波長変換動作が可能な様に周期的分極反転構造を形成したもの(分極反転結晶)からなる板状物が挙げられる。該板状物に対して、本発明の製造方法を適用し、その周期的分極反転構造を横切るように光導波路を形成することで、光導波路付き部材は光導波路型波長変換素子となる。
【0016】
本発明の光導波路付き部材は、前記光学部材に光導波路を形成したものであって、それ自体が素子や結合部品などの最終製品であってもよく、また、さらなる加工・処理が施される中間部材であってもよい。
【0017】
本発明の製造方法の一態様として、光学部材にリッジ型部分を形成する工程[A]と、前記リッジ型部分全体をプロトン交換する工程[B]と、工程[A]、[B]の後に該リッジ型部分の外面表層を逆プロトン交換する工程[C]とを有する方法が挙げられる。この場合、工程[A]と[B]との順序は問わず、結果としてリッジ型部分全体がプロトン交換された状態で工程[C]が施されればよい。本発明の好ましい態様として、上記工程[A]、[B]が、光導波路を形成すべき領域を含む光学部材の一面をプロトン交換した後に、選択エッチングを施してリッジ型部分を形成することでなされる方法が挙げられる。図3は、この製造方法の具体例を模式的に示す図である。
【0018】
図3に例示する方法により光導波路を形成する場合には、光学部材1の一面について後述の方法でプロトン交換を行う(図3(A)〜(B))。プロトン交換された部分21の上にレジスト層3を形成して、光導波路とすべき部分のパターニングを行い(同図(C)〜(D))、さらにマスク層4を形成する(同図(E))。レジスト層3をその上のマスク層4とともに除去して(同図(F))から、再度プロトン交換を行って、交換されたプロトンの濃度の異なる部分を形成する。すなわち同図(G)において、符号21で示される領域は一回だけプロトン交換された部分であり、符号22で示される領域は2回プロトン交換された部分である。次いで、マスク層4を除去した後(同図(H))、例えばフッ酸と硝酸の混合液を用いたエッチングを施すこと等により、2回プロトン交換された部分22を重点的にエッチングすることが可能である。これは、プロトン交換の程度によりエッチング速度が異なるためである。その結果、同図(I)のようなリッジ型部分を形成することができる(以上が工程[A]、[B]に相当する)。
【0019】
さらに、工程[C]として、リッジ型部分の外面表層に導入されたプロトンを、リチウムイオン、マグネシウムイオン等といった、プロトン交換された部分よりも屈折率を低下させるイオンと交換する、逆プロトン交換に供する。この結果、同図(J)のように、光導波路の中心部に近いほどプロトン交換の程度が大きく(符号21)、外面表層に近いほど、逆プロトン交換の程度が大きい(符号23)光導波路2を得ることができる。
【0020】
このように、一度プロトン交換された部分のプロトンを、プロトン交換された部分よりも屈折率を低下させるイオンと交換することを「逆プロトン交換」と呼ぶ。また、該リッジ型部分の「外面表層を逆プロトン交換する」とは、光導波路2としての該リッジ型部分の外面表層に近いほど逆プロトン交換の程度を大きくすることを意味する。そのように、「外面表層を逆プロトン交換する」手段としては、屈折率を低下させるイオンの液状交換源に光学部材を浸漬する時間等を適宜調節すること、交換後のアニール処理の時間、温度を調整すること等が例示される。
【0021】
上記方法において、光導波路としてのリッジ型部分を図2(B)のように半円形に近づける具体的な手段としては、前述のフッ酸、硝酸混合液によるエッチング時間の調整およびその後のドライエッチング(RIE、イオンエッチング、スパッタエッチング)等を行うこと等が挙げられる。
【0022】
本発明の製造方法の別の実施態様として、光学部材1にリッジ型部分を形成する工程[A]と、該リッジ型部分の外面表層を前記光学部材1の屈折率を低下させるイオンでイオン交換する工程[D]とを有する方法が挙げられる。工程[D]における「外面表層を〜イオン交換する」の意味は、上述の工程[C]におけるのと同様に、光導波路2としてのリッジ型部分の外面表層に近いほどイオン交換の程度が大である、という意味である。
【0023】
本態様においては、プロトン交換を必須とせず、リッジ型部分の外面表層に近いほど上記屈折率を低下させるイオンによるイオン交換の程度を大きくすることで、結果的に、前述の図2に記載したような屈折率分布に近づけることを意図するものである。
【0024】
光学部材1にリッジ型部分を形成する工程[A]は、自体公知の方法によればよく、イオン交換する工程[D]は、例えば後述する液状交換源に浸漬する方法を援用することができるが、両工程とも特に方法が限定されるわけではない。工程[D]における「光学部材1の屈折率を低下させるイオン」とは、当該イオンでイオン交換することにより、イオン交換しない部分よりも屈折率が低下するイオンであれば特に限定はない。そのようなイオンは、用いる光学部材1に依存するが、例えば、光学部材1がLiNbO、LiTaOからなる強誘電体結晶であれば、リチウムイオン、マグネシウムイオン等が例示される。
【0025】
光導波路の製造のために、プロトンその他のイオンでイオン交換(逆プロトン交換を含む)する場合には、所望の場所のみをイオン交換するために、光学部材のイオン交換を望まない場所にマスク層4を設けた後に、上述の加熱した液状交換源に浸漬して、その温度のまま所定時間保持する方法が挙げられる。このとき、マスク層4の材料は金属膜、誘電体膜、有機薄膜などが挙げられ、マスクパターンの形成方法はフォトリソグラフィー技術などが挙げられる。これらマスク層4の形成に関しては、公知技術を参照してもよい。
【0026】
液状交換源は、イオン交換すべきイオンおよび光学部材の材料に応じて選択すればよく、従来技術を参照してもよい。例えば、従来技術の説明で述べたとおり、LiNbO、LiTaOに対してプロトン交換する場合には、安息香酸、ピロリン酸などの溶液が挙げられる。また光学ガラスに対してプロトン交換する場合は、AgNO、KNO、TlNOなどの溶融塩が挙げられる。
【0027】
LiNbO、LiTaOに対してリチウムイオンでイオン交換する方法としては、LiNO、安息香酸リチウムなどの溶融塩に浸す方法が挙げられ、マグネシウムイオンでイオン交換する方法としては、MgNO、安息香酸などのMg化合物の溶融塩に浸す方法や、LiNbO、LiTaO表面にMgやMg化合物の薄膜を形成し、拡散によりMgイオンをドープする方法が挙げられる。
【0028】
イオン交換温度は、光学部材と液状交換源との組み合わせによっても異なるが、目標とすべき温度は該して200℃〜350℃程度である。この温度の範囲は、あくまで目標値として選択できる範囲であって、この範囲の中からある目標温度を選択したならば、意図せぬ変動量はゼロに近いことが好ましい。
【0029】
例えば、LiNbO基板を、ピロリン酸に浸漬する場合には、目標とすべき温度は200℃〜300℃、好ましくは210℃〜250℃であり、できる限り変動させないように温度制御することが好ましい。温度制御の手法に起因する変動量や定常偏差は、±5℃程度以内とすべきであって、これらは、温度制御の手法や製品に求められる品質に応じて適宜決定すればよい。
【0030】
液状交換源に光学部材を浸漬する時間には限定はないが、実例としては10秒〜10時間程度が挙げられる。より具体的な例としては、ピロリン酸にLiNbOを浸漬する場合のようにイオン交換速度が速く、しかも深さ数μm程度の比較的浅い光導波路を形成するような場合には、浸漬保持時間は20分以下、特に5分〜15分程度となる。別の例としては、LiNOとKNOとNaNOとの混合溶液を用いて上述した逆プロトン交換を行う場合は、浸漬保持時間は1〜20時間、特に5〜15時間となる。
【0031】
イオン交換を終了させるには、浸漬解除(光学部材を液状交換源から引き上げる)すればよい。必要に応じて冷却中に光学部材を回転させて乾燥させたり、洗浄して液状交換源を除去してもよい。さらに、イオン交換後の光学部材に対するアニール処理や端面への光学研磨など、光導波路形成のために必要な処理は適宜加えてよく、従来技術を参照してもよい。
【0032】
【実施例】
以下、実施例を示すことにより本発明をより具体的に説明するが、本発明は実施例の記載により何ら限定されるものではない。
【0033】
[実施例1]
加工対象とした光学部材は、MgO添加LiNbO結晶基板に周期的分極反転構造(分極反転周期7μm)を形成してなる分極反転結晶基板であって、板厚0.3mm、幅10mm×長さ10mmの、板状物である。以下、発明の実施形態で用いた図3を再び参照して説明する。
【0034】
この光学部材1(図3(A))の表面(導波路を形成する面)の全面を厚み0.5μmにわたりプロトン交換した(図3(B))。プロトン交換は、240℃に加熱したピロリン酸からなる液状交換源に光学部材1を30分間浸漬保持することで行った。次いで、リフトオフ法によりマスク層4としての厚さ0.03μmのTa膜を光導波路を形成する部分のみに設けた(図3(F))。その後、240℃に加熱したピロリン酸からなる液状交換源に光学部材1を120分間浸漬保持することで再びプロトン交換を行った。その結果、光学部材1の表面には、1回だけプロトン交換された部分21および2回プロトン交換された部分22が形成された(図3(G))。
【0035】
その後、光学部材1に残ったマスク層4を5重量%のHF水溶液でエッチングすることにより除去した(図3(H))。さらに、選択エッチングとして、HF(濃度50%)とHNO(濃度60%)とを1:2の重量比で含む水溶液(70℃)に1時間浸漬するすることで、上記2回プロトン交換された部分22を除去して、1回だけプロトン交換された部分21をリッジ型部分として形成することができた(図3(I))。さらに、350℃の加熱炉に4時間保持することでアニール処理を施した(図示せず)後に逆プロトン交換を行った。逆プロトン交換は、LiNOとKNOとNaNOとを37.5:44.5:18(重量比)で含む328℃に加熱した液状交換源に前記アニール処理後の光学部材1を10時間浸漬保持して、引き上げた後、室温で放冷することで実施した。その結果、外面表層から中心部に向かって逆プロトンの程度が小さくなる光導波路2を有する光導波路つき部材を得た(図3(J))。
【0036】
【発明の効果】
本発明の製造方法によれば、光導波路の高さ(深さ)方向ばかりでなく、幅方向の屈折率をも制御し得るようになるので、理想的な屈折率分布(すなわち光導波路に垂直な断面の屈折率分布が円形状であること)に近づけることができる。そのことにより、(1)屈折率分布の対称性向上による基本波とSHGとのオーバーラップの低下や、それに伴うSHGへの変換効率の低下、(2)基板表面が高濃度にプロトン交換され、リチウムイオンの欠乏による非線型光学効果の低下に起因する、SHGへの変換効率の低下、といった問題を軽減することが期待される。
【図面の簡単な説明】
【図1】本発明の光導波路付き部材の一例を示す図である。(A)は斜視図であり、(B)は(A)におけるI−I断面図である。
【図2】光導波路に垂直な断面の屈折率分布の模式図(屈折率の等しい点を一つの線で結んだ図)である。
【図3】光導波路付き部材の製造プロセスを模式的に示す図である。
【図4】光導波路付き部材の製造方法における工程の重要部分を概略的に示す図である。
【図5】光導波路付き部材の製造プロセスを模式的に示す図である。
【図6】光導波路に垂直な断面の屈折率分布の模式図(屈折率の等しい点を一つの線で結んだ図)である。
【図7】理想的な光導波路における、光導波路に垂直な断面の屈折率分布の模式図(屈折率の等しい点を一つの線で結んだ図)である。
【符号の説明】
1  光学部材
11 パターン部分
2  光導波路
21 プロトン交換された部分
22 2回プロトン交換された部分
23 逆プロトン交換された部分
3  レジスト層
4  マスク層
50 液状交換源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a member with an optical waveguide and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been an increasing demand for a short wavelength laser light source due to an increase in the density of an optical disk and an increase in the accuracy of a laser printer. Attention has been paid to blue semiconductor lasers and second harmonic (SHG) devices to realize these. The SHG element is an element that generates high-output laser light by quasi-phase matching. It is made of a dielectric material such as KTiOPO 4 (KTP), LiNbO 3 (LN), or LiTaO 3 (LT) which has an optical nonlinearity that generates a second harmonic having a half wavelength when a laser beam serving as a fundamental wave is transmitted. An SHG element is manufactured by forming a periodically poled structure and an ion-exchange three-dimensional waveguide on a crystal substrate or a substrate made of glass for an optical waveguide such as quartz as an optical member.
[0003]
The ion-exchange three-dimensional waveguide is usually formed in the shape of a strip on the surface of the above-mentioned LN crystal or LT crystal Z-cut plate or the like. In that case, in order to make the refractive index of the optical waveguide portion higher than that of the surroundings, a specific element is introduced into the portion from the outside. One of the typical methods for introducing the element is an ion exchange method. For example, when the optical member is a LiNbO 3 crystal substrate, proton H + is introduced by an ion exchange method represented by the following reaction formula using benzoic acid or pyrophosphoric acid as a proton source.
LiNbO 3 + xH + → H x Li 1-x NbO 3 + xLi +
[0004]
The step of introducing protons by the ion exchange method is as follows.
First, as shown in FIG. 4 (a), only the pattern portion 11 to be an optical waveguide is exposed on the upper surface of the optical member (substrate) 1, and all other portions on the upper surface are mask layers 4 (hatched portions). Covered part).
Next, as shown in FIG. 4B, the liquid exchange source (benzoic acid, pyrophosphoric acid, etc. for LiNbO 3 ) 50 is heated to reach the reaction temperature (160 ° C. to 260 ° C.). After that, the masked optical member 1 held at room temperature is immersed in the heated liquid exchange source 50 and held at the reaction temperature for a predetermined time. The ion exchange mainly proceeds while being immersed and held at the reaction temperature, and exchanges lithium ions with protons H + between the pattern portion 11 exposed from the mask layer 4 and the liquid exchange source 50 (proton H +). Exchange), and that portion becomes an optical waveguide.
[0005]
FIG. 6A is a schematic diagram of a refractive index distribution (a cross section perpendicular to the optical waveguide) of the optical waveguide formed by such a method (a diagram in which points having the same refractive index are connected by one line). As is clear from this figure, when focusing on the thickness direction, the refractive index is maximum near the surface of the optical member, and when focusing on the width direction, there is almost no difference in the refractive index. A member with an optical waveguide having an optical waveguide having such a distorted refractive index distribution has the following problems.
[0006]
(1) The reduction of the overlap between the fundamental wave and the SHG caused by the asymmetry of the refractive index distribution, and the reduction of the conversion efficiency to the SHG accompanying the reduction.
(2) A decrease in the conversion efficiency to SHG due to a decrease in the nonlinear optical effect due to a high concentration of proton exchange on the substrate surface and a lack of lithium ions.
[0007]
As a manufacturing method for reducing the adverse effects due to such problems, a manufacturing method using a so-called reverse proton exchange method has been proposed. FIG. 5 schematically shows the manufacturing process. That is, a mask layer 4 and a resist layer 3 are formed on the optical member 1 (FIGS. 3A to 3C), a predetermined pattern is formed, and proton exchange is performed by the above-described method. ((D)-(G) in the figure), and thereafter, the protons taken into the optical member 1 are further exchanged with ions such as lithium ions, which have a lower refractive index than the proton-exchanged portion 21. The so-called reverse proton exchange is performed (FIG. (H); a specific method will be described later). FIG. 6B is a schematic diagram of the refractive index distribution of the optical waveguide obtained by this method. Focusing on the thickness direction, as a result of the reverse proton exchange, the refractive index near the surface decreases, and as a result, an ideal distribution can be realized in which the refractive index increases once in the thickness direction and then decreases again. . However, in this method, since the refractive index in the width direction of the optical member cannot be controlled, the refractive index distribution is still distorted and far from an ideal distribution (concentric circle; see FIG. 7).
[0008]
[Problems to be solved by the invention]
The present invention provides a member with an optical waveguide that can reduce the adverse effects of the above (1) and (2), that is, the refractive index distribution in a cross section perpendicular to the optical waveguide is close to a concentric circle, particularly in the width direction of the optical waveguide. An object of the present invention is to provide a method for manufacturing a member with an optical waveguide that can control the refractive index distribution.
[0009]
[Means for Solving the Problems]
The present inventors also studied the physical structure of the optical waveguide and completed the present invention having the following features.
(1) An optical member having a ridge-type portion as an optical waveguide, wherein the refractive index of the ridge-type portion increases continuously or stepwise from the outer surface layer of the ridge-type portion toward the center. A member with an optical waveguide configured as described above.
(2) The member with an optical waveguide according to the above (1), wherein the optical member is a plate made of a ferroelectric crystal or a plate made of optical glass.
(3) a step [A] of forming a ridge-shaped portion on the optical member, a step [B] of performing proton exchange on the entire ridge-shaped portion, and an outer surface layer of the ridge-shaped portion after the steps [A] and [B]. For producing a member with an optical waveguide, comprising a step [C] of subjecting to a reverse proton exchange.
(4) The manufacturing method according to (3), wherein the steps [A] and [B] are steps in which a region where the ridge-type portion is to be formed is subjected to proton exchange and thereafter selective etching is performed.
(5) With an optical waveguide having a step [A] of forming a ridge-shaped portion on an optical member and a step [D] of ion-exchanging the outer surface layer of the ridge-shaped portion with ions that lower the refractive index of the optical member. A method for manufacturing a member.
(6) The method according to (5), wherein the optical member is a ferroelectric crystal made of LiNbO 3 or LiTaO 3 , and the ion that lowers the refractive index of the optical member is a magnesium ion or a lithium ion.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The member with an optical waveguide of the present invention is an optical member having a ridge-shaped portion as an optical waveguide, and the refractive index increases continuously or stepwise from the outer surface layer of the ridge-shaped portion toward the center. It is characterized by comprising. FIG. 1 is a diagram illustrating an example of a member with an optical waveguide of the present invention. FIG. 1A is a perspective view, and FIG. 1B is a sectional view taken along line II of FIG. 1A.
[0011]
The “ridge-shaped portion” as the optical waveguide 2 is a portion that protrudes in a ridge line shape so as to function as an optical waveguide with respect to one surface of the optical member 1 (for example, a plate made of a dielectric crystal). Say. FIG. 2 is a schematic diagram of a refractive index distribution (a cross section perpendicular to the optical waveguide) of the optical waveguide 2 (a diagram in which points having the same refractive index are connected by one line). Making the optical waveguide 2 ridge-type and increasing the refractive index from the outer surface layer toward the center thereof results in controlling both the refractive index distribution in the height direction and the width direction of the optical waveguide 2. (Examples of the means will be described later). Therefore, the ridge-shaped portion as the optical waveguide 2 may have a rectangular parallelepiped structure as shown in FIG. 2A, but the optical waveguide 2 itself has a semicircular cross-sectional shape as shown in FIG. Preferably. It should be noted that the refractive index distribution as shown in FIGS. 2A and 2B is an example, and it is needless to say that achieving such a distribution is not essential for completing the present invention. For example, the change in the refractive index from the outer surface layer to the center of the ridge-shaped portion as the optical waveguide 2 may be continuous or stepwise, and the change rate is the same in each portion of the ridge-shaped portion. Or different.
[0012]
Hereinafter, a method for manufacturing a member with an optical waveguide according to the present invention, which has the above-described optical waveguide, will be further described.
[0013]
The material of the optical member used in the present invention may be any material capable of forming an optical waveguide by ion exchange, and examples thereof include a ferroelectric crystal and an optical glass.
The ferroelectric crystal, for example, LiNbO 3, LiTaO 3, X A TiOX B O 4 (X A = K, Rb, Tl, Cs, X B = P, As) typical or the like, these Examples thereof include those doped with various elements such as Mg.
Examples of the optical glass include quartz glass, Pyrex (registered trademark) glass, and soda glass.
[0014]
The form of the optical member, even if it has the same shape as the element / device as the final product, exhibits a rod shape, a plate shape, etc. as a large-area substrate / wafer / base material before being divided into the element / device. You may. For example, when an optical waveguide is formed on a disk-shaped LiNbO 3 crystal wafer and divided into individual elements, the size of the original wafer is about 0.1 mm to 1.0 mm in thickness, the wafer diameter is about Is about 2 inches to 5 inches.
[0015]
As a preferred embodiment of the optical member, a plate made of a ferroelectric crystal such as LiNbO 3 crystal or the like (a domain-inverted crystal) in which a periodic domain-inverted structure is formed so that a wavelength conversion operation using a quasi-phase matching method can be performed. State. By applying the manufacturing method of the present invention to the plate-like object and forming the optical waveguide so as to cross the periodically poled structure, the member with the optical waveguide becomes an optical waveguide type wavelength conversion element.
[0016]
The member with an optical waveguide of the present invention is a member in which an optical waveguide is formed on the optical member, and may itself be a final product such as an element or a coupling part, and further processed and processed. It may be an intermediate member.
[0017]
As one embodiment of the manufacturing method of the present invention, after the step [A] of forming a ridge-shaped portion on the optical member, the step [B] of performing proton exchange on the entire ridge-shaped portion, and the steps [A] and [B], A step [C] of subjecting the outer surface layer of the ridge-type portion to reverse proton exchange. In this case, regardless of the order of the steps [A] and [B], the step [C] may be performed in a state where the entire ridge-shaped portion is proton-exchanged. As a preferred embodiment of the present invention, the steps [A] and [B] are such that after performing proton exchange on one surface of an optical member including a region where an optical waveguide is to be formed, selective etching is performed to form a ridge-type portion. There are methods to be performed. FIG. 3 is a diagram schematically showing a specific example of this manufacturing method.
[0018]
When the optical waveguide is formed by the method illustrated in FIG. 3, proton exchange is performed on one surface of the optical member 1 by a method described later (FIGS. 3A and 3B). A resist layer 3 is formed on the proton-exchanged portion 21, a portion to be an optical waveguide is patterned (FIGS. 9C to 10D), and a mask layer 4 is further formed (FIG. E)). After the resist layer 3 is removed together with the mask layer 4 thereon (FIG. 4F), proton exchange is performed again to form portions having different exchanged proton concentrations. That is, in FIG. 9G, a region indicated by reference numeral 21 is a portion subjected to proton exchange only once, and a region indicated by reference numeral 22 is a portion subjected to proton exchange twice. Next, after the mask layer 4 is removed (FIG. 2H), the portion 22 that has undergone twice proton exchange is mainly etched by, for example, performing etching using a mixed solution of hydrofluoric acid and nitric acid. Is possible. This is because the etching rate varies depending on the degree of proton exchange. As a result, a ridge-shaped portion as shown in FIG. 1I can be formed (the above corresponds to steps [A] and [B]).
[0019]
Further, in the step [C], the proton introduced into the outer surface layer of the ridge-type portion is exchanged with an ion such as lithium ion or magnesium ion, which lowers the refractive index than the proton-exchanged portion. Offer. As a result, the degree of proton exchange is larger near the center of the optical waveguide (reference numeral 21), and the degree of reverse proton exchange is larger near the outer surface layer (reference numeral 23), as shown in FIG. 2 can be obtained.
[0020]
In this way, exchanging the protons in the once proton-exchanged part with ions having a lower refractive index than the proton-exchanged part is called “reverse proton exchange”. Further, “reverse proton exchange on the outer surface layer of the ridge type portion” means that the degree of reverse proton exchange becomes larger as the optical waveguide 2 is closer to the outer surface layer of the ridge type portion. As such, the means for “reverse proton exchange on the outer surface layer” includes appropriately adjusting the time for immersing the optical member in a liquid exchange source of ions for lowering the refractive index, the time for annealing after the exchange, and the temperature. Is adjusted.
[0021]
In the above method, as a specific means for making the ridge-shaped portion as an optical waveguide close to a semicircular shape as shown in FIG. 2B, adjustment of the etching time with the above-mentioned mixed solution of hydrofluoric acid and nitric acid and subsequent dry etching ( (RIE, ion etching, sputter etching) and the like.
[0022]
As another embodiment of the manufacturing method of the present invention, a step [A] of forming a ridge-shaped portion on the optical member 1 and ion-exchange of the outer surface layer of the ridge-shaped portion with ions that reduce the refractive index of the optical member 1 are performed. And step [D]. In the step [D], the meaning of “to ion exchange the outer surface layer” means, as in the above step [C], the degree of ion exchange increases as the optical waveguide 2 is closer to the outer surface layer of the ridge-shaped portion. It means that
[0023]
In this embodiment, proton exchange is not essential, and the degree of ion exchange by ions that lowers the refractive index is increased nearer to the outer surface layer of the ridge-type portion, and as a result, the degree of ion exchange described in FIG. It is intended to approach such a refractive index distribution.
[0024]
The step [A] of forming the ridge-shaped portion on the optical member 1 may be performed by a method known per se, and the step [D] of performing ion exchange may employ, for example, a method of immersion in a liquid exchange source described below. However, the method is not particularly limited in both steps. The “ion that lowers the refractive index of the optical member 1” in the step [D] is not particularly limited as long as the ion has a lower refractive index than a portion that does not exchange by ion exchange with the ion. Such ions depend on the optical member 1 to be used. For example, when the optical member 1 is a ferroelectric crystal made of LiNbO 3 or LiTaO 3 , lithium ions, magnesium ions, and the like are exemplified.
[0025]
When ion exchange (including reverse proton exchange) is performed with protons or other ions for manufacturing an optical waveguide, a mask layer is placed in a place where ion exchange of an optical member is not desired in order to ion-exchange only a desired place. After providing 4, a method of immersing in the above-described heated liquid exchange source and maintaining the temperature at that temperature for a predetermined period of time may be mentioned. At this time, examples of the material of the mask layer 4 include a metal film, a dielectric film, and an organic thin film, and a method of forming a mask pattern includes a photolithography technique. Regarding the formation of the mask layer 4, a known technique may be referred to.
[0026]
The liquid exchange source may be selected according to the ion to be ion-exchanged and the material of the optical member, and conventional techniques may be referred to. For example, as described in the description of the related art, when proton exchange is performed on LiNbO 3 or LiTaO 3 , a solution of benzoic acid, pyrophosphoric acid, or the like is used. When proton exchange is performed on the optical glass, a molten salt such as AgNO 3 , KNO 3 , or TlNO 3 may be used.
[0027]
Examples of a method of ion-exchanging LiNbO 3 and LiTaO 3 with lithium ions include a method of immersing the same in a molten salt such as LiNO 3 and lithium benzoate. Examples of a method of performing ion-exchange with magnesium ions include MgNO 3 and benzoic acid. And a method of forming a thin film of Mg or a Mg compound on the surface of LiNbO 3 or LiTaO 3 and doping Mg ions by diffusion.
[0028]
The ion exchange temperature varies depending on the combination of the optical member and the liquid exchange source, but the target temperature is approximately 200 ° C. to 350 ° C. This temperature range is a range that can be selected only as a target value, and if a certain target temperature is selected from this range, the unintended fluctuation amount is preferably close to zero.
[0029]
For example, when the LiNbO 3 substrate is immersed in pyrophosphoric acid, the target temperature is 200 ° C. to 300 ° C., preferably 210 ° C. to 250 ° C., and it is preferable to control the temperature so as not to fluctuate as much as possible. . The amount of fluctuation and the steady-state deviation due to the temperature control method should be within ± 5 ° C., and these may be appropriately determined according to the temperature control method and the quality required for the product.
[0030]
The time for immersing the optical member in the liquid exchange source is not limited, but a practical example is about 10 seconds to 10 hours. As a more specific example, when a relatively shallow optical waveguide having a high ion exchange rate and a depth of about several μm is formed, as in the case of immersing LiNbO 3 in pyrophosphoric acid, the immersion holding time Is 20 minutes or less, especially about 5 to 15 minutes. As another example, when the above-described reverse proton exchange is performed using a mixed solution of LiNO 3 , KNO 3, and NaNO 3 , the immersion holding time is 1 to 20 hours, particularly 5 to 15 hours.
[0031]
In order to end the ion exchange, the immersion may be released (the optical member may be pulled up from the liquid exchange source). If necessary, the optical member may be rotated to dry during cooling, or may be washed to remove the liquid exchange source. Further, processes necessary for forming an optical waveguide, such as annealing of an optical member after ion exchange and optical polishing of an end face, may be appropriately added, and conventional techniques may be referred to.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically by showing examples, but the present invention is not limited to the description of the examples.
[0033]
[Example 1]
The optical member to be processed is a domain-inverted crystal substrate obtained by forming a periodic domain-inverted structure (polarization inversion period: 7 μm) on a MgO-added LiNbO 3 crystal substrate, and has a thickness of 0.3 mm, a width of 10 mm and a length. It is a plate-shaped object of 10 mm. Hereinafter, description will be made with reference to FIG. 3 used again in the embodiment of the present invention.
[0034]
The entire surface of the optical member 1 (FIG. 3A) (surface on which the waveguide is formed) was subjected to proton exchange over a thickness of 0.5 μm (FIG. 3B). The proton exchange was performed by immersing the optical member 1 in a liquid exchange source made of pyrophosphoric acid heated to 240 ° C. for 30 minutes. Next, a Ta film having a thickness of 0.03 μm as the mask layer 4 was provided only on the portion where the optical waveguide is to be formed by the lift-off method (FIG. 3F). Thereafter, the proton exchange was performed again by immersing the optical member 1 in a liquid exchange source made of pyrophosphoric acid heated to 240 ° C. for 120 minutes. As a result, a portion 21 subjected to proton exchange only once and a portion 22 subjected to proton exchange twice were formed on the surface of the optical member 1 (FIG. 3 (G)).
[0035]
Thereafter, the mask layer 4 remaining on the optical member 1 was removed by etching with a 5% by weight aqueous HF solution (FIG. 3H). Further, as a selective etching, by immersing for 1 hour in an aqueous solution (70 ° C.) containing HF (concentration 50%) and HNO 3 (concentration 60%) at a weight ratio of 1: 2, the proton exchange is performed twice. By removing the portion 22, the portion 21 subjected to proton exchange only once could be formed as a ridge-type portion (FIG. 3 (I)). Further, the sample was kept in a heating furnace at 350 ° C. for 4 hours to perform an annealing treatment (not shown), and thereafter, reverse proton exchange was performed. In the reverse proton exchange, the optical member 1 after the above-described annealing treatment is applied for 10 hours to a liquid exchange source heated to 328 ° C. containing LiNO 3 , KNO 3, and NaNO 3 at a weight ratio of 37.5: 44.5: 18. After immersion and holding, pulling up, it was allowed to cool at room temperature. As a result, a member with an optical waveguide having the optical waveguide 2 in which the degree of the reverse proton decreases from the outer surface layer toward the center was obtained (FIG. 3 (J)).
[0036]
【The invention's effect】
According to the manufacturing method of the present invention, not only the height (depth) direction of the optical waveguide but also the refractive index in the width direction can be controlled. (The refractive index distribution of a simple cross section is circular). As a result, (1) the reduction of the overlap between the fundamental wave and the SHG due to the improvement in the symmetry of the refractive index distribution, and the reduction of the conversion efficiency to the SHG due to the reduction, and (2) the proton exchange of the substrate surface at a high concentration, It is expected that problems such as a decrease in the conversion efficiency to SHG due to a decrease in the nonlinear optical effect due to the lack of lithium ions will be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a member with an optical waveguide of the present invention. (A) is a perspective view, (B) is an II sectional view in (A).
FIG. 2 is a schematic diagram of a refractive index distribution in a cross section perpendicular to the optical waveguide (a diagram in which points having the same refractive index are connected by one line).
FIG. 3 is a view schematically showing a manufacturing process of a member with an optical waveguide.
FIG. 4 is a view schematically showing an important part of a process in a method for manufacturing a member with an optical waveguide.
FIG. 5 is a view schematically showing a manufacturing process of a member with an optical waveguide.
FIG. 6 is a schematic diagram of a refractive index distribution in a cross section perpendicular to the optical waveguide (a diagram in which points having the same refractive index are connected by one line).
FIG. 7 is a schematic diagram of a refractive index distribution of a cross section perpendicular to the optical waveguide in an ideal optical waveguide (a diagram in which points having the same refractive index are connected by one line).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical member 11 Pattern part 2 Optical waveguide 21 Proton exchanged part 22 Twice proton exchanged part 23 Reverse proton exchanged part 3 Resist layer 4 Mask layer 50 Liquid exchange source

Claims (6)

光導波路としてのリッジ型部分を有する光学部材であって、該リッジ型部分は、その屈折率が、該リッジ型部分の外面表層から中心部に向かって連続的または段階的に大きくなるように構成されてなる光導波路付き部材。An optical member having a ridge-type portion as an optical waveguide, wherein the ridge-type portion is configured such that its refractive index increases continuously or stepwise from the outer surface layer of the ridge-type portion toward the center. A member provided with an optical waveguide. 上記光学部材が、強誘電体結晶からなる板状物であるか、または光学ガラスからなる板状物である請求項1に記載の光導波路付き部材。The member with an optical waveguide according to claim 1, wherein the optical member is a plate made of a ferroelectric crystal or a plate made of optical glass. 光学部材にリッジ型部分を形成する工程[A]と、前記リッジ型部分全体をプロトン交換する工程[B]と、工程[A]、[B]の後に該リッジ型部分の外面表層を逆プロトン交換する工程[C]とを有する光導波路付き部材の製造方法。A step [A] of forming a ridge-shaped portion on the optical member, a step [B] of performing proton exchange on the entire ridge-shaped portion, and after the steps [A] and [B], an outer surface layer of the ridge-shaped portion is reversely protonated. A method for manufacturing a member with an optical waveguide, comprising a step [C] of exchanging. 上記工程[A]、[B]が、上記リッジ型部分を形成すべき領域をプロトン交換し、その後に、選択エッチングを施す工程である、請求項3に記載の製造方法。The method according to claim 3, wherein the steps [A] and [B] are steps in which proton exchange is performed on a region where the ridge-type portion is to be formed, and thereafter, selective etching is performed. 光学部材にリッジ型部分を形成する工程[A]と、前記リッジ型部分の外面表層を前記光学部材の屈折率を低下させるイオンでイオン交換する工程[D]とを有する光導波路付き部材の製造方法。Production of a member with an optical waveguide including a step [A] of forming a ridge-shaped portion on an optical member and a step [D] of performing ion exchange on the outer surface layer of the ridge-shaped portion with ions that reduce the refractive index of the optical member. Method. 上記光学部材がLiNbOまたはLiTaOからなる強誘電体結晶であり、前記光学部材の屈折率を低下させるイオンが、マグネシウムイオンまたはリチウムイオンである請求項5に記載の製造方法。The optical member is a ferroelectric crystal consisting of LiNbO 3 or LiTaO 3, ions to lower the refractive index of the optical member manufacturing method according to claim 5 which is a magnesium ion or lithium ion.
JP2002200280A 2002-07-09 2002-07-09 Member with optical waveguide and its manufacture method Pending JP2004045536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200280A JP2004045536A (en) 2002-07-09 2002-07-09 Member with optical waveguide and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200280A JP2004045536A (en) 2002-07-09 2002-07-09 Member with optical waveguide and its manufacture method

Publications (1)

Publication Number Publication Date
JP2004045536A true JP2004045536A (en) 2004-02-12

Family

ID=31707192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200280A Pending JP2004045536A (en) 2002-07-09 2002-07-09 Member with optical waveguide and its manufacture method

Country Status (1)

Country Link
JP (1) JP2004045536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224708A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Wavelength conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224708A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Wavelength conversion element
US7633672B2 (en) 2007-03-08 2009-12-15 Ngk Insulators, Ltd. Wavelength conversion devices
JP4557264B2 (en) * 2007-03-08 2010-10-06 日本碍子株式会社 Wavelength conversion element

Similar Documents

Publication Publication Date Title
US5943465A (en) Optical waveguide element, optical element, method for producing optical waveguide element and method for producing periodic domain-inverted structure
US7170671B2 (en) High efficiency wavelength converters
JP2000066050A (en) Production of optical waveguide parts and optical waveguide parts
JP3898585B2 (en) Method for manufacturing member with optical waveguide
JP2004045536A (en) Member with optical waveguide and its manufacture method
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
EP1687672B1 (en) Fabrication of optical waveguides in periodically poled lithium niobate
US5146533A (en) Ion exchanged crystalline waveguides and processes for their preparation
JPH06174908A (en) Production of waveguide type diffraction grating
JPH086080A (en) Formation of inverted ferroelectric domain region
JP2004157293A (en) Method for manufacturing member with optical waveguide
JP2948042B2 (en) How to use the second harmonic generation element
JP3863277B2 (en) Processing method of ferroelectric crystal substrate
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
US6641743B1 (en) Methods for forming waveguides in optical materials
JP2003215379A (en) Method for producing optical waveguide element
JP3165756B2 (en) Second harmonic generation element and method of manufacturing the same
JPH0792514A (en) Wavelength conversion solid-state laser element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2538161B2 (en) Method for manufacturing optical waveguide and lens
JPH0561083A (en) Nonlinear ferroelectric optical element and its production
JP2890781B2 (en) Fabrication method of optical waveguide
JPH05107421A (en) Method of forming partial polarization inverting layer and manufacture of second harmonic wave generating element
JPH05341342A (en) Second higher harmonic generating element and its production
JPH06230443A (en) Waveguide type second higher harmonic generating element and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219