JPH05341342A - Second higher harmonic generating element and its production - Google Patents

Second higher harmonic generating element and its production

Info

Publication number
JPH05341342A
JPH05341342A JP5036139A JP3613993A JPH05341342A JP H05341342 A JPH05341342 A JP H05341342A JP 5036139 A JP5036139 A JP 5036139A JP 3613993 A JP3613993 A JP 3613993A JP H05341342 A JPH05341342 A JP H05341342A
Authority
JP
Japan
Prior art keywords
region
polarization
substrate
polarization inversion
proton exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5036139A
Other languages
Japanese (ja)
Inventor
Satoshi Makio
諭 牧尾
Fumio Nitanda
文雄 二反田
Yasunori Furukawa
保典 古川
Kohei Ito
康平 伊藤
Masazumi Sato
正純 佐藤
Kazutami Kawamoto
和民 川本
Akitomo Itou
顕知 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP5036139A priority Critical patent/JPH05341342A/en
Publication of JPH05341342A publication Critical patent/JPH05341342A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Abstract

PURPOSE:To realize an ideal rectangular polarization inversion grid and to efficiently generate a SHG light by periodically arranging polarization inversion regions stretched from regions for starting polarization. CONSTITUTION:The proton exchanging layer of grid pattern, that is, a region for starting polarization is formed on a substrate surface by using a substrate 11 consisting of LiTaO3 or LiNbO3 and the layer is subjected to a heat treatment at >=200 deg.C within 10 minutes of holding time after forming a pattern thereon. A polarization inversion region 12 is formed under the proton exchange region by adjusting a temp. rising rate up to the heat treatment temp. to >=50 deg.C/min. and adjusting a temp. falling rate from the heat treatment temp. to >=50 deg.C/min. and the top end of the region 12 is made to an acute angle and the depth/width ratio of the polarization inversion lattice formed is also set at >1. In such a manner, SHG element having high efficiency is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非線形強誘電体光学材料
であるLiTaO3 (以下LTと称す)やLiNbO3
(以下LNと称す)基板を用いた第2高調波発生素子
(以下SHG素子)及びこの製造方法に関わり、SHG
素子の高効率化に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to nonlinear ferroelectric optical materials such as LiTaO 3 (hereinafter referred to as LT) and LiNbO 3.
The second harmonic generation element (hereinafter, SHG element) using a substrate (hereinafter, referred to as LN) and its manufacturing method are related to SHG.
The present invention relates to high efficiency of devices.

【0002】[0002]

【従来の技術】近年、小型軽量の青色光源として、波長
830nmの半導体レーザを導波路型のSHG素子で半
分の波長415nmの青色の光に変換することが注目さ
れている。例えば特開昭61−18934号公報に記載
されているようにLiNbO3基板上にプロトン交換法
(LiNbO3 のLiイオンとプロトンを一部置換して
光導波路を形成する方法)により光導波路を形成し、上
記光導波路の一端に基本波を入射し、チェレンコフ放射
によりSHG光を発生させることが提案されている。こ
れを図2に示す。図2において、LiNbO3 よりなる
基板21の表面にチャンネル型光導波路13を形成し、
この一端より基本波入射光14を入射させると、反対側
より断面三日月状のチェレンコフSHG光22が出力さ
れる。更に、最近では例えばElectronics
Letters、25、11(1989年)の第731
〜732頁で論じられているように、分極反転を用いて
位相整合を行う方法が提案された。すなわち図3に示す
ようにLiNbO3 基板21上にTi拡散によって周期
格子を作製し、約1100℃に加熱して周期格子層だけ
の分極を反転させることによって三角状分極反転領域3
1を形成し、その後プロトン交換法によって光導波路1
3を作製し、基本波14を入射しSHG光15を取り出
すものである。LiTaO3 基板を用いる場合には例え
ばAppl.Phys.Lett.58(24)(19
91年)第2732〜2734頁で論じられている様
に、図4に示すようにLiTaO3 よりなる基板11上
にTi拡散の替わりにプロトン交換法によって周期格子
を作製し、約600℃に加熱し周期格子層だけ分極を反
転させることによって半円状の分極反転領域41を形成
し、更にプロトン交換法によって光導波路13を作製す
る方法も試みられている。そして、この光導波路13に
基本波14を入射してSHG光15が取り出される。
2. Description of the Related Art Recently, as a compact and lightweight blue light source, attention has been paid to converting a semiconductor laser having a wavelength of 830 nm into blue light having a wavelength of 415 nm, which is half that of a semiconductor laser. For example, as described in JP-A-61-18934, an optical waveguide is formed on a LiNbO 3 substrate by a proton exchange method (a method of partially replacing Li ions and protons of LiNbO 3 to form an optical waveguide). However, it has been proposed that a fundamental wave be incident on one end of the above-mentioned optical waveguide to generate SHG light by Cherenkov radiation. This is shown in FIG. In FIG. 2, a channel type optical waveguide 13 is formed on the surface of a substrate 21 made of LiNbO 3 .
When the fundamental wave incident light 14 is made incident from this one end, the Cherenkov SHG light 22 having a crescent cross section is outputted from the opposite side. Furthermore, recently, for example, Electronics
731 of Letters, 25, 11 (1989)
As discussed on page 732, a method for phase matching using polarization reversal has been proposed. That is, as shown in FIG. 3, a periodic lattice is formed on the LiNbO 3 substrate 21 by diffusion of Ti and heated to about 1100 ° C. to invert the polarization of only the periodic lattice layer to form the triangular polarization inversion region 3.
1 is formed, and then the optical waveguide 1 is formed by the proton exchange method.
3 is produced, the fundamental wave 14 is made incident, and the SHG light 15 is taken out. When a LiTaO 3 substrate is used, for example, Appl. Phys. Lett. 58 (24) (19
1991) As discussed in pages 2732 to 2734, as shown in FIG. 4, a periodic lattice was prepared on the substrate 11 made of LiTaO 3 by the proton exchange method instead of Ti diffusion and heated to about 600 ° C. Then, a method of forming a semicircular domain-inverted region 41 by reversing the polarization of only the periodic lattice layer and further manufacturing the optical waveguide 13 by the proton exchange method has been attempted. Then, the fundamental wave 14 is incident on the optical waveguide 13 and the SHG light 15 is extracted.

【0003】また、他の従来の第2高調波発生素子とし
ては、1991年、9月発行のApplied Phy
sical Lettersの1538頁に記載された
LT導波路を用いたSHG素子や、国際公開番号W09
0/04807号公報に開示された導波路構造や、特開
平4−229841号公報に開示されたSHG素子や、
1991年5月9日発行のELECTRONICS L
ETTERに記載されたSHG素子などが知られてい
る。
Another conventional second harmonic generating element is an Applied Phy issued in September 1991.
The SHG device using the LT waveguide described on page 1538 of the Medical Letters and the international publication number W09.
0/04807, the waveguide structure disclosed in JP-A-4-229841, and the SHG element disclosed in JP-A-4-229841.
ELECTRONICS L, issued May 9, 1991
The SHG element described in ETTER and the like are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、次に示すような問題点があった。図2に示
すチェレンコフ放射を用いる方法では22に示すように
発生するSHG光のビーム形状が三日月型となり、極め
て波面収差が大きく、これを回折限界まで絞り込むこと
はほとんど不可能である。上記例に対して新しく提案さ
れた図3及び図4に示す分極反転を用いて位相整合を行
う方法はSHG光がコリメートされた光であるため、チ
ェレンコフ放射光と比較して集光が極めて容易であると
いう利点を持つ。ところで、SHG光の発生効率は、分
極反転格子と光導波路との交差面積或いは交差断面積に
依存しており、これらが大きい程、効率も良くなる。し
かし、分極反転格子の断面形状が、Ti拡散法で形成さ
れたものは31に示すように三角形であり、プロトン交
換法では41に示すように半円形であるため、理想的な
矩形断面の分極反転格子を持つSHG素子本来の効率で
SHG光を発生できていない。
However, the above-mentioned prior art has the following problems. In the method using Cherenkov radiation shown in FIG. 2, the beam shape of the SHG light generated as shown by 22 is crescent-shaped, and the wavefront aberration is extremely large, and it is almost impossible to narrow it down to the diffraction limit. In the method proposed for phase matching using polarization inversion shown in FIGS. 3 and 4, which is newly proposed for the above example, since SHG light is collimated light, it is extremely easy to collect light as compared with Cherenkov radiation. Has the advantage of being By the way, the generation efficiency of SHG light depends on the cross-sectional area or cross-sectional area of the polarization inversion grating and the optical waveguide, and the larger these, the better the efficiency. However, the cross-sectional shape of the domain-inverted lattice formed by the Ti diffusion method is triangular as shown at 31, and the semi-circular shape at 41 by the proton exchange method. SHG light cannot be generated with the original efficiency of the SHG element having an inversion grating.

【0005】また、Ti拡散領域は強い光によって屈折
率が変化する光損傷が起きやすくなることやプロトン交
換領域では非線形光学係数が低下して本来のSHG発生
効率が得られないことなど問題があった。また、従来か
ら用いられてきたプロトン交換処理の方法は、図13に
示すように恒温槽354内に設置したガラス容器351
内にプロトン源である酸353を収容し、この酸の中に
基板352をつけることが行われている。この場合、プ
ロトン源である酸によってはガラス容器351が侵され
ることや基板の全方位がプロトン交換されることによ
り、酸による化学損傷性の結晶方位による違いにより基
板の表面が荒れたり、割れてしまう問題点があった。更
に、従来の方法では分極反転格子の作製と光導波路の作
製が別々の工程で2回以上のフォトリソグラフィを行わ
なければならないなど問題があった。
Further, in the Ti diffusion region, there is a problem that the light damage that the refractive index changes due to strong light is likely to occur and that the nonlinear optical coefficient is lowered in the proton exchange region and the original SHG generation efficiency cannot be obtained. It was In addition, the method of proton exchange treatment that has been conventionally used is as follows. As shown in FIG. 13, a glass container 351 installed in a constant temperature bath 354 is used.
An acid 353, which is a proton source, is housed inside, and a substrate 352 is attached to the acid. In this case, the glass container 351 is attacked or protons are exchanged in all directions of the substrate depending on the acid that is the proton source, and the surface of the substrate is roughened or cracked due to the difference in the crystal orientation of the chemical damage caused by the acid. There was a problem that would end up. Further, the conventional method has a problem that the production of the polarization inversion grating and the production of the optical waveguide have to be performed twice or more in separate steps.

【0006】また、Applied Physical
LettersのSHG素子にあっては、分極反転格
子の幅が2.1μmであるに対してその深さが1.6μ
mとなって非常に浅く、大出力素子に適さないのみなら
ず、熱処理温度も550℃程度とかなり高いという問題
点があった。W090/04807号公報の導波路構造
にあっては、熱処理時に全体を加熱することから熱拡散
が全方向に拡がる恐れがあるという問題点があった。ま
た、特開平4−229841号公報に示すSHG構造に
あっては、LTを用いて断面矩形の分極反転層を形成す
るものであるが、表面の組成変化を生じている恐れのあ
る部分を用いて導波路を形成していることから変換効率
が劣化する恐れがあった。
[0006] In addition, the Applied Physical
In the Letters SHG device, the polarization inversion grating has a width of 2.1 μm and a depth of 1.6 μm.
Since m is very shallow, it is not suitable for a high-power element, and the heat treatment temperature is as high as about 550 ° C., which is a problem. The waveguide structure of W090 / 04807 has a problem that thermal diffusion may spread in all directions because the whole is heated during the heat treatment. Further, in the SHG structure disclosed in Japanese Patent Laid-Open No. 4-229841, a domain-inverted layer having a rectangular cross section is formed by using LT, but a portion which may cause a composition change on the surface is used. Since the waveguide is formed by using the waveguide, the conversion efficiency may be deteriorated.

【0007】更に、ELECTRONICS LETT
ERに記載されたSHG素子にあっては、電子ビームを
用いてLN基板に分極反転層を形成するものであるが、
このように電子ビームを用いる場合には、電子ビームに
より反転層を形成することから反転層の奥行き方向の結
晶の均一性が確保できない恐れがあった。本発明は、以
上のような問題点に着目し、これを有効に解決すべく創
案されたものである。
Furthermore, ELECTRONICS LETT
In the SHG element described in ER, a polarization inversion layer is formed on an LN substrate by using an electron beam.
When the electron beam is used as described above, since the inversion layer is formed by the electron beam, there is a possibility that the crystal uniformity in the depth direction of the inversion layer cannot be ensured. The present invention has been made to pay attention to the above problems and to solve them effectively.

【0008】[0008]

【課題を解決するための手段及び作用】本発明の目的は
分極反転格子の形状を理想的な矩型状に作製することに
ある。本発明の目的は図1に示すように周期的に先端が
鋭角になされた、例えばスパイク状の分極反転領域を作
製することで理想的な矩形状の分極反転格子を実現し、
高効率のSHG光を発生させることができる第2高調波
発生素子を提供することにある。尚、本願において使用
されるスパイク状なる用語は、単に先端が鋭角になされ
ている状態を示すだけに用いられる。LiTaO3 また
はLiNbO3基板におけるスパイク状分域の存在は、
例えばJ.Appl.Phys.vol.46,No.
3(1975年)の1063頁に見られるように良く知
られていたが、これまでスパイク状分域を制御する手段
はなかった。本発明はこの先端が鋭角になされた分極反
転領域の生成を人為的に制御することで、基板のc軸方
向に垂直に延びる性質を利用して、高効率SHG素子を
達成するというものである。
SUMMARY OF THE INVENTION An object of the present invention is to manufacture a domain-inverted grating in an ideal rectangular shape. The object of the present invention is to realize an ideal rectangular domain-inverted grating by producing, for example, a spike-shaped domain-inverted region whose tip is periodically acutely angled as shown in FIG.
It is an object of the present invention to provide a second harmonic generation element capable of generating highly efficient SHG light. It should be noted that the term spike-like used in the present application is merely used to indicate a state in which the tip is made into an acute angle. The presence of spike domains in the LiTaO 3 or LiNbO 3 substrate is
For example, J. Appl. Phys. vol. 46, No.
3 (1975), as is well known, at page 1063, but until now there was no means to control the spiked domains. The present invention intends to achieve a high-efficiency SHG element by artificially controlling the generation of the domain-inverted region whose tip is formed into an acute angle, and utilizing the property of extending perpendicularly to the c-axis direction of the substrate. ..

【0009】そこで我々は先端が鋭角になされた分極反
転領域が実現する条件について検討したところ、LiT
aO3 またはLiNbO3 基板が比較的急速な熱履歴を
受けた時に上記した領域が多く出現することを見いだし
た。このことは急速な熱変化に対応して分極の大きさが
急激に変化し、そのため分域壁周辺に実効的な電界が発
生するためであり、このためスパイク状分域が分極の方
向であるc軸に沿って成長するものと考えられる。この
ため同様の現象は熱変化だけでなく例えば応力によって
もスパイク状分域を生成できる可能性があると考えられ
る。もし分極の芽領域を周期的に形成すれば、このスパ
イク状分域を周期的に配置することができると考えるに
至った。分域の芽としては、局所的に分極の大きさ或い
はその向きが周辺部分と異なった領域が分域の芽となり
うる可能性があると考えられる。
Then, when we examined the conditions for realizing a domain-inverted region with a sharp tip, LiT
It has been found that the aforesaid regions often appear when the aO 3 or LiNbO 3 substrate undergoes a relatively rapid thermal history. This is because the magnitude of polarization changes abruptly in response to a rapid thermal change, and an effective electric field is generated around the domain wall. Therefore, the spike domain is the direction of polarization. It is considered to grow along the c-axis. Therefore, it is considered that the same phenomenon may possibly generate spike-like domains not only due to thermal change but also due to stress, for example. We have come to think that this spike-like domain can be arranged periodically if the polarized bud region is formed periodically. It is considered that there is a possibility that as a bud of the domain, a region in which the magnitude of polarization or the direction thereof is locally different from that of the peripheral portion may be the bud of the domain.

【0010】以上の考えに基づき、LiTaO3 または
LiNbO3 基板上表面に周期的に先端が鋭角になされ
た分極反転格子を形成するために、基板表面に周期的な
分極の芽領域を形成後、適当な昇降温速度で熱処理を行
い周期的な先端が鋭角になされた分極反転領域を形成
し、その後表面に上記領域と直交する方向に光導波路を
作製することで光導波路内では実質的に矩型の分極反転
格子が形成できその結果として高効率のSHG素子を実
現できると考えた。また、表面に残った分域の芽を研磨
等で除去した後に光導波路を形成しても良い。前記先端
が鋭角の分極反転領域の深さは光導波路の深さより大き
いことが望ましくそのため分極反転格子の深さは周期方
向の幅より大きいこと、すなわち分極反転格子の深さ/
幅比が1を超えていることが望ましい。また分極反転格
子の周期方向の幅は使用する光の波長によって選ばれる
が略1μm以上10μm以下の範囲で表面に形成した分
極の芽領域の幅と略等しくすることにより望ましい矩形
状の分極反転格子が実現できる。
Based on the above idea, in order to form a domain-inverted grating whose tip is periodically acutely angled on the LiTaO 3 or LiNbO 3 substrate upper surface, after forming periodically polarized bud regions on the substrate surface, Heat treatment is performed at an appropriate temperature rising / falling rate to form a domain-inverted region having a periodic tip with an acute angle, and then an optical waveguide is formed on the surface in a direction orthogonal to the above-mentioned region. It was thought that a domain-type polarization inversion grating could be formed, and as a result, a highly efficient SHG element could be realized. Further, the optical waveguide may be formed after removing the buds in the domain left on the surface by polishing or the like. The depth of the domain-inverted region having an acute tip is preferably larger than the depth of the optical waveguide. Therefore, the depth of the domain-inverted grating is larger than the width in the periodic direction, that is, the depth of the domain-inverted grating /
It is desirable that the width ratio exceeds 1. The width of the domain-inverted grating in the periodic direction is selected according to the wavelength of the light to be used, but a desirable rectangular domain-inverted grating by making it approximately equal to the width of the polarization bud region formed on the surface in the range of approximately 1 μm or more and 10 μm or less. Can be realized.

【0011】分極反転領域形成のための熱処理において
は、熱処理温度までの昇温時もしくは熱処理温度からの
降温時の一方または両方に50℃/分以上の温度変化速
度を行うことが望ましい。また、前記基板表面に分極反
転の芽となる芽領域すなわち格子パターンを形成し、こ
の芽領域から分極反転領域を延在させることによりその
格子パターンと周期が一致した周期を持つスパイク状分
極反転領域を形成できる。更に、前記格子パターンの周
期方向の幅が1μm以上10μm以下であり、スパイク
状分極反転領域の幅が格子パターン幅と略等しいものが
ある。また、前記基板表面に格子パターン状のプロトン
交換層を形成し熱処理を行うこともできる。更に、前記
格子パターン状のプロトン交換層の形成後の熱処理は、
熱処理温度が200℃以上であり且つ熱処理時間が10
分以内でよい。
In the heat treatment for forming the domain-inverted regions, it is desirable to perform a temperature change rate of 50 ° C./minute or more during one or both of the temperature increase to the heat treatment temperature and the temperature decrease from the heat treatment temperature. In addition, a sprout domain-inverted region having a period matching the lattice pattern is formed by forming a sprout region, that is, a lattice pattern, on the surface of the substrate, which is a sprout of polarization inversion, and extending the domain-inverted region from this sprout region. Can be formed. Further, in some cases, the width of the lattice pattern in the periodic direction is 1 μm or more and 10 μm or less, and the width of the spike-shaped domain-inverted region is substantially equal to the width of the lattice pattern. Further, it is also possible to form a lattice-patterned proton exchange layer on the surface of the substrate and perform heat treatment. Further, the heat treatment after the formation of the lattice-patterned proton exchange layer,
Heat treatment temperature is 200 ° C or higher and heat treatment time is 10
Within minutes

【0012】また、本発明の目的は理想的な矩形状の分
極反転格子を材料本来の特性を発揮できる一様な組成領
域に形成し、高効率のSHG素子を作製することにあ
る。すなわち、本発明の目的は図9に示すようにプロト
ン交換領域である分極の芽領域から延在する分極反転領
域を作製することで理想的な矩形状の分極反転格子を実
現し、高効率のSHG光を発生させることにある。
Another object of the present invention is to form an ideal rectangular domain-inverted lattice in a uniform composition region where the original characteristics of the material can be exhibited, and to manufacture a highly efficient SHG element. That is, the object of the present invention is to realize an ideal rectangular domain-inverted lattice by producing a domain-inverted region extending from the polarization bud region, which is a proton exchange region, as shown in FIG. It is to generate SHG light.

【0013】LiTaO3 またはLiNbO3 基板上表
面にプロトン交換領域である分極の芽領域から周期的分
極反転領域を形成するために、まず、基板表面に光導波
路を作製し、プロトン交換による周期的な格子パターン
を形成後、適当な昇降温速度で熱処理を行って芽領域か
ら分極反転領域を延在させることで光導波路内に実質的
に矩型の分極反転格子が形成できる。その結果として高
効率のSHG素子を実現できる。
In order to form a periodic domain inversion region from a polarization bud region, which is a proton exchange region, on the surface of a LiTaO 3 or LiNbO 3 substrate, first, an optical waveguide is formed on the substrate surface, and a periodic waveguide by proton exchange is formed. After forming the lattice pattern, heat treatment is performed at an appropriate temperature rising / falling rate to extend the domain inversion region from the bud region, whereby a substantially rectangular domain inversion lattice can be formed in the optical waveguide. As a result, a highly efficient SHG element can be realized.

【0014】また、本発明によれば、LiTaO3 また
はLiNbO3 基板の一様な組成領域内に周期的分極反
転領域を形成するために、プロトン交換による周期的な
格子パターンを形成時に適当な昇降温速度の熱履歴を与
えることで周期的な先端が鋭角の分極反転領域を形成
し、その後、そのままもしくは再熱処理を加えた後、光
導波路を作製することで、光導波路内に実質的に矩型の
分極反転格子が形成できる。更に、図15に示すように
プロトン交換処理の方法としては、プロトン交換源であ
る酸の表面張力を用いて基板表面に酸を保持し、方向性
加熱手段、例えばプレート型ヒーターにより急激な熱履
歴を与えながら結晶基板の一面のみにプロトン交換を行
うことで周期的な先端が鋭角の分極反転領域を形成でき
る。また、基板ホルダーとして熱伝導性が良く、プロト
ン源である酸に侵されにくい白金を用い、その形状を板
状またはもし酸がこぼれた時のヒーターの保護用のため
に皿状とする。その結果として容易に高効率のSHG素
子を実現できると考えた。
Further, according to the present invention, in order to form a periodically domain-inverted region in a uniform composition region of a LiTaO 3 or LiNbO 3 substrate, a proper lattice elevating and lowering is formed when forming a periodic lattice pattern by proton exchange. By giving a thermal history of temperature velocities, a domain-inverted region with a sharp tip with a periodic tip is formed, and then, as it is or after re-heat treatment, an optical waveguide is produced, whereby a substantially rectangular shape is formed in the optical waveguide. A type domain inversion grating can be formed. Further, as shown in FIG. 15, as the method of the proton exchange treatment, the acid is retained on the substrate surface by using the surface tension of the acid which is the proton exchange source, and a rapid thermal history is provided by a directional heating means such as a plate type heater. By carrying out the proton exchange on only one surface of the crystal substrate while applying the magnetic field, it is possible to form a domain-inverted region whose tip is periodically acute. Also, platinum is used as the substrate holder because it has good thermal conductivity and is not easily attacked by the proton source, acid, and its shape is plate-shaped or dish-shaped to protect the heater when acid spills. As a result, it was thought that a highly efficient SHG element could be easily realized.

【0015】また、本発明の目的は理想的な矩形状の分
極反転格子と光導波路を1回のフォトリソグラフィで容
易に作製した高効率のSHG素子を作製することにあ
る。すなわち、本発明の目的は図18に示すようにプロ
トン交換領域(芽領域)から伸びる分極反転格子を作製
することで理想的な矩形状の分極反転格子を実現し、更
にプロトン交換領域を光導波路とすることで、高効率の
SHG光を発生させる素子を簡単な工程で作製すること
にある。
Another object of the present invention is to manufacture a highly efficient SHG device in which an ideal rectangular domain-inverted grating and an optical waveguide are easily manufactured by one-time photolithography. That is, the object of the present invention is to realize an ideal rectangular polarization inversion lattice by producing a polarization inversion lattice extending from a proton exchange region (bud region) as shown in FIG. By doing so, an element for generating highly efficient SHG light can be manufactured in a simple process.

【0016】また、本発明の目的は、分極反転格子の幅
と導波路の幅とを同一に形成した第2高調波発生素子及
びその製造方法を提供する。本発明は、また、前記周期
的分極反転格子形成後、熱処理により基板表面のプロト
ン交換領域の屈折率を高くすることで光導波路とするこ
とを特徴とする。本発明は更に、前記熱処理温度が20
0℃以上であり且つ熱処理時間が20分以内であること
を特徴とする。
Another object of the present invention is to provide a second harmonic generation element in which the width of the polarization inversion grating and the width of the waveguide are formed to be the same, and a method for manufacturing the same. The present invention is also characterized in that after the formation of the periodically poled lattice, heat treatment is performed to increase the refractive index of the proton exchange region on the substrate surface to form an optical waveguide. The present invention further provides that the heat treatment temperature is 20.
It is characterized in that the temperature is 0 ° C. or higher and the heat treatment time is within 20 minutes.

【0017】本発明は更に、前記熱処理において処理温
度までの昇温時もしくは処理温度からの降温時の一方ま
たは両方に50℃/分以上の温度変化速度を含むことを
特徴とする。本発明は更に、前記酸はピロ燐酸、燐酸、
安息香酸、ステアリン酸を用いることを特徴とする。ま
た、本発明の目的は、MgOを1モル%以上添加したL
T基板を用いることにより光透過性に優れた第2高調波
発生素子を提供する。
The present invention is further characterized in that in the heat treatment, a temperature change rate of 50 ° C./min or more is included in one or both of a temperature increase to a treatment temperature and a temperature decrease from the treatment temperature. The present invention further provides that the acid is pyrophosphoric acid, phosphoric acid,
It is characterized by using benzoic acid and stearic acid. Another object of the present invention is to add L containing MgO of 1 mol% or more.
By using a T substrate, a second harmonic generation element having excellent light transmittance is provided.

【0018】[0018]

【実施例】以下、本発明の実施例について詳しく説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0019】(実施例1)図1は本発明によるSHG素
子の実施例を示す構成及び動作説明図、図5(a)〜
(h)は上記SHG素子の製造工程を示す図である。図
6、7はスパイク状分極反転格子、図8は従来の半円状
の分極反転格子を示す写真である。図1において、11
は表面が−c面であるLiTaO3 単結晶基板で自発分
極の向きは下向きである。12は分極が例えばスパイク
状に反転された部分で、この部分では分極の向きは上向
きである。M.Didomenico Jr.らの文献
Journal of Applied Physic
s Vol.40、No.2 720〜734頁による
と非線形光学係数の符号はLiNbO3 またはLiTa
3 等の空間群R3cの強誘電体結晶の場合自発分極の
向きと一致する。従って、本実施例の基板並びに光導波
層の非線形光学係数も周期的に反転されているといえ
る。13はチャンネル型光導波路であり、基本波、SH
G光もこの部分に閉じ込められて伝搬する。14は入射
基本波で結晶表面に垂直方向に偏光している。15は光
導波層部分で発生したSHG光であり、やはり結晶表面
に垂直な方向に偏光している。
(Embodiment 1) FIG. 1 is a configuration and operation explanatory view showing an embodiment of an SHG element according to the present invention, FIG.
(H) is a figure which shows the manufacturing process of the said SHG element. 6 and 7 are photographs showing a spike-shaped polarization inversion grating, and FIG. 8 is a photograph showing a conventional semicircular polarization inversion grating. In FIG. 1, 11
Is a LiTaO 3 single crystal substrate whose surface is the −c plane, and the direction of spontaneous polarization is downward. Reference numeral 12 is a portion where the polarization is inverted, for example, in a spike shape, and the polarization direction is upward in this portion. M. Didomenico Jr. Et al. Journal of Applied Physics
s Vol. 40, No. 2 According to page 720 to 734 of the nonlinear optical coefficient code LiNbO 3 or LiTa
In the case of a ferroelectric crystal of the space group R3c such as O 3, the direction of spontaneous polarization agrees. Therefore, it can be said that the nonlinear optical coefficients of the substrate and the optical waveguide layer of this example are also periodically inverted. Reference numeral 13 is a channel type optical waveguide, which is a fundamental wave, SH
G light also propagates while being confined in this portion. The incident fundamental wave 14 is polarized in the direction perpendicular to the crystal surface. Reference numeral 15 denotes SHG light generated in the optical waveguide layer portion, which is also polarized in a direction perpendicular to the crystal surface.

【0020】次に、本発明の分極反転格子の形成方法を
図5を用いて説明する。図5(a)に示すようにLiT
aO3 基板の−Z(c)面を使用するレーザ光波長λの
1/10程度まで研磨した基板11を用意する。図5
(b)に示すように基板11の−Z面上にTa膜51を
30nmスパッタリングで成膜する。図5(c)に示す
ようにTa膜51上にホトレジスト52をスピンコート
し、分極反転12を行う部分が窓あげされたホトマスク
を用い、通常のホトリソグラフィ技術によりホトレジス
ト52のパターニングを行った。ホトマスクのパターン
周期は1〜10μmで発生させるSHG光の周期に合わ
せてある。図5(d)に示すようにパターニングしたホ
トレジスト52をマスクとして、CF3 Clガスを用い
たRIEによるドライエッチング或いはウェットエッチ
ングにより、Ta膜51をパターニングする。図5
(e)に示すようにホトレジスト52をアセトンにより
除去し、ピロ燐酸を用いてプロトン交換を260℃、3
0〜60分で行うことで、分極の芽領域(以下プロトン
交換領域乃至交換層と称す)53が形成される。図5
(f)に示すようにTa膜51をNaOHの水溶液でエ
ッチングする。図5(g)に示すように上記プロトン交
換層53が形成された基板を電気炉に挿入し、熱処理を
行うことで分極反転層はプロトン交換層53を核乃至芽
として下方に延び、結果的に先端が鋭角になされたスパ
イク状分極反転領域12を形成させる。熱処理条件は温
度540℃で保持時間0.5分、熱処理温度までの昇温
速度を50℃/分以上で行い、熱処理温度からの降温速
度を50℃/分以上で行うことによりスパイク状分極反
転領域すなわち分極反転格子12が作製できた。その深
さは基板表面に形成される光導波路深さより大きく基板
厚さより小さかった。またその幅はプロトン交換パター
ンの幅と略等しく、光導波路の深さの範囲では略矩形状
の分極反転格子を実現できた。また、分極反転格子12
の深さ/幅比は1を超える大きさとし、これにより導波
路面積を大きくして大出力化に対応することができる。
この場合、特にバルク型のSHG素子として用いること
により、効率良くSHG光を発生させることができる。
この格子12の深さ/幅比が1を超えることによる作用
効果は、後述する他の全ての実施例においても同様に発
揮される。尚、上記熱処理時間を例えば5分間より長く
行うと形成されたスパイク状の分極反転格子12が消滅
するので、保持時間は分極反転格子12が消滅しない時
間、例えば5分以内とする。図5(h)に示すようにス
パイク状反転格子12を形成後、基板表面のプロトン交
換層54を研磨により除去し、その後、通常のプロトン
交換法により基板表面に分極反転格子に直交するように
光導波路を作製した。光導波路の導波方向は分極反転格
子の周期方向に対して垂直方向に図5(a)〜(f)ま
でを行い、最後に導波路端面を光学研磨することにより
SHG素子が作製される。また、プロトン交換層が残っ
たまま光導波路を作製しても良い。図6は作製されたス
パイク状分極反転格子の断面写真である。上部のプロト
ン交換層及びスパイク状分極反転格子の反転部分と基板
部分の間隔が1対1になるまで研磨し、その後基板表面
に光導波路を作製することで高効率のSHG素子が実現
できる。
Next, the method of forming the domain inversion grating of the present invention will be described with reference to FIG. As shown in FIG. 5A, LiT
A substrate 11 is prepared in which the -Z (c) plane of the aO 3 substrate is polished to about 1/10 of the laser light wavelength λ. Figure 5
As shown in (b), a Ta film 51 is formed on the −Z surface of the substrate 11 by 30 nm sputtering. As shown in FIG. 5C, a photoresist 52 was spin-coated on the Ta film 51, and the photoresist 52 was patterned by a normal photolithography technique using a photomask having a window for a portion where the polarization reversal 12 was performed. The pattern period of the photomask is adjusted to the period of SHG light generated at 1 to 10 μm. Using the photoresist 52 patterned as shown in FIG. 5D as a mask, the Ta film 51 is patterned by dry etching or wet etching by RIE using CF 3 Cl gas. Figure 5
As shown in (e), the photoresist 52 is removed with acetone, and the proton exchange is performed at 260 ° C. for 3 times with pyrophosphoric acid.
By performing the process for 0 to 60 minutes, a polarization bud region (hereinafter referred to as a proton exchange region or exchange layer) 53 is formed. Figure 5
As shown in (f), the Ta film 51 is etched with an aqueous solution of NaOH. As shown in FIG. 5 (g), the polarization inversion layer extends downward with the proton exchange layer 53 as a nucleus or sprout by inserting the substrate on which the proton exchange layer 53 is formed into an electric furnace and performing heat treatment. A spike-shaped domain-inverted region 12 having a sharp tip is formed on the substrate. The heat treatment conditions are a temperature of 540 ° C., a holding time of 0.5 minutes, a temperature rising rate up to the heat treatment temperature of 50 ° C./min or more, and a temperature lowering rate from the heat treatment temperature of 50 ° C./min or more to cause spike-like polarization reversal. A region, that is, a domain-inverted grating 12 was produced. The depth was larger than the optical waveguide depth formed on the substrate surface and smaller than the substrate thickness. In addition, the width is almost equal to the width of the proton exchange pattern, and a substantially rectangular polarization inversion grating can be realized within the range of the depth of the optical waveguide. In addition, the polarization inversion grating 12
The depth / width ratio is larger than 1, so that the waveguide area can be increased to cope with a large output.
In this case, particularly when used as a bulk type SHG element, SHG light can be efficiently generated.
The effect of the depth / width ratio of the grating 12 exceeding 1 is similarly exhibited in all other embodiments described later. If the heat treatment time is longer than, for example, 5 minutes, the spike-shaped polarization inversion grating 12 formed disappears. Therefore, the holding time is set to a time during which the polarization inversion grating 12 does not disappear, for example, within 5 minutes. After forming the spike-shaped inversion lattice 12 as shown in FIG. 5 (h), the proton exchange layer 54 on the substrate surface is removed by polishing, and then the substrate surface is made orthogonal to the polarization inversion lattice by a normal proton exchange method. An optical waveguide was produced. The waveguide direction of the optical waveguide is as shown in FIGS. 5A to 5F in the direction perpendicular to the periodic direction of the domain-inverted grating, and finally the waveguide end face is optically polished to manufacture the SHG element. Further, the optical waveguide may be manufactured while the proton exchange layer remains. FIG. 6 is a cross-sectional photograph of the produced spike-shaped polarization inversion grating. A high-efficiency SHG element can be realized by polishing the upper part of the proton exchange layer and the inverted portion of the spike-like polarization inversion lattice until the distance between the substrate portion becomes 1: 1 and then forming an optical waveguide on the substrate surface.

【0021】前述した作製方法でスパイク状分極反転格
子を作製し、基板表面を研磨せずに光導波路を作製し、
素子長1cmのSHG素子を作製した。基本波の光源と
してチタン−サファイヤレーザを用いて、作製したSH
G素子に波長830nmの基本波を入射したところ、4
15nmの青色SHG光が得られた。この時のSHG光
出力は2.8mWであり、規格化SHG効率は10%/
W・cm2 であった。この時の作製された分極反転格子
は図7で示すような理想的な矩形状に近い分極反転格子
が形成されており、先端がスパイク状であった。
A spike-shaped polarization inversion grating was produced by the above-described production method, and an optical waveguide was produced without polishing the substrate surface.
An SHG element having an element length of 1 cm was produced. SH manufactured using a titanium-sapphire laser as the light source of the fundamental wave
When a fundamental wave with a wavelength of 830 nm is incident on the G element, 4
A 15 nm blue SHG light was obtained. The SHG light output at this time is 2.8 mW, and the standardized SHG efficiency is 10% /
It was W · cm 2 . The polarization inversion grating produced at this time had a polarization inversion grating close to an ideal rectangular shape as shown in FIG. 7, and the tip had a spike shape.

【0022】次に、比較のために熱処理時間を10分と
長くし他の条件は全く実施例と同様にして別のSHG素
子を作製した。この時作製された分極反転格子の断面を
観察すると図8で示すような半円状であった。次にSH
G光出力を実施例と同様に測定したところこの時のSH
G光出力は0.1mWであり、規格化SHG効率は4%
/W・cm2 であった。このことにより、スパイク状分
極反転格子を用いることが高効率のSHG素子に有用で
あることが分かった。尚、上記実施例において分極反転
格子の形状は、スパイク状のものについて説明したが、
これに限定されないのは勿論であり、後述する実施例に
おいても同様である。
For comparison, another SHG element was manufactured under the same conditions as in Example except that the heat treatment time was increased to 10 minutes. Observation of the cross section of the domain-inverted grating produced at this time revealed a semicircular shape as shown in FIG. Then SH
The G light output was measured in the same manner as in the example, and SH at this time was measured.
G light output is 0.1 mW and standardized SHG efficiency is 4%
/ W · cm 2 . From this, it was found that the use of the spike-shaped polarization inversion grating is useful for a highly efficient SHG element. In the above embodiment, the polarization inversion grating has been described as having a spike shape.
Needless to say, the present invention is not limited to this, and the same applies to the examples described later.

【0023】以上の説明から明らかなように、本実施例
によれば、分極反転格子を作製することで理想的な矩形
状の分極反転格子を実現することができ、高効率のSH
G光を発生できるSHG素子が実現できる。また、上記
実施例ではLT基板について主に説明したが、LN基板
についても同様な作用効果を生ずる。また、以下に説明
する全ての実施例においても、その作用効果はLN基板
においても同様に発揮される。
As is clear from the above description, according to the present embodiment, it is possible to realize an ideal rectangular domain-inverted lattice by producing a domain-inverted lattice, and to realize a highly efficient SH.
An SHG element that can generate G light can be realized. Further, although the LT substrate has been mainly described in the above-mentioned embodiments, the same operational effect is produced also for the LN substrate. In addition, in all of the embodiments described below, the same operational effects are also exhibited in the LN substrate.

【0024】(実施例2)上記実施例では分極反転領域
形成後に光導波路を形成したが、これらの形成手順を以
下のように逆にし、また、プロトン交換領域を残すよう
にしてもよい。以下、本発明の第2実施例について詳し
く説明する。図9は本発明によるSHG素子の実施例を
示す構成及び動作説明図、図10(a)〜(g)は上記
SHG素子の製造工程を示す図である。図11はプロト
ン交換領域外に形成された分極反転格子、図12は半円
状の分極反転格子を示す写真である。
(Embodiment 2) In the above embodiment, the optical waveguide is formed after the domain-inverted region is formed. However, these forming procedures may be reversed as described below, or the proton exchange region may be left. Hereinafter, the second embodiment of the present invention will be described in detail. FIG. 9 is a configuration and operation explanatory view showing an embodiment of an SHG element according to the present invention, and FIGS. 10A to 10G are views showing a manufacturing process of the SHG element. FIG. 11 is a photograph showing a polarization inversion lattice formed outside the proton exchange region, and FIG. 12 is a photograph showing a semicircular polarization inversion lattice.

【0025】図9において、11は表面が−c面である
LiTaO3 単結晶基板で自発分極の向きは下向きであ
る。12は分極が組成変調領域であるプロトン交換領域
(分極の芽領域)16とそれ以外に形成された部分で、
これらの部分では分極の向きは上向きである。13はチ
ャンネル型光導波路であり、基本波、SHG光もこの部
分に閉じこめられて伝搬する。14は入射基本波で結晶
表面に垂直方向に偏光している。15は光導波層部分で
発生したSHG光であり、やはり結晶表面に垂直な方向
に偏光している。
In FIG. 9, 11 is a LiTaO 3 single crystal substrate whose surface is the −c plane, and the direction of spontaneous polarization is downward. Reference numeral 12 denotes a proton exchange region (polarization bud region) 16 in which polarization is a compositional modulation region, and a portion formed other than that.
The polarization direction is upward in these portions. Reference numeral 13 is a channel type optical waveguide, and the fundamental wave and SHG light are also confined and propagated in this portion. The incident fundamental wave 14 is polarized in the direction perpendicular to the crystal surface. Reference numeral 15 denotes SHG light generated in the optical waveguide layer portion, which is also polarized in a direction perpendicular to the crystal surface.

【0026】次に、本発明の分極反転格子の形成方法を
図10を用いて説明する。図10(a)に示すようにL
iTaO3 基板の−Z(c)面上にプロトン交換法によ
り光導波路13を形成した基板11を用意する。このよ
うに最初に導波路13を形成した点を除き、図10
(b)から図(10)gに示す各工程は先の実施例1に
おける図5(b)から図5(g)に示す各工程と同様に
操作される。以上のようにして作製された分極反転格子
乃至領域12の深さは基板表面に形成された光導波路及
びプロトン交換層の深さより大きく基板厚さより小さか
った。またその幅はプロトン交換パターンの幅と略等し
く、光導波路の深さの範囲では略矩型状の分極反転格子
を実現できた。最後に導波路端面を光学研磨することに
よりSHG素子が作製される。また、この場合にも、実
施例1と同様に熱処理時の保持時間を例えば5分間より
長く行うと形成されたスパイク状の分極反転格子12が
消滅するので、保持時間は分極反転格子12が消滅しな
い時間、例えば5分以内とする。
Next, the method of forming the domain inversion grating of the present invention will be described with reference to FIG. L as shown in FIG.
A substrate 11 having an optical waveguide 13 formed on the -Z (c) plane of an iTaO 3 substrate by a proton exchange method is prepared. As shown in FIG. 10, except that the waveguide 13 is first formed.
The steps shown in (b) to (10) g are operated in the same manner as the steps shown in FIGS. 5 (b) to 5 (g) in the first embodiment. The depth of the domain-inverted lattice or the region 12 manufactured as described above was larger than the depth of the optical waveguide and the proton exchange layer formed on the surface of the substrate and smaller than the thickness of the substrate. In addition, the width is almost equal to the width of the proton exchange pattern, and it was possible to realize a substantially rectangular polarization inversion grating in the range of the depth of the optical waveguide. Finally, the SHG element is manufactured by optically polishing the end face of the waveguide. Also in this case, as in Example 1, if the holding time during the heat treatment is longer than, for example, 5 minutes, the spike-shaped polarization inversion grating 12 formed disappears, so that the polarization inversion grating 12 disappears during the holding time. No time, for example, within 5 minutes.

【0027】以上示した作製方法で分極反転格子を作製
し、素子長1cmのSHG素子を作製した。この素子に
実施例1で用いたと同様なチタン−サファイヤレーザを
用いて基本波を入射したところ、実施例1と同様なSH
G光出力、規格化効率を得ることができた。この時の作
製された分極反転格子は図11で示すような理想的な矩
型状に近い分極反転格子が形成されており、先端がスパ
イク状であった。
A polarization inversion grating was produced by the above-described production method, and an SHG element having an element length of 1 cm was produced. When a fundamental wave was incident on this element using the same titanium-sapphire laser as used in Example 1, the same SH as in Example 1 was obtained.
It was possible to obtain G light output and standardized efficiency. The polarization reversal grating produced at this time had an ideal polarization reversal grating close to a rectangular shape as shown in FIG. 11, and the tip had a spike shape.

【0028】次に、比較のためにプロトン交換領域のみ
が分極反転された別のSHG素子を作製した。この時作
製された分極反転格子の断面を観察すると図12で示す
ような半円状であった。次にSHG光出力を実施例と同
様に測定したところこの時のSHG光出力は0.1mW
であり、規格化SHG効率は4%/W・cm2 であっ
た。このことにより、スパイク状分極反転格子を用い、
プロトン交換領域以外に分極反転格子を作製することが
高効率のSHG素子に有用であることが分かった。以上
の説明から明らかなように、本実施例によれば、プロト
ン交換領域以外に分極反転格子を作製することで理想的
な矩型状の分極反転格子を実現することができ、高効率
のSHG光を発生できるSHG素子が実現できる。
Next, for comparison, another SHG element was produced in which only the proton exchange region was polarization-inverted. Observation of the cross section of the domain-inverted grating produced at this time revealed a semicircular shape as shown in FIG. Next, when the SHG light output was measured in the same manner as in the example, the SHG light output at this time was 0.1 mW.
And the normalized SHG efficiency was 4% / W · cm 2 . As a result, using a spike-shaped polarization inversion grating,
It was found that it is useful for a highly efficient SHG device to fabricate a polarization inversion lattice in a region other than the proton exchange region. As is clear from the above description, according to the present embodiment, it is possible to realize an ideal rectangular polarization inversion lattice by producing a polarization inversion lattice in a region other than the proton exchange region, and it is possible to realize a highly efficient SHG. An SHG element that can generate light can be realized.

【0029】(実施例3)先の実施例にあっては、プロ
トン交換操作とスパイク状の分極反転格子の形成操作を
別工程で行っているが、以下に示すようにこれを同時に
行うようにしてもよい。以下、本発明の第3実施例につ
いて詳しく説明する。図14はプロトン交換熱処理の方
法を示す図、図15(a)〜(g)は上記SHG素子の
製造工程を示す図である。図16はプロトン交換領域外
に形成された分極反転格子、図17は半円状の分極反転
格子を示す写真である。本実施例においては最終的には
先の第2実施例の図9にて示す構造と同様なSHG素子
が形成される。従って、先に説明したように図9におい
て11は表面が−c面であるLiTaO3 単結晶基板で
自発分極の向きは下向きである。12は分極が組成変調
領域であるプロトン交換領域16とそれ以外に形成され
た部分で、これらの部分では分極の向きは上向きであ
る。13はチャンネル型光導波路であり、基本波、SH
G光もこの部分に閉じこめられて伝搬する。14は入射
基本波で結晶表面に垂直方向に偏光している。15は光
導波層部分で発生したSHG光であり、やはり結晶表面
に垂直な方向に偏光している。
(Embodiment 3) In the previous embodiment, the proton exchange operation and the spike-shaped polarization inversion lattice formation operation are performed in separate steps. However, as shown below, these operations are performed simultaneously. May be. Hereinafter, the third embodiment of the present invention will be described in detail. FIG. 14 is a diagram showing a method of proton exchange heat treatment, and FIGS. 15 (a) to 15 (g) are diagrams showing a manufacturing process of the SHG element. FIG. 16 is a photograph showing a polarization inversion lattice formed outside the proton exchange region, and FIG. 17 is a photograph showing a semicircular polarization inversion lattice. In this embodiment, finally, an SHG element having the same structure as that of the second embodiment shown in FIG. 9 is formed. Therefore, as described above, in FIG. 9, 11 is the LiTaO 3 single crystal substrate whose surface is the −c plane, and the direction of spontaneous polarization is downward. Reference numeral 12 denotes a proton exchange region 16 in which the polarization is a composition modulation region and a portion formed in the other portion. In these portions, the polarization direction is upward. Reference numeral 13 is a channel type optical waveguide, which is a fundamental wave, SH
G light is also confined and propagated in this portion. The incident fundamental wave 14 is polarized in the direction perpendicular to the crystal surface. Reference numeral 15 denotes SHG light generated in the optical waveguide layer portion, which is also polarized in a direction perpendicular to the crystal surface.

【0030】次にプロトン交換処理について説明する。
酸性の溶液に基板等を浸漬するプロトン交換により、基
板表面からH+ イオンが基板内に侵入して基板のLiと
交換され、組成変化層が形成される。特に燐酸類は解離
定数が安息香酸(C65 COOH、融点121℃、沸
点250℃)に比べ2〜3桁高く、Hの濃度が高いため
組成変化の度合いが大きくなる。また、300℃程度ま
で液体での高温処理が可能であり、蒸発量が極めて少な
く制御性や作業性が良い。更に、水に可溶なためサンプ
ル及び容器や治具の洗浄が可能である。燐酸としてピロ
燐酸(H427 、融点61℃、沸点300℃)を用
いた。図14において、表面が−Z面であるLiTaO
3 単結晶基板11を基板ホルダーである白金板62上に
置き、ピロ燐酸63を基板11上に表面張力を利用して
数滴たらして保持する。プロトン交換温度に加熱された
方向性加熱手段、例えばプレート型ヒーター64上に6
2の基板ホルダーを置き、これを一方向すなわち裏面か
ら加熱して数分〜数時間プロトン交換を行う。ここで方
向性加熱手段とは基板をその片面より加熱し得る加熱手
段を意味するものとする。プロトン交換後、基板を取り
出し水洗することで63のピロ燐酸を除去する。これに
より基板11の一面のみにプロトン交換層65が形成さ
れる。プロトン交換はすべて大気中で行った。また、選
択的にプロトン交換するには、ピロ燐酸に融けないTa
膜を基板表面につけフォトリソグラフィにより、格子マ
スクを作製することで可能である。ここで基板ホルダー
62は熱伝導性が良く、プロトン源である酸に侵されに
くい白金を用い、その形状を板状またはもし酸がこぼれ
た時のヒーターの保護用のために皿状とした。
Next, the proton exchange treatment will be described.
By proton exchange by immersing the substrate or the like in an acidic solution, H + ions enter the substrate from the surface of the substrate and are exchanged with Li of the substrate to form a composition change layer. Particularly, the dissociation constant of phosphoric acid is higher than that of benzoic acid (C 6 H 5 COOH, melting point 121 ° C., boiling point 250 ° C.) by two to three orders of magnitude, and the concentration of H is high, so that the degree of composition change is large. Further, it is possible to perform high-temperature treatment with a liquid up to about 300 ° C., and the evaporation amount is extremely small, and controllability and workability are good. Further, since it is soluble in water, it is possible to wash the sample, the container and the jig. Pyrophosphoric acid (H 4 P 2 O 7 , melting point 61 ° C., boiling point 300 ° C.) was used as phosphoric acid. In FIG. 14, LiTaO whose surface is the −Z plane
3 The single crystal substrate 11 is placed on a platinum plate 62 which is a substrate holder, and a few drops of pyrophosphoric acid 63 are held on the substrate 11 by utilizing surface tension. 6 on the directional heating means heated to the proton exchange temperature, for example, the plate type heater 64.
The second substrate holder is placed, and this is heated in one direction, that is, the back surface, and proton exchange is performed for several minutes to several hours. Here, the directional heating means means a heating means capable of heating the substrate from one side thereof. After the proton exchange, the substrate is taken out and washed with water to remove 63 of pyrophosphoric acid. As a result, the proton exchange layer 65 is formed only on one surface of the substrate 11. All proton exchange was performed in the atmosphere. In addition, for selective proton exchange, Ta that does not melt in pyrophosphoric acid is used.
It is possible to make a lattice mask by applying a film to the substrate surface and performing photolithography. Here, the substrate holder 62 is made of platinum, which has good thermal conductivity and is not easily attacked by acid as a proton source, and its shape is plate-like or dish-like for protecting the heater when acid is spilled.

【0031】次に、本発明の分極反転格子の形成方法を
図15を用いて説明する。図15(a)に示すようにL
iTaO3 基板11を用意する。以下の図15(b)か
ら図15(d)に示す各工程は先の実施例1における図
5(b)から図5(d)に示す各工程と全く同様に操作
される。そして、図15(e)に示すようにホトレジス
ト72をアセトンにより除去し、ピロ燐酸を用いて図1
4で示したプロトン交換熱処理を260℃、30〜60
分で行うことで、プロトン交換領域16が形成されると
同時にスパイク状分極反転領域12を形成させる。図1
4のヒーター64へ基板ホルダー62を置く時と取り外
す時に基板11は急激な熱変化を受ける。この時のプロ
トン交換処理温度までの昇温速度を50℃/分以上で行
い、熱処理温度からの降温速度を50℃/分以上で行う
ことによりプロトン交換領域16外にスパイク状分極反
転領域すなわち分極反転格子12が作製できた。図15
(f)に示すようにTa膜51をNaOHの水溶液でエ
ッチングする。そのままもしくは再熱処理を温度400
℃で保持時間0.5分、熱処理温度までの昇温速度を5
0℃/分以上で行い、熱処理温度からの降温速度を50
℃/分以上で行うことでプロトン交換による非線形光学
定数の低下を抑制できる。その後、光導波路を作製す
る。作製された分極反転格子の深さは基板表面に形成さ
れた光導波路及びプロトン交換層の深さより大きく基板
厚さより小さく、その幅はプロトン交換パターンの幅と
略等しく、光導波路の深さの範囲では略矩型状の分極反
転格子を実現できた。最後に導波路端面を光学研磨する
ことによりSHG素子が作製される。また、プロトン交
換層領域を導波路形成前に研磨により除去することでプ
ロトン交換による非線形光学定数の影響を防いでも良
い。
Next, the method of forming the domain inversion grating of the present invention will be described with reference to FIG. As shown in FIG.
An iTaO 3 substrate 11 is prepared. The following steps shown in FIGS. 15B to 15D are operated in exactly the same manner as the steps shown in FIGS. 5B to 5D in the first embodiment. Then, as shown in FIG. 15E, the photoresist 72 is removed with acetone, and pyrophosphoric acid is used to remove the photoresist 72.
The proton exchange heat treatment shown in No. 4 is performed at 260 ° C. for 30 to 60
By doing so, the spike-shaped polarization inversion region 12 is formed at the same time as the proton exchange region 16 is formed. Figure 1
When the substrate holder 62 is placed on or removed from the heater 64 of No. 4, the substrate 11 undergoes a rapid thermal change. At this time, the temperature rise rate up to the proton exchange treatment temperature is 50 ° C./min or more, and the temperature decrease rate from the heat treatment temperature is 50 ° C./min or more, so that the spike-shaped polarization inversion region, that is, the polarization is generated outside the proton exchange region 16. The inversion grating 12 could be produced. Figure 15
As shown in (f), the Ta film 51 is etched with an aqueous solution of NaOH. As-is or re-heat treatment at temperature 400
Hold time at 0.5 ° C for 0.5 minutes, heat-up temperature up to 5
It is performed at 0 ° C / min or more, and the rate of temperature decrease from the heat treatment temperature is 50
By carrying out at a temperature of not less than ° C / min, it is possible to suppress the decrease of the nonlinear optical constant due to the proton exchange. Then, an optical waveguide is manufactured. The depth of the produced polarization inversion lattice is larger than the depth of the optical waveguide and the proton exchange layer formed on the substrate surface and smaller than the substrate thickness, and its width is almost equal to the width of the proton exchange pattern, and the range of the depth of the optical waveguide. Was able to realize a substantially rectangular polarization inversion grating. Finally, the SHG element is manufactured by optically polishing the end face of the waveguide. Further, the influence of the nonlinear optical constant due to the proton exchange may be prevented by removing the proton exchange layer region by polishing before forming the waveguide.

【0032】このように、この実施例によれば、プロト
ン交換と同時に分極反転格子12を形成することができ
るので、その後の熱処理が不要となり工程数を減らすこ
とができる。また、プロトン交換時、一方向すなわち基
板の裏面から加熱するようにしているので、加熱炉等に
て全体加熱を行う場合と比較して熱拡散方向を制御で
き、良好な分極反転格子を形成できる。以上示した作製
方法で分極反転格子を作製し、素子長1cmのSHG素
子を作製した。この素子に実施例1で用いたと同様なチ
タン−サファイヤレーザを用いて基本波を入射したとこ
ろ、実施例1と同様なSHG光出力、規格化SHG効率
を得ることができた。この時の作製された分極反転格子
は図16(a)で示すような理想的な矩型状に近い分極
反転格子が形成されており、先端がスパイク状であっ
た。
As described above, according to this embodiment, since the polarization inversion lattice 12 can be formed at the same time as the proton exchange, the subsequent heat treatment becomes unnecessary and the number of steps can be reduced. In addition, since the heating is performed in one direction, that is, from the back surface of the substrate during the proton exchange, the direction of thermal diffusion can be controlled and a good polarization inversion lattice can be formed, as compared with the case where the entire heating is performed in a heating furnace or the like. .. A polarization inversion grating was produced by the above-described production method, and an SHG element having an element length of 1 cm was produced. When a fundamental wave was incident on this element using the same titanium-sapphire laser as that used in Example 1, the same SHG light output and standardized SHG efficiency as in Example 1 could be obtained. The polarization inversion grating produced at this time had an ideal polarization inversion grating close to a rectangular shape as shown in FIG. 16 (a), and the tip had a spike shape.

【0033】また、図16(b)は、上記操作において
基板としてLiTaO3 を使用し、ピロ燐酸を用いたプ
ロトン交換を260℃で30分間行い、その後、プロト
ン交換熱処理を440℃で0.5分行った時の結晶構造
を示す。また、図16(c)は、上記操作において基板
としてLiNbO3 を使用し、ピロ燐酸を用いたプロト
ン交換を230℃で16分間行い、その後、熱処理を7
00℃で0.5分間行った時の結晶構造を示す。これら
によれば、プロトン交換層の厚さは1μm以下でもある
にもかかわらず、分極反転領域は上記プロトン交換層か
ら基板内に深く伸び進んでその長さが40μm以上にも
達しており、その先端は薄く鋭くなったスパイク状とな
って良好であることが判明する。
Further, FIG. 16B shows that LiTaO 3 was used as a substrate in the above operation, proton exchange using pyrophosphoric acid was carried out at 260 ° C. for 30 minutes, and then proton exchange heat treatment was carried out at 440 ° C. for 0.5 minutes. The crystal structure of the obtained product is shown. In addition, FIG. 16C shows that LiNbO 3 was used as the substrate in the above operation, proton exchange using pyrophosphoric acid was performed at 230 ° C. for 16 minutes, and then heat treatment was performed for 7 hours.
The crystal structure after 0.5 minutes at 00 ° C is shown. According to these, although the thickness of the proton exchange layer is 1 μm or less, the domain-inverted region deeply extends from the proton exchange layer into the substrate and reaches a length of 40 μm or more. It turns out that the tip is thin and sharp and has a good spike shape.

【0034】次に、比較のためにプロトン交換領域のみ
が分極反転された別のSHG素子を作製した。この時作
製された分極反転格子の断面を観察すると図17で示す
ような半円状であった。次にSHG光出力を実施例と同
様に測定したところこの時のSHG光出力は100nW
であり、規格化SHG効率は4%/W・cm2 であっ
た。このことにより、プロトン交換熱処理時にプロトン
交換領域以外にスパイク状分極反転格子を作製すること
で容易に高効率のSHG素子が実現できることが分かっ
た。以上の説明から明らかなように、本実施例によれ
ば、プロトン交換熱処理時にプロトン交換領域以外に分
極反転格子を作製することで理想的な矩型状の分極反転
格子を実現することができ、高効率のSHG光を発生で
きるSHG素子が容易に実現できる。
Next, for comparison, another SHG element was produced in which only the proton exchange region was polarization-inverted. Observation of the cross section of the domain-inverted grating produced at this time revealed a semicircular shape as shown in FIG. Next, when the SHG light output was measured in the same manner as in the example, the SHG light output at this time was 100 nW.
And the normalized SHG efficiency was 4% / W · cm 2 . From this, it was found that a highly efficient SHG element can be easily realized by producing a spike-shaped polarization inversion lattice in a region other than the proton exchange region during the proton exchange heat treatment. As is clear from the above description, according to this example, it is possible to realize an ideal rectangular polarization inversion lattice by producing a polarization inversion lattice in a region other than the proton exchange region during the proton exchange heat treatment, An SHG element capable of generating highly efficient SHG light can be easily realized.

【0035】(実施例4)先の実施例3にあっては分極
反転格子の形成と光導波路の形成を別工程で行うように
したが、以下に示すようにこれを1回のフォトリソグラ
フィーだけで形成するようにしてもよい。以下、本発明
の第4実施例について詳しく説明する。図18は本発明
によるSHG素子の実施例を示す構成及び動作説明図、
図19(a)〜(g)は上記SHG素子の製造工程を示
す図である。図20はプロトン交換領域から延在させて
形成された分極反転格子、図21は半円状の分極反転格
子を示す写真である。
(Embodiment 4) In Embodiment 3 above, the formation of the polarization inversion grating and the formation of the optical waveguide were carried out in separate steps. However, as shown below, this is performed only once by photolithography. It may be formed by. Hereinafter, the fourth embodiment of the present invention will be described in detail. FIG. 18 is a configuration and operation explanatory view showing an embodiment of an SHG element according to the present invention,
19 (a) to 19 (g) are views showing a manufacturing process of the SHG element. FIG. 20 is a photograph showing a polarization inversion lattice extended from the proton exchange region, and FIG. 21 is a photograph showing a semicircular polarization inversion lattice.

【0036】図18において、11は表面が−c面であ
るLiTaO3 単結晶基板で自発分極の向きは下向きで
ある。12は組成変調領域であるプロトン交換領域16
と同時に形成された反転分極であり、これらの部分では
分極の向きは上向きである。13はチャンネル型光導波
路となり、基本波、SHG光もこの部分に閉じこめられ
て伝搬する。14は入射基本波で結晶表面に垂直方向に
偏光している。15は光導波層部分で発生したSHG光
であり、やはり結晶表面に垂直な方向に偏光している。
In FIG. 18, 11 is a LiTaO 3 single crystal substrate whose surface is the −c plane, and the direction of spontaneous polarization is downward. 12 is a proton exchange region which is a composition modulation region 16
Inverted polarization formed at the same time, and the polarization direction is upward in these portions. 13 is a channel type optical waveguide, and the fundamental wave and SHG light are also confined and propagated in this portion. The incident fundamental wave 14 is polarized in the direction perpendicular to the crystal surface. Reference numeral 15 denotes SHG light generated in the optical waveguide layer portion, which is also polarized in a direction perpendicular to the crystal surface.

【0037】次のプロトン交換処理については、前述し
た第3実施例の場合と全く同様に行われ、ピロ燐酸等を
用いて行われる。また、プロトン交換時の酸は、燐酸、
安息香酸、ステアリン酸を用いることでも可能であるこ
とは容易に類推する事ができる。
The next proton exchange treatment is carried out in exactly the same manner as in the case of the third embodiment described above, using pyrophosphoric acid or the like. The acid used for the proton exchange is phosphoric acid,
It can be easily analogized that the use of benzoic acid and stearic acid is also possible.

【0038】次に、本発明の分極反転格子と光導波路の
形成方法を図19を用いて説明する。図は光導波路と分
極反転格子部分の断面図である。図19(a)に示すよ
うにLiTaO3 基板11を用意する。以下、図19
(b)から図19(d)に示す各工程は、図19(c)
において導波路幅2〜6μmで窓あけされたホトマスク
を用いた点を除き、先の実施例1における図5(b)か
ら図5(d)に示す各工程と全く同様に操作される。そ
して、図19(e)に示すようにホトレジスト72をア
セトンにより除去し、ピロ燐酸を用いて第3実施例の図
14で示したプロトン交換熱処理を260℃、30〜6
0分で行うことで、プロトン交換領域乃至交換層16が
形成されると同時にスパイク状分極反転層12を形成さ
せる。図14のヒーター64へ基板ホルダー62を置く
時と取り外す時に基板11は急激な熱変化を受ける。こ
の時のプロトン交換処理温度までの昇温速度を50℃/
分以上で行い、熱処理温度からの降温速度を50℃/分
以上で行うことによりプロトン交換領域16とスパイク
状分極反転領域すなわち分極反転格子12が作製でき
た。図19(f)に示すようにTa膜51をNaOHの
水溶液でエッチングする。熱処理を温度380℃で保持
時間5分、熱処理温度までの昇温速度を50℃/分以上
で行い、熱処理温度からの降温速度を50℃/分以上で
行うことでプロトン交換部分の屈折率を高くし光導波路
を形成する。また、プロトンによる非線形光学定数の低
下を抑制できる。熱処理時間が20分以上行うとプロト
ンの拡散が大きくなり過ぎるために光導波路の損失が大
きくなってしまう。作製された分極反転格子の深さは基
板表面に形成された光導波路及びプロトン交換層の深さ
より大きく基板厚さより小さく、その幅はプロトン交換
パターンの幅と略等しく、光導波路の深さの範囲では略
矩型状の分極反転格子を実現できた。最後に導波路端面
を光学研磨することによりSHG素子が作製される。
Next, the method of forming the polarization inversion grating and the optical waveguide of the present invention will be described with reference to FIG. The figure is a cross-sectional view of the optical waveguide and the polarization inversion grating portion. A LiTaO 3 substrate 11 is prepared as shown in FIG. Below, FIG.
The steps shown in FIGS. 19B to 19D are the same as those shown in FIG.
The procedure is exactly the same as the steps shown in FIGS. 5 (b) to 5 (d) in Example 1 except that a photomask having a window width of 2 to 6 μm is used. Then, as shown in FIG. 19E, the photoresist 72 is removed with acetone, and the proton exchange heat treatment shown in FIG. 14 of the third embodiment is performed at 260 ° C. for 30 to 6 with pyrophosphoric acid.
By performing the process in 0 minutes, the proton-exchanged region or exchange layer 16 is formed, and at the same time, the spike-shaped polarization inversion layer 12 is formed. The substrate 11 undergoes a rapid thermal change when the substrate holder 62 is placed on or removed from the heater 64 shown in FIG. At this time, the temperature rising rate up to the proton exchange treatment temperature is 50 ° C /
The proton exchange region 16 and the spike-like domain-inverted region, that is, the domain-inverted lattice 12 can be produced by performing the heating for 5 minutes or more and the temperature decrease rate from the heat treatment temperature at 50 ° C./minute or more. As shown in FIG. 19F, the Ta film 51 is etched with an aqueous solution of NaOH. The heat treatment is performed at a temperature of 380 ° C. for a holding time of 5 minutes, the temperature rising rate up to the heat treatment temperature is 50 ° C./min or more, and the temperature lowering rate from the heat treatment temperature is 50 ° C./min or more to increase the refractive index of the proton exchange part. Higher to form an optical waveguide. Further, it is possible to suppress the decrease of the nonlinear optical constant due to the proton. If the heat treatment time is 20 minutes or more, the diffusion of protons becomes too large and the loss of the optical waveguide becomes large. The depth of the produced polarization inversion lattice is larger than the depth of the optical waveguide and the proton exchange layer formed on the surface of the substrate and smaller than the thickness of the substrate, and its width is almost equal to the width of the proton exchange pattern, and the range of the depth of the optical waveguide. Was able to realize a substantially rectangular polarization inversion grating. Finally, the SHG element is manufactured by optically polishing the end face of the waveguide.

【0039】以上示した作製方法で分極反転格子を作製
し、素子長1cmのSHG素子を作製した。この素子に
実施例1で用いたと同様なチタン−サファイヤレーザを
用いて基本波を入射したところ、実施例1と同様なSH
G光出力、規格化SHG効率を得ることができた。この
時の作製された分極反転格子は図20で示すような理想
的な矩型状に近い分極反転格子が形成されており、先端
がスパイク状であった。特に、図20においては第1実
施例の図6と異なり、各分極反転格子がその上端部にお
いて接触することなく明確に離間しており、良好な構造
となっているのが判明する。
A polarization inversion grating was produced by the above-described production method, and an SHG element having an element length of 1 cm was produced. When a fundamental wave was incident on this element using the same titanium-sapphire laser as used in Example 1, the same SH as in Example 1 was obtained.
It was possible to obtain G light output and standardized SHG efficiency. The polarization inversion grating produced at this time had an ideal polarization inversion grating close to a rectangular shape as shown in FIG. 20, and the tip had a spike shape. In particular, in FIG. 20, unlike in FIG. 6 of the first embodiment, it is found that the domain-inverted gratings are clearly separated from each other at the upper end portion without contacting each other and have a good structure.

【0040】次に、比較のためにプロトン交換領域のみ
が分極反転された別のSHG素子を作製した。この時作
製された分極反転格子の断面を観察すると図21で示す
ような半円状であった。次にSHG光出力を実施例と同
様に測定したところこの時のSHG光出力は100nW
であり、規格化SHG効率は4%/W・cm2 であっ
た。このことにより、プロトン交換熱処理時にプロトン
交換領域外に伸びるスパイク状分極反転格子と導波路と
を1回のフォトリソグラフィーの工程で容易に作製する
ことができ、高効率のSHG素子が実現できることが分
かった。また、スパイク状分域の芽となるプロトン交換
領域は図22に示すような熱処理を行うことにより屈折
率が高くなり、光導波路として構成することができる。
すなわち、LiTaO3 またはLiNbO3 基板の一様
な組成領域内に周期的分極反転領域を形成するために、
プロトン交換による周期的な格子パターンを形成する時
に適当な昇降温速度の熱履歴を与えることで周期的なス
パイク状の分極反転領域を形成し、その後、再熱処理を
加えることでプロトン交換領域を光導波路とすれば、光
導波路内に実質的に矩型の分極反転格子が形成できる。
この方法を用いれば分極反転格子と光導波路を1回のフ
ォトリソグラフィーだけで作製できる。この場合、プロ
トン交換処理の方法として、図19に示すように例えば
プレート型ヒーターを用いて行う。
Next, for comparison, another SHG element in which only the proton exchange region was polarization-inverted was prepared. Observation of the cross section of the domain-inverted grating produced at this time revealed a semicircular shape as shown in FIG. Next, when the SHG light output was measured in the same manner as in the example, the SHG light output at this time was 100 nW.
And the normalized SHG efficiency was 4% / W · cm 2 . From this, it was found that the spike-shaped polarization inversion grating extending outside the proton exchange region during the proton exchange heat treatment and the waveguide can be easily manufactured in one photolithography process, and a highly efficient SHG element can be realized. It was Further, the proton exchange region serving as a sprout of the spike-shaped domain has a higher refractive index by heat treatment as shown in FIG. 22, and can be configured as an optical waveguide.
That is, in order to form a periodically domain-inverted region in a uniform composition region of a LiTaO 3 or LiNbO 3 substrate,
When a periodic lattice pattern is formed by proton exchange, a thermal history of an appropriate rate of temperature increase / decrease is applied to form a periodic spike-like domain-inverted region, and then reheat treatment is applied to make the proton-exchange region optically transparent. If the waveguide is used, a substantially rectangular polarization inversion grating can be formed in the optical waveguide.
By using this method, the polarization inversion grating and the optical waveguide can be produced by only one photolithography. In this case, as a method of the proton exchange treatment, for example, a plate type heater is used as shown in FIG.

【0041】以上の説明から明らかなように、本実施例
によれば、プロトン交換熱処理時にプロトン交換領域以
外に伸びるスパイク状分域反転格子を作製することで理
想的な矩型状の分極反転格子を実現することができ、1
回のフォトリソグラフィーの工程で高効率のSHG光を
発生できるSHG素子が容易に実現できる。
As is clear from the above description, according to this example, an ideal rectangular domain-inverted lattice is formed by producing a spike-shaped domain-inverted lattice that extends outside the proton-exchange region during the proton-exchange heat treatment. Can be realized 1
It is possible to easily realize an SHG element capable of generating highly efficient SHG light in one photolithography process.

【0042】(実施例5)以上の各実施例に示すように
スパイク形状の分極反転格子を形成することによりSH
G光の発生効率を高めることができるが、以下に示すよ
うに基板材料にMgを添加することにより更にSHG光
の発生効率を高めることができる。
(Embodiment 5) SH is obtained by forming a spike-shaped polarization inversion grating as shown in each of the above embodiments.
The generation efficiency of G light can be increased, but the addition efficiency of SHG light can be further increased by adding Mg to the substrate material as described below.

【0043】以下、本発明の第5実施例をより詳細に説
明する。試料を次の作製方法により作成した。まずチョ
クラルスキ法により、直径100mm深さ120mmの
イリジウムで作られた坩堝内に約5KgのLiTaO3
原料粉(育成に用いた原料は純度4NのLi2 O、Ta
25 、MgOの粉末を混合したものである。)をいれ
高周波加熱によりこれを溶かし、融液を作り、その後シ
ード付けを行い、所定の方位に約3日間で、2インチの
単結晶を育成した。この時の育成速度は1〜2mm/
h、回転速度は10〜20rpmである。次に、上記方
法により育成した結晶体を単一分域化処理を行った。結
晶を結晶と非反応性の導電性粉末を介して、結晶のZ軸
方向に対向するように例えばPt電極板を設け、電気炉
内に挿入して単一分域化処理を行う。その後、それぞれ
の結晶から各稜がx軸方位、y軸方位、及びz軸方位に
平行な10×10×10mm3、の正方形ブロックを切
り出し、その各面を鏡面研磨した。或いはそれぞれの結
晶から2インチのウエハを作成した。このようにしてタ
ンタル酸リチウム単結晶を準備し、光透過特性について
調べた。
The fifth embodiment of the present invention will be described in more detail below. A sample was prepared by the following manufacturing method. First, by the Czochralski method, about 5 kg of LiTaO 3 was placed in a crucible made of iridium having a diameter of 100 mm and a depth of 120 mm.
Raw material powder (The raw material used for the growth is 4 N purity Li 2 O, Ta
It is a mixture of 2 O 5 and MgO powder. ) Was melted by high frequency heating to form a melt, and then seeding was performed, and a 2-inch single crystal was grown in a predetermined orientation for about 3 days. The growth rate at this time is 1-2 mm /
h, the rotation speed is 10 to 20 rpm. Next, the crystal grown by the above method was subjected to single domainization treatment. For example, a Pt electrode plate is provided so as to face the crystal in the Z-axis direction through a conductive powder that is non-reactive with the crystal, and the crystal is inserted into an electric furnace to perform a single domainization process. Then, from each crystal, a square block with each edge parallel to the x-axis direction, the y-axis direction, and the z-axis direction and having a size of 10 × 10 × 10 mm 3 was cut out, and each surface thereof was mirror-polished. Alternatively, a 2-inch wafer was made from each crystal. In this way, a lithium tantalate single crystal was prepared and examined for light transmission characteristics.

【0044】この結果の例を図23に示す。鉄等の遷移
金属不純物を数〜十数ppmと多く含むSAWグレード
のタンタル酸リチウム単結晶は、300〜500nmの
広い波長範囲に大きな光吸収がある。鉄、マンガン、ク
ロムなどの遷移金属不純物を1ppm以下に低減したタ
ンタル酸リチウム単結晶(光学グレードと称す)は、鉄
の多い結晶に比べて300〜500nmでの光吸収は小
さくなったが、400nm以下での吸収はあるため40
0nm以下の青色SHG光の発生用基板としては光透過
性は不十分である。更にMgOを1mol%添加した結
晶では基礎吸収端が約2nm短波長側へ移動し、MgO
添加量を増やすと更に基礎吸収端は短波長側になった。
特に、MgO添加による顕著な効果は波長280〜40
0nmでの光透過率の向上であり、この基板を用いれ
ば、基本光として波長が800nm以下の、例えば78
0nmの半導体レーザを用いた390nm発光のSHG
素子が実現可能になる。また、MgOを5mol%程度
添加すれば基本光として700nmの光を用いて350
nm近傍の発光も可能となり、その応用範囲を広げる。
An example of this result is shown in FIG. The SAW-grade lithium tantalate single crystal containing a large amount of transition metal impurities such as iron in the range of several to ten and several ppm has large light absorption in a wide wavelength range of 300 to 500 nm. The lithium tantalate single crystal (referred to as an optical grade) in which transition metal impurities such as iron, manganese, and chromium are reduced to 1 ppm or less has a smaller light absorption at 300 to 500 nm than a crystal having much iron, but 400 nm. 40 because there is absorption below
The light transmittance is insufficient as a substrate for generating blue SHG light of 0 nm or less. Further, in the crystal in which 1 mol% of MgO is added, the fundamental absorption edge moves to the short wavelength side by about 2 nm,
When the amount of addition was increased, the fundamental absorption edge became closer to the short wavelength side.
In particular, the remarkable effect of adding MgO is a wavelength of 280 to 40.
This is an improvement in the light transmittance at 0 nm, and if this substrate is used, the wavelength of the basic light is 800 nm or less, for example, 78 nm.
390nm emission SHG using 0nm semiconductor laser
The device becomes feasible. If MgO is added in an amount of about 5 mol%, 700 nm light is used as the basic light and 350
It is also possible to emit light in the vicinity of nm, expanding its application range.

【0045】そこで、MgO添加により光透過性が向上
したタンタル酸リチウム単結晶及び無添加のタンタル酸
リチウム単結晶を基板として用い図24に示す方法で分
極反転格子を形成した。このMgOを添加したLT基板
を用いてSHG基板を製造する方法は、実施例2におい
て図10(a)から図10(g)にて用いられた方法と
全く同様な工程が用いられる。このようにして形成され
た分極反転格子の深さは基板表面に形成される光導波路
深さより大きく基板厚さより小さかった。またその幅は
プロトン交換パターンの幅と略等しかった。分極反転格
子12を形成後、基板表面のプロトン交換層を研磨によ
り除去し、通常のプロトン交換法により基板表面に光導
波路を作製した。最後に導波路端面を光学研磨すること
によりSHG素子が作製される。
Therefore, a polarization inversion lattice was formed by the method shown in FIG. 24 using a lithium tantalate single crystal whose optical transparency was improved by adding MgO and an undoped lithium tantalate single crystal as substrates. The method of manufacturing the SHG substrate using the LT substrate to which MgO is added uses the same steps as those used in Example 2 in FIGS. 10A to 10G. The depth of the polarization inversion grating thus formed was larger than the depth of the optical waveguide formed on the surface of the substrate and smaller than the thickness of the substrate. The width was almost equal to the width of the proton exchange pattern. After the polarization inversion grating 12 was formed, the proton exchange layer on the substrate surface was removed by polishing, and an optical waveguide was formed on the substrate surface by the usual proton exchange method. Finally, the SHG element is manufactured by optically polishing the end face of the waveguide.

【0046】以上示した分極反転格子に光導波路を作製
し、素子長1cmのSHG素子を作製した。基本波の光
源としてチタン−サファイヤレーザを用いて、作製した
SHG素子に波長820nmの基本波を入射したとこ
ろ、410nmの青色SHGが得られた。この時、分極
反転格子の断面が矩型状で分極反転領域はその深さが周
期方向の幅よりも大きい場合には、SHG光出力は15
mWでの高出力のSHG光が得られ、パワー密度165
KW/cm2 で安定した出力が得られた。更に分極反転
格子の周期を変え、波長780nmの半導体レーザーを
基本波として用いSHG光の出力を評価したところ、波
長280〜400nmでの光透過性の向上したMgOを
添加したタンタル酸リチウム単結晶を基板に用いた素子
では約1.5mWのSHG光の出力が得られた。一方、
無添加のタンタル酸リチウム単結晶を基板に用いた素子
では基板での光吸収が大きいため0.7mWのSHG光
出力しか得られなかった。
An optical waveguide was prepared in the above-mentioned polarization inversion grating to prepare an SHG device having a device length of 1 cm. When a titanium-sapphire laser was used as a light source of the fundamental wave and a fundamental wave having a wavelength of 820 nm was made incident on the produced SHG element, 410 nm blue SHG was obtained. At this time, when the polarization inversion grating has a rectangular cross section and the polarization inversion region has a depth larger than the width in the periodic direction, the SHG light output is 15
High output SHG light at mW is obtained and power density 165
A stable output was obtained at KW / cm 2 . When the output of SHG light was evaluated using a semiconductor laser with a wavelength of 780 nm as a fundamental wave by changing the period of the polarization inversion grating, a single crystal of lithium tantalate containing MgO with improved light transmittance at a wavelength of 280 to 400 nm was evaluated. The device used as the substrate provided an output of SHG light of about 1.5 mW. on the other hand,
An element using a non-doped lithium tantalate single crystal as a substrate could only obtain an SHG light output of 0.7 mW because the substrate has a large light absorption.

【0047】熱処理時間によっては、作製された分極反
転格子の断面を観察すると矩型状になることもある。こ
のような矩型状などの分極反転領域はその深さが周期方
向の幅よりも大きい場合には、光の入射方向に対する分
極反転部と非反転部の形状比が1対1になることにな
る。一方、熱処理時間等の分極反転の作製方法を変える
と、作製された分極反転格子の断面を観察すると半円状
になることもある。このような半円状などの分極反転領
域はその深さが周期方向の幅よりも小さい場合には、光
の入射方向に対する分極反転部と非反転部の形状比が完
全な1対1からずれていることになり、十分なSHG光
を発することができない。
Depending on the heat treatment time, when the cross section of the manufactured domain-inverted lattice is observed, it may have a rectangular shape. When the depth of the domain-inverted region such as the rectangular shape is larger than the width in the periodic direction, the shape ratio of the domain-inverted portion to the non-inverted portion with respect to the incident direction of light becomes 1: 1. Become. On the other hand, when the manufacturing method of polarization inversion, such as the heat treatment time, is changed, the cross section of the manufactured polarization inversion lattice may become semicircular when observed. When the depth of the domain-inverted region such as a semi-circular shape is smaller than the width in the periodic direction, the shape ratio of the domain-inverted portion and the non-inverted portion with respect to the incident direction of light deviates from perfect 1: 1. Therefore, sufficient SHG light cannot be emitted.

【0048】以上示したMgOを添加したタンタル酸リ
チウム単結晶の分極反転格子に光導波路を作製し、素子
長1cmのSHG素子を作製した。基本波の光源として
チタン−サファイヤレーザを用いて、作製したSHG素
子に波長820nmの基本波を入射したところ、410
nmの青色SHG光が得られた。この時、分極反転格子
の断面が矩型状で分極反転領域はその深さが周期方向の
幅よりも大きい場合には、SHG光出力は15mWでの
高出力のSHG光が得られ、パワー密度165KW/c
2 で安定した出力が得られた。
An optical waveguide was formed in the above-described polarization inversion lattice of the lithium tantalate single crystal to which MgO was added, and an SHG element having an element length of 1 cm was prepared. When a titanium-sapphire laser was used as a light source of the fundamental wave and a fundamental wave having a wavelength of 820 nm was incident on the manufactured SHG element, 410
A blue SHG light of nm was obtained. At this time, when the cross section of the polarization inversion grating is rectangular and the depth of the polarization inversion region is larger than the width in the periodic direction, the SHG light output is 15 mW, and the high output SHG light is obtained. 165 kW / c
A stable output was obtained at m 2 .

【0049】一方、分極反転格子の断面が半円状で分極
反転領域の深さが周期方向の幅よりも小さい場合には、
9mWのSHG光が得られた。このことにより、タンタ
ル酸リチウム単結晶に分極反転格子を形成し、好ましく
は、その断面が矩型状になり、分極反転領域の深さが周
期方向の幅よりも大きい場合には、光の入射方向に対す
る分極反転部と非反転部の形状比が1対1になり高効率
のSHG素子に有用であることが分かった。特に、基板
材料にMgOを添加することにより、基礎吸収端を端波
長側にシフトさせることができ、高効率のSHG素子が
実現できると共にその応用範囲を拡大することができ
た。
On the other hand, when the cross section of the domain inversion grating is semicircular and the depth of the domain inversion region is smaller than the width in the periodic direction,
9 mW SHG light was obtained. As a result, a polarization inversion lattice is formed in the lithium tantalate single crystal, and preferably, the cross section has a rectangular shape, and when the depth of the polarization inversion region is larger than the width in the periodic direction, the incidence of light is increased. It was found that the shape ratio of the domain-inverted part to the non-inverted part with respect to the direction was 1: 1 and it was useful for a highly efficient SHG element. In particular, by adding MgO to the substrate material, the basic absorption edge can be shifted to the edge wavelength side, a highly efficient SHG element can be realized, and its application range can be expanded.

【0050】本発明のMgO添加により耐光損傷強度が
向上した結晶を基板に用い、レーザー光源からの出射光
を電気光学結晶へ入射し光の位相を変化させる光変調器
を試作したところ、その動作は安定であることが確認さ
れた。本発明によりはじめて波長400nm以下の短波
長帯での光透過性に優れたタンタル酸リチウム単結晶を
得ることができた。これにより400nm以下の短波長
光を用いる光素子用基板にタンタル酸リチウム単結晶を
用いることができ、タンタル酸リチウム単結晶の持つ大
きな非線形光学定数を生かしたSHG素子の安定性と高
出力化の特性向上ができる。
An optical modulator was manufactured by using the crystal of the present invention whose optical damage strength was improved by adding MgO as a substrate and making light emitted from a laser light source incident on an electro-optic crystal to change the phase of the light. Was confirmed to be stable. According to the present invention, a lithium tantalate single crystal having excellent light transmittance in a short wavelength band of 400 nm or less can be obtained for the first time. As a result, a lithium tantalate single crystal can be used as a substrate for an optical element that uses short-wavelength light of 400 nm or less, and the stability and high output of an SHG element can be improved by utilizing the large nonlinear optical constant of the lithium tantalate single crystal. The characteristics can be improved.

【0051】また、好ましくは1モル%以上のMgOを
添加したLT単結晶は無添加結晶に比べ基礎吸収端が短
波長側へシフトし、結晶の着色は消え、結晶の色は無色
透明に変化した。また、得られた光透過性に優れたタン
タル酸リチウム単結晶をウエハ状に加工し光素子の基板
として用い、タンタル酸リチウム単結晶の分極方向を周
期的に反転させ、この分極反転領域はその深さが周期方
向の幅よりも大きい構造を作成することにより理想的な
矩型断面の分極反転格子を持つSHG素子本来の効率で
SHG光を発生できた。
Further, preferably, the LT single crystal containing 1 mol% or more of MgO has a basic absorption edge shifted to the short wavelength side as compared with a non-added crystal, the color of the crystal disappears, and the color of the crystal changes to colorless and transparent. did. Further, the obtained lithium tantalate single crystal having excellent light transmittance was processed into a wafer and used as a substrate of an optical element, and the polarization direction of the lithium tantalate single crystal was periodically inverted. By creating a structure in which the depth is larger than the width in the periodic direction, SHG light can be generated with the original efficiency of the SHG element having an ideal polarization inversion grating with a rectangular cross section.

【0052】上記の構成により、結晶の光透過特性を大
幅に改善することができ、特に短波長光を用いる波長変
換素子、光変調器、光偏向器などの種々の光学素子を安
定に動作させることができた。本発明を実施するに当た
って単結晶育成の手段に限定はなく、通常はチョクラル
スキー法によるのが一般的で、場合によってはブリッジ
マン法やフローティングゾーン法やファイバーペディス
タル法により育成することも可能である。
With the above structure, the light transmission characteristics of the crystal can be greatly improved, and various optical elements such as a wavelength conversion element, an optical modulator and an optical deflector which use short wavelength light can be stably operated. I was able to do it. There is no limitation on the means for growing a single crystal in carrying out the present invention, and it is generally the Czochralski method, and in some cases, the Bridgman method, the floating zone method or the fiber pedestal method can be used for the growth. is there.

【0053】また原料としてのLi2 CO3 とTa2
5 の配合比は通常のコングルエント組成が高品質単結晶
が得られ易いために単結晶育成の面からみると望ましい
が、素子用途によっては単結晶基板の屈折率を変えたも
のが必要とされることもある。このような場合にはLi
2 CO3 とTa25 の配合比を変えることにより所望
の単結晶基板が得られる。尚、該元素の添加は混合時に
行うのが原料均一化の上で望ましいが、原料融体中に添
加してもよい。
Li 2 CO 3 and Ta 2 O used as raw materials
The compounding ratio of 5 is desirable from the viewpoint of single crystal growth because it is easy to obtain a high quality single crystal with a normal congruent composition, but it is necessary to change the refractive index of the single crystal substrate depending on the device application. Sometimes. In such a case Li
A desired single crystal substrate can be obtained by changing the compounding ratio of 2 CO 3 and Ta 2 O 5 . Although it is desirable to add the element at the time of mixing in order to make the raw material uniform, it may be added to the raw material melt.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば次
のように優れた作用効果を発揮することができる。本発
明によれば、先端が鋭角になされてた分極反転領域を作
製して深さ/幅比が1を超えた分極反転格子を形成する
ことで理想的な矩型状の分極反転格子を実現することが
でき、高効率のSHG光を発生できるSHG素子が実現
できる。また、本発明によれば、プロトン交換領域(分
極の芽領域)から延在させた分極反転格子を作製するこ
とで理想的な矩型状の分極反転格子を実現することがで
き、高効率のSHG光を発生できるSHG素子が実現で
きる。更に、本発明によれば、プロトン交換熱処理時に
プロトン交換領域以外に分極反転格子を作製することで
理想的な矩型状の分極反転格子を実現することができ、
高効率のSHG光を発生できるSHG素子が容易に実現
できる。また更に、本発明によれば、プロトン交換熱処
理時にプロトン交換領域以外に伸びる先端が鋭角の分極
反転格子を作製することで理想的な矩型状の分極反転格
子を実現することができ、1回のフォトリソグラフィー
の工程で高効率のSHG光を発生できるSHG素子が容
易に実現できる。また、プロトン交換熱処理時にプロト
ン交換領域外に伸びる分極反転格子と導波路を1回のフ
ォトリソグラフィーの工程で製造できる。また、本発明
によれば、波長400nm以下の短波長帯での光透過性
に優れたタンタル酸リチウム単結晶を得ることができ
た。これにより400nm以下の短波長光を用いる光素
子用基板にタンタル酸リチウム単結晶を用いることがで
き、タンタル酸リチウム単結晶の持つ大きな非線形光学
係数を生かしたSHG素子の安定性と高出力化の特性向
上ができる。
As described above, according to the present invention, the following excellent operational effects can be exhibited. According to the present invention, an ideal rectangular polarization reversal grating is realized by forming a polarization reversal region having a sharp tip and forming a polarization reversal grating having a depth / width ratio of more than 1. And an SHG element capable of generating highly efficient SHG light can be realized. Further, according to the present invention, it is possible to realize an ideal rectangular polarization inversion lattice by producing a polarization inversion lattice extended from the proton exchange region (polarization bud region), and to achieve high efficiency. An SHG element capable of generating SHG light can be realized. Further, according to the present invention, it is possible to realize an ideal rectangular polarization inversion lattice by producing a polarization inversion lattice in a region other than the proton exchange region during the proton exchange heat treatment,
An SHG element capable of generating highly efficient SHG light can be easily realized. Furthermore, according to the present invention, it is possible to realize an ideal rectangular polarization inversion lattice by producing a polarization inversion lattice with a sharp tip extending outside the proton exchange region during the proton exchange heat treatment. It is possible to easily realize the SHG element capable of generating highly efficient SHG light in the photolithography process. Further, the polarization inversion lattice and the waveguide extending outside the proton exchange region during the proton exchange heat treatment can be manufactured by one photolithography process. Further, according to the present invention, it was possible to obtain a lithium tantalate single crystal having excellent light transmittance in a short wavelength band of 400 nm or less. As a result, a lithium tantalate single crystal can be used as a substrate for an optical element that uses short-wavelength light of 400 nm or less, and the stability and high output of the SHG element can be improved by utilizing the large nonlinear optical coefficient of the lithium tantalate single crystal. The characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するための構造図であ
る。
FIG. 1 is a structural diagram for explaining an embodiment of the present invention.

【図2】チェレンコフ輻射を用いた従来のSHG素子を
示す図である。
FIG. 2 is a diagram showing a conventional SHG element using Cherenkov radiation.

【図3】三角形状の分極反転格子を用いた従来のSHG
素子を示す図である。
FIG. 3 is a conventional SHG using a triangular polarization inversion grating.
It is a figure which shows an element.

【図4】半円状の分極反転格子を用いた従来のSHG素
子を示す図である。
FIG. 4 is a diagram showing a conventional SHG element using a semicircular polarization inversion grating.

【図5】(a)〜(h)はそれぞれ本発明に係るスパイ
ク状分極反転格子の作製方法を示す図である。
5 (a) to 5 (h) are diagrams showing a method for manufacturing a spike-shaped polarization inversion grating according to the present invention.

【図6】スパイク状分極反転格子の結晶構造を示す写真
である。
FIG. 6 is a photograph showing a crystal structure of a spike-shaped polarization inversion lattice.

【図7】スパイク状分極反転格子の結晶構造を示す写真
である。
FIG. 7 is a photograph showing a crystal structure of a spike-shaped polarization inversion lattice.

【図8】半円状分極反転格子の結晶構造を示す写真であ
る。
FIG. 8 is a photograph showing a crystal structure of a semicircular polarization inversion lattice.

【図9】本発明の実施例を説明するための構造図であ
る。
FIG. 9 is a structural diagram for explaining an embodiment of the present invention.

【図10】(a)〜(g)はそれぞれ本発明に係るスパ
イク状分極反転格子の作製方法を示す図である。
10 (a) to 10 (g) are diagrams showing a method of manufacturing a spike-shaped polarization inversion grating according to the present invention.

【図11】プロトン交換領域外のスパイク状分極反転格
子の結晶構造を示す写真である。
FIG. 11 is a photograph showing a crystal structure of a spike-shaped polarization inversion lattice outside the proton exchange region.

【図12】半円状分極反転格子の結晶構造を示す写真で
ある。
FIG. 12 is a photograph showing a crystal structure of a semicircular polarization inversion lattice.

【図13】従来のプロトン交換の方法を示す図である。FIG. 13 is a diagram showing a conventional proton exchange method.

【図14】本発明によるプロトン交換熱処理を示す図で
ある。
FIG. 14 is a diagram showing a proton exchange heat treatment according to the present invention.

【図15】(a)〜(g)はそれぞれ本発明に係るスパ
イク状分極反転格子の作製方法を示す図である。
15 (a) to 15 (g) are diagrams showing a method for manufacturing a spike-shaped polarization inversion grating according to the present invention.

【図16】プロトン交換領域外のスパイク状分極反転格
子が基板上に形成された微細なパターンを表している写
真である。
FIG. 16 is a photograph showing a fine pattern in which a spike-shaped polarization inversion lattice outside the proton exchange region is formed on the substrate.

【図17】半円状分極反転格子が基板上に形成された微
細なパターンを表している写真である。
FIG. 17 is a photograph showing a fine pattern in which a semicircular domain-inverted grating is formed on a substrate.

【図18】本発明の実施例を説明するための構造図であ
る。
FIG. 18 is a structural diagram for explaining an example of the present invention.

【図19】(a)〜(g)はそれぞれ本発明に係るスパ
イク状分極反転格子と光導波路の作製方法を示す図であ
る。
19 (a) to 19 (g) are diagrams showing a method of manufacturing a spike-shaped polarization inversion grating and an optical waveguide according to the present invention, respectively.

【図20】プロトン交換領域とスパイク状分極反転格子
を示す基板上に形成された微細なパターンを表している
写真である。
FIG. 20 is a photograph showing a fine pattern formed on a substrate showing a proton exchange region and a spike-shaped polarization inversion lattice.

【図21】半円状分極反転格子を示す基板上に形成され
た微細なパターンを表している写真である。
FIG. 21 is a photograph showing a fine pattern formed on a substrate showing a semicircular polarization inversion grating.

【図22】プロトン交換導波路の熱処理時間に対する屈
折率を示す図である。
FIG. 22 is a diagram showing a refractive index of a proton exchange waveguide with respect to heat treatment time.

【図23】各種タンタル酸リチウム単結晶及びニオブ酸
リチウム単結晶の光透過特性を測定した図である。
FIG. 23 is a diagram showing the light transmission characteristics of various lithium tantalate single crystals and lithium niobate single crystals.

【符号の説明】[Explanation of symbols]

11,511 基板(LiTaO3 ) 12 スパイク状分極反転領域 13 チャンネル型光導波路 14 基本波入射光 15 SHG出力光 21 基板(LiNbO3 ) 22 チェレンコフSHG光 31 三角状分極反転領域 41 半円状分極反転領域 51 Ta膜 52 ホトレジスト 53 プロトン交換領域 54 研磨除去領域 62 白金製基板ホルダー 63 ピロ燐酸 64 プレート型ヒーター 65 プロトン交換層 71 Ta膜 72 ホトレジスト 351 ガラス容器 352 基板 353 酸 354 恒温槽11,511 Substrate (LiTaO 3 ) 12 Spike-shaped polarization inversion region 13 Channel type optical waveguide 14 Fundamental incident light 15 SHG output light 21 Substrate (LiNbO 3 ) 22 Cherenkov SHG light 31 Triangular polarization inversion region 41 Semicircular polarization inversion Area 51 Ta film 52 Photoresist 53 Proton exchange area 54 Polishing removal area 62 Platinum substrate holder 63 Pyrophosphoric acid 64 Plate type heater 65 Proton exchange layer 71 Ta film 72 Photoresist 351 Glass container 352 Substrate 353 Acid 354 Thermostat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 保典 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内 (72)発明者 伊藤 康平 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内 (72)発明者 佐藤 正純 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内 (72)発明者 川本 和民 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 伊藤 顕知 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunori Furukawa 5200 Mikkaji, Kumagaya-shi, Saitama Hitachi Metals Co., Ltd. Magnetic Materials Research Institute (72) Kohei Ito 5200 Mikkaji, Kumagaya, Saitama Hitachi Metals Co., Ltd. In-house (72) Inventor Masazumi Sato 5200 Mikkaji, Kumagaya-shi, Saitama Hitachi Metals Co., Ltd.Magnetic Materials Research Laboratories (72) Inventor Kazutomi Kawamoto 292 Yoshida-cho, Totsuka-ku, Yokohama-shi Kanagawa ) Inventor Kenji Itoh, 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に周期的に形成された分極の芽領
域と、前記芽領域から延在されて先端が鋭角になされた
分極反転領域とを有し、前記分極の芽領域と前記分極反
転領域により形成される分極反転格子の深さ/幅比が1
を超えていることを特徴とする第2高調波発生素子。
1. A polarization bud region periodically formed on a substrate, and a polarization inversion region extending from the bud region and having a sharp tip, the polarization bud region and the polarization. The polarization inversion lattice formed by the inversion region has a depth / width ratio of 1
A second harmonic generation element characterized by exceeding.
【請求項2】 基板上に周期的に形成された分極の芽領
域から延在されて先端が鋭角になされた分極反転領域
と、前記分極の芽領域を取り除いた後に前記基板に形成
された導波路とを有し、前記分極反転領域により形成さ
れる分極反転格子の深さ/幅比が1を超えていることを
特徴とする第2高調波発生素子。
2. A polarization inversion region extending from a polarization bud region periodically formed on a substrate and having a sharp tip, and a conductor formed on the substrate after removing the polarization bud region. A second harmonic generation element having a waveguide, wherein a depth / width ratio of a polarization inversion grating formed by the polarization inversion region exceeds 1.
【請求項3】 第2高調波発生素子を製造する方法にお
いて、基板上に周期的に分極の芽領域を形成し、次いで
前記分極の芽領域から分極反転領域を延在させてその先
端を鋭角状にし、前記分極の芽領域と前記分極反転領域
により形成される分極反転格子の深さ/幅比が1を超え
るようにしたことを特徴とする第2高調波発生素子の製
造方法。
3. A method for manufacturing a second harmonic generating element, wherein periodically formed polarization bud regions are formed on a substrate, and then polarization inversion regions are extended from the polarization bud regions to form sharp edges. And a depth / width ratio of a domain-inverted grating formed by the polarization bud region and the domain-inverted region is greater than 1, a method of manufacturing a second harmonic generation element.
JP5036139A 1993-02-01 1993-02-01 Second higher harmonic generating element and its production Pending JPH05341342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036139A JPH05341342A (en) 1993-02-01 1993-02-01 Second higher harmonic generating element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036139A JPH05341342A (en) 1993-02-01 1993-02-01 Second higher harmonic generating element and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04034372 Division 1992-01-24 1992-01-24

Publications (1)

Publication Number Publication Date
JPH05341342A true JPH05341342A (en) 1993-12-24

Family

ID=12461460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036139A Pending JPH05341342A (en) 1993-02-01 1993-02-01 Second higher harmonic generating element and its production

Country Status (1)

Country Link
JP (1) JPH05341342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098528A1 (en) * 2004-03-30 2005-10-20 Hamamatsu Foundation For Science And Technology Promotion Image wavelength converting device, method for producing the device, image converting system using the device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098528A1 (en) * 2004-03-30 2005-10-20 Hamamatsu Foundation For Science And Technology Promotion Image wavelength converting device, method for producing the device, image converting system using the device
JPWO2005098528A1 (en) * 2004-03-30 2008-02-28 財団法人浜松科学技術研究振興会 Image wavelength conversion device, method of manufacturing the device, and image conversion system using the device
US7483609B2 (en) 2004-03-30 2009-01-27 Hamamatsu Foundation For Science And Technology Promotion Image wavelength conversion device, method of manufacturing the device, and image conversion system using the device

Similar Documents

Publication Publication Date Title
US5359452A (en) Lithium tantalate monocrystal, monocrystal substrate, and photo element
US5943465A (en) Optical waveguide element, optical element, method for producing optical waveguide element and method for producing periodic domain-inverted structure
JP2750231B2 (en) Method of manufacturing waveguide type second harmonic generation element
Makio et al. Fabrication of periodically inverted domain structures in LiTaO3 and LiNbO3 using proton exchange
US11868022B2 (en) Method for manufacturing of patterned SrB4BO7 and PbB4O7 crystals
US6926770B2 (en) Method of fabricating two-dimensional ferroelectric nonlinear crystals with periodically inverted domains
US6654529B1 (en) Ferroelectric domain inverted waveguide structure and a method for producing a ferroelectric domain inverted waveguide structure
JPH1082921A (en) Optical waveguide substrate, optical waveguide parts, second harmonics generating device and manufacturing method of optical waveguide substrate
JPH05341342A (en) Second higher harmonic generating element and its production
JPH06130436A (en) Second harmonic generating element and its manufacture
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JPH0517295A (en) Lithium niobate single crystal thin film subjected to domain inversion treatment
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element
JP3213907B2 (en) Lithium niobate single crystal and optical functional device
Åhlfeldt et al. Single‐domain layers formed in multidomain LiTaO3 by proton exchange and heat treatment
JP3165756B2 (en) Second harmonic generation element and method of manufacturing the same
JP2948042B2 (en) How to use the second harmonic generation element
JP2951583B2 (en) Optical waveguide component, second harmonic generation device, and method of manufacturing optical waveguide component
JPH06174908A (en) Production of waveguide type diffraction grating
Ghambaryan et al. Periodically poled structures in lithium niobate crystals: growth and photoelectric properties.
JP2965644B2 (en) Manufacturing method of wavelength conversion optical element
Miyazawa et al. Single crystal growth of ferroelectric LaBGeO5 for optical frequency conversion devices
JPH0792514A (en) Wavelength conversion solid-state laser element
JPH06123905A (en) Second harmonic wave generating element and its production
JPH0756201A (en) Formation of polarization inversion grating and optical waveguide