JP3077001B2 - Magneto-optical material and manufacturing method thereof - Google Patents

Magneto-optical material and manufacturing method thereof

Info

Publication number
JP3077001B2
JP3077001B2 JP03295421A JP29542191A JP3077001B2 JP 3077001 B2 JP3077001 B2 JP 3077001B2 JP 03295421 A JP03295421 A JP 03295421A JP 29542191 A JP29542191 A JP 29542191A JP 3077001 B2 JP3077001 B2 JP 3077001B2
Authority
JP
Japan
Prior art keywords
temperature
crystal
magneto
plane
phase transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03295421A
Other languages
Japanese (ja)
Other versions
JPH05132399A (en
Inventor
亨 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP03295421A priority Critical patent/JP3077001B2/en
Publication of JPH05132399A publication Critical patent/JPH05132399A/en
Application granted granted Critical
Publication of JP3077001B2 publication Critical patent/JP3077001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,波長0.6〜0.8μ
m領域で使用される光アイソレータ等のファラデー回転
子,及びこのファラデー回転子等に用いられる磁気光学
材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a wavelength of 0.6 to 0.8 .mu.m.
The present invention relates to a Faraday rotator such as an optical isolator used in the m region, a magneto-optical material used for the Faraday rotator and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来,短波長(0.6〜0.8μm帯)
半導帯レーザ及びガスレーザ等を光源として用いる光通
信,光計測,光磁気記録等において戻り光雑音除去のた
めの光アイソレータの使用が提案されている。その光ア
イソレータのファラデー回転子材料として半磁性半導体
Cd1-x Mnx Te(0<x≦1)の使用が検討されて
いる。
2. Description of the Related Art Conventionally, short wavelength (0.6 to 0.8 μm band)
The use of an optical isolator for removing return optical noise has been proposed in optical communication, optical measurement, magneto-optical recording and the like using a semiconductor laser and a gas laser as a light source. The use of semimagnetic semiconductor Cd 1- x MnxTe (0 <x ≦ 1) as a Faraday rotator material of the optical isolator is being studied.

【0003】[0003]

【発明が解決しようとする課題】Mn組成xが0≦x≦
0.7の結晶は一般にブリッジマン法により液相から凝
固させて作製される。結晶には相変態が存在し,高温相
である六方晶ウルツ鉱型構造から低温相である立方晶閃
亜鉛鉱型構造への相変態が結晶の冷却中に起こるが,そ
れに起因して双晶欠陥が発生する。双晶欠陥は結晶にひ
ずみを誘起させるため複屈折が生じて消光特性を悪化さ
せるのでこの結晶をファラデー素子とした場合には双晶
面({111}面)に使用が限られ,工程の複雑化,歩
留りの低下の問題が生じていた。
The Mn composition x is 0 ≦ x ≦
The 0.7 crystal is generally produced by solidification from the liquid phase by the Bridgman method. A phase transformation exists in the crystal, and the phase transformation from the high-temperature phase of hexagonal wurtzite to the low-temperature phase of cubic zinc-blende occurs during cooling of the crystal. Defects occur. Since twin defects cause birefringence to induce strain in the crystal and deteriorate the extinction characteristics, when this crystal is used as a Faraday element, its use is limited to the twin plane ({111} plane) and the process is complicated. And the yield has been reduced.

【0004】そこで,本発明の技術課題は,ブリッジマ
ン法により作製したCd1-x Mnx Te(0<x≦0.
7)結晶で実用上充分な消光特性を有するファラデー回
転子と,このファラデー回転子等に用いられる安価な磁
気光学材料及びその製造方法を提供することにある。
[0004] Therefore, technical problem of the present invention, Cd 1-x Mn x Te (0 produced by the Bridgman method <x ≦ 0.
7) It is an object of the present invention to provide a Faraday rotator which has a practically sufficient extinction characteristic with a crystal, an inexpensive magneto-optical material used for the Faraday rotator and the like, and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは次の〜
項で示すような事実を実験的に見い出し本発明をなすに
至った。
Means for Solving the Problems The present inventors have the following:
The present inventors have experimentally found out the facts as described in the section, and have accomplished the present invention.

【0006】相変態点より高温での熱処理では双晶欠
陥が消失し(但し光損失は増す),消光特性は改善され
る。
[0008] In a heat treatment at a temperature higher than the phase transformation point, twin defects disappear (however, light loss increases), and the quenching characteristics are improved.

【0007】相変態温度より低温での熱処理では双晶
欠陥は消失しないが,温度が相変態点に近づくにつれて
消光特性は向上する。
[0007] Although the twin defects do not disappear by heat treatment at a temperature lower than the phase transformation temperature, the quenching characteristics improve as the temperature approaches the phase transformation point.

【0008】相変態温度の10〜50℃低温側におい
て,急激に結晶成分の分解・蒸発が起こり,光損失が増
大する温度が存在する。この温度より低温側での熱処理
では光損失は増加しない。
On the low side of the phase transformation temperature of 10 to 50 ° C., there is a temperature at which the decomposition and evaporation of the crystal components occur rapidly, and the light loss increases. Heat loss at a temperature lower than this temperature does not increase light loss.

【0009】すなわち項に述べた結晶成分の分解・蒸
発が起こる温度の直下での熱処理により光損失を増大さ
せることなく消光特性の向上が得られることを見い出し
た。
That is, it has been found that the quenching characteristic can be improved without increasing the light loss by performing the heat treatment just below the temperature at which the decomposition and evaporation of the crystal components described in the section above occur.

【0010】本発明によれば、化学式Cd1−xMn
Te(但し,0<x≦0.7)で表され、ブリッジマン
法で作製されるとともに相変態温度から多くとも100
℃低い温度で熱処理された単結晶からなり,任意の結晶
面を光学面として使用可能なことを特徴とする磁気光学
材料が得られる。本発明によれば、化学式Cd1−x
Te(但し,0<x≦0.7)で表される、ブリッ
ジマン法で作製されるとともに相変態温度から多くとも
100℃低い温度で熱処理された単結晶の{111}面
以外の結晶面を光学面としたことを特徴とするファラデ
ー回転子が得られる。本発明によれば、ブリッジマン法
で作製した化学式Cd1−xMnTe(但し,0<x
≦0.7)で表される単結晶を相変態温度から多くとも
100℃低い温度で熱処理することを特徴とする磁気光
学材料の製造方法が得られる。
According to the present invention, the formula Cd 1-x Mn x
Te (where, 0 <x ≦ 0.7) is represented by, Bridgman
At most 100 from the phase transformation temperature
A magneto-optical material comprising a single crystal which has been heat-treated at a temperature lower by ° C. and characterized in that an arbitrary crystal plane can be used as an optical plane is obtained. According to the present invention, the chemical formula Cd 1-x M
n x Te (where, 0 <x ≦ 0.7) is represented by, Bridgend
Made by the Ziman method and at most from the phase transformation temperature
A Faraday rotator characterized in that a crystal plane other than the {111} plane of the single crystal heat-treated at a temperature lower by 100 ° C. is used as an optical plane. According to the present invention, the chemical was produced by the Bridgman method Formula Cd 1-x Mn x Te (where, 0 <x
.Ltoreq.0.7), and a method for producing a magneto-optical material characterized by subjecting a single crystal to a heat treatment at a temperature at most 100.degree. C. lower than the phase transformation temperature.

【0011】[0011]

【実施例】以下に本発明を実施例により詳細に説明す
る。
The present invention will be described below in detail with reference to examples.

【0012】ブリッジマン法により組成Cd1-x Mnx
Te(x=0.2,0.5)の単結晶を育成した。結晶
は{111}方向に双晶欠陥の重なった構造を有してい
た。双晶面({111}面)及びそれに垂直な{11
0}面,{112}面で切り出してCdまたはTe雰囲
気中で熱処理を行った。
According to the Bridgman method, the composition Cd 1 -x Mn x
A single crystal of Te (x = 0.2, 0.5) was grown. The crystal had a structure in which twin defects overlapped in the {111} direction. Twin plane ({111} plane) and {11} perpendicular to it
A heat treatment was performed in a Cd or Te atmosphere by cutting out the {0} plane and the {112} plane.

【0013】そしてx=0.5の結晶は波長λ=0.6
33μmにて,x=0.2の結晶は波長λ=0.78μ
mにて磁場H=0.5T(テスラ)印加のもとでファラ
デー回転角45度になる厚さに光学研磨を行い無反射コ
ートを両面に施した後消光比及び光損失を磁場0.5T
印加中で測定した。種々の温度での測定値を表1,表2
に示す。相変態温度はx=0.5の結晶では870℃,
X=0.2の結晶では,1020℃である。表1に示す
ごとくx=0.5の結晶は860℃以上の熱処理では光
損失が増大し実用レベル1dBを越えてしまう。840℃
の熱処理では光損失は熱処理前と変化なく消光比は向上
している。その値はいずれの面においても実用レベル3
0dB以上に達している。
The crystal having x = 0.5 has a wavelength λ = 0.6.
At 33 μm, a crystal with x = 0.2 has a wavelength λ = 0.78 μm.
After applying a magnetic field H = 0.5 T (tesla) at m, optical polishing is performed to a thickness that gives a Faraday rotation angle of 45 degrees, and an anti-reflection coating is applied to both surfaces.
Measured during application. Tables 1 and 2 show the measured values at various temperatures.
Shown in The phase transformation temperature is 870 ° C. for a crystal with x = 0.5,
The temperature is 1020 ° C. for a crystal with X = 0.2. As shown in Table 1, the heat loss of the crystal with x = 0.5 at 860 ° C. or more increases the light loss to exceed the practical level of 1 dB. 840 ° C
In the heat treatment, the extinction ratio is improved without changing the light loss as compared with that before the heat treatment. The value is practical level 3 in any aspect.
It has reached 0dB or more.

【0014】表2に示すごとくx=0.2の結晶は98
0℃以上の熱処理では光損失が増大し実用レベル1dBを
越えてしまう。960℃の熱処理では光損失は熱処理前
と変化なく消光比は向上している。その値はいずれの面
においても実用レベル30dB以上に達している。すなわ
ち,熱処理を用いることにより,従来の熱処理をしない
場合には{111}面に使用が限られていたのが任意面
での使用が可能となった。
As shown in Table 2, the crystal with x = 0.2 is 98
Heat treatment at a temperature of 0 ° C. or higher increases the light loss and exceeds the practical level of 1 dB. In the heat treatment at 960 ° C., the extinction ratio is improved without changing the light loss as compared with that before the heat treatment. The value has reached a practical level of 30 dB or more in any aspect. That is, by using the heat treatment, the use was limited to the {111} plane when the conventional heat treatment was not performed.

【0015】一方,育成した結晶のインゴットの方位は
図1(a)で示すようになっている。また,{111}
面は成長面({110}面)に垂直になっているため面
出しが必要である上に,図1(b)のように切断がイン
ゴットを縦切に行うため歩留りが70%程度であった。
本発明の実施例によれば任意面で使用できるため,面出
し工程が不要になり{110}面でインゴットを輪切り
にすることで切断歩留りは90%程度に向上した。
On the other hand, the orientation of the ingot of the grown crystal is as shown in FIG. Also, {111}
Since the surface is perpendicular to the growth surface ({110} surface), it is necessary to expose the surface. In addition, as shown in FIG. 1B, the yield is about 70% because the ingot is cut longitudinally. Was.
According to the embodiment of the present invention, since it can be used on an arbitrary surface, a surfacing process is not required, and the cutting yield is improved to about 90% by slicing the ingot on the {110} surface.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】以上説明したように,本発明によれば実
用上充分な消光特性を有する波長0.6〜0.8μmで
使用されるファラデー回転子と,このファラデー回転子
等に用いられる安価な磁気光学材料,及びその製造方法
を提供することができる。
As described above, according to the present invention, a Faraday rotator having a practically sufficient extinction characteristic and used at a wavelength of 0.6 to 0.8 .mu.m and an inexpensive Faraday rotator used for this Faraday rotator and the like And a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はブリッジマン法により育成した結晶イ
ンゴットの方位を示す斜視図である。(b)は(a)の
側面図である。
FIG. 1A is a perspective view showing the orientation of a crystal ingot grown by the Bridgman method. (B) is a side view of (a).

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 化学式Cd1−xMnTe(但し,0
<x≦0.7)で表され、ブリッジマン法で作製される
とともに相変態温度から多くとも100℃低い温度で熱
処理された単結晶からなり,任意の結晶面を光学面とし
て使用可能なことを特徴とする磁気光学材料。
1. A chemical formula Cd 1-x Mn x Te (where 0
<X ≦ 0.7) and manufactured by the Bridgman method
Heat at a temperature at most 100 ° C lower than the phase transformation temperature
A magneto-optical material comprising a treated single crystal, wherein any crystal plane can be used as an optical surface.
【請求項2】 化学式Cd1−xMnTe(但し,0
<x≦0.7)で表され、ブリッジマン法で作製される
とともに相変態温度から多くとも100℃低い温度で熱
処理された単結晶の{111}面以外の結晶面を光学面
としたことを特徴とするファラデー回転子。
2. The chemical formula Cd 1-x Mn x Te (where 0
<X ≦ 0.7), the crystal plane other than the {111} plane of the single crystal produced by the Bridgman method and heat-treated at a temperature at most 100 ° C. lower than the phase transformation temperature was used as an optical surface. A Faraday rotator characterized by the following.
【請求項3】 ブリッジマン法で作製した化学式Cd1-
x Mnx Te(但し,0<x≦0.7)で表される単結
晶を相変態温度から多くとも100℃低い温度で熱処理
することを特徴とする磁気光学材料の製造方法。
3. The chemical formula Cd1- produced by the Bridgman method.
A method for producing a magneto-optical material, wherein a single crystal represented by x Mnx Te (where 0 <x ≦ 0.7) is heat-treated at a temperature at most 100 ° C. lower than the phase transformation temperature.
JP03295421A 1991-11-12 1991-11-12 Magneto-optical material and manufacturing method thereof Expired - Lifetime JP3077001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03295421A JP3077001B2 (en) 1991-11-12 1991-11-12 Magneto-optical material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03295421A JP3077001B2 (en) 1991-11-12 1991-11-12 Magneto-optical material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05132399A JPH05132399A (en) 1993-05-28
JP3077001B2 true JP3077001B2 (en) 2000-08-14

Family

ID=17820391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03295421A Expired - Lifetime JP3077001B2 (en) 1991-11-12 1991-11-12 Magneto-optical material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3077001B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686711B1 (en) * 1993-12-22 2002-06-05 Tokin Corporation Method for manufacturing a magneto-optical device

Also Published As

Publication number Publication date
JPH05132399A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
Lee et al. Control of epitaxial growth of pulsed laser deposited LiNbO3 films and their electro‐optic effects
Ballman et al. The growth of LiNbO3 thin films by liquid phase epitaxial techniques
JP3077001B2 (en) Magneto-optical material and manufacturing method thereof
JP3699629B2 (en) Magnetic garnet material and magneto-optical element using the same
WO2012073671A1 (en) Bismuth-substituted rare earth iron garnet crystal film and optical isolator
WO2012073670A1 (en) Bismuth-substituted rare earth iron garnet crystal film and optical isolator
Aubert et al. Structural properties of LiNbO3 thin films grown by the pulsed laser deposition technique
Krp et al. Refractive Indices of Sro. 61 Bw. 39Nb2 0 6 Single Crystals
JPH1072296A (en) Production of bismuth substituted rare earth metal-iron garnet single crystal film
Ohmachi et al. Acousto‐optic property of single‐crystal 5PbO· 3GeO2
Okamura et al. Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates
JP2985022B2 (en) Magneto-optical element and optical isolator
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JP3397839B2 (en) Method for producing potassium niobate single crystal
JP3040857B2 (en) Optical isolator
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JPH11100300A (en) Bismuth-substituted garnet material and its production
JP2958408B2 (en) Zinc-doped lithium niobate optical waveguide material and method of manufacturing the same
JP3894685B2 (en) Method for producing oxide garnet single crystal film
JPS63270396A (en) Production of magnetooptical element
JP3010881B2 (en) Single crystal growth method
Papakonstantinou et al. Characterisation of pulsed laser deposited bi doped Dy iron garnet thin films on GGG (111), GGG (110), YSZ (100) and Si (100)
JP2742537B2 (en) Magneto-optical thin film and method of manufacturing the same
JP3698933B2 (en) Magneto-optic garnet single crystal
JP2757095B2 (en) Magneto-optical material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000517