JPS63270396A - Production of magnetooptical element - Google Patents

Production of magnetooptical element

Info

Publication number
JPS63270396A
JPS63270396A JP10513187A JP10513187A JPS63270396A JP S63270396 A JPS63270396 A JP S63270396A JP 10513187 A JP10513187 A JP 10513187A JP 10513187 A JP10513187 A JP 10513187A JP S63270396 A JPS63270396 A JP S63270396A
Authority
JP
Japan
Prior art keywords
substrate
lattice constant
crystal
optical element
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10513187A
Other languages
Japanese (ja)
Other versions
JPH0774118B2 (en
Inventor
Osamu Kamata
修 鎌田
Yoichi Sasai
佐々井 洋一
Motoji Morizaki
森崎 元司
Soichi Kimura
木村 壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10513187A priority Critical patent/JPH0774118B2/en
Publication of JPS63270396A publication Critical patent/JPS63270396A/en
Publication of JPH0774118B2 publication Critical patent/JPH0774118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To contrive improvement in yield of elements, by providing a specific lattice constant difference relaxing layer between a substrate consisting of a rare earth gallium garnet crystal and a garnet crystal containing Bi and iron in epitaxially growing the garnet crystal on the substrate. CONSTITUTION:For example, a crystal 3 of (BiRe)3Fe5O12 is grown on a substrate 1 of Gd3Ga5O12 (GGG). In the process, a lattice constant difference relaxing layer 2, consisting of a garnet crystal containing Bi, Fe and Ga or Al and slowly changing the concentration of the Bi and Ga or Al is provided between the substrate 1 and the crystal 3. The crystal can be prevented from cracking by providing the crystal layer 2, having intermediate values of the thermal expansion coefficient and lattice constant between those of the substrate 1 and the crystal 3 and slowly changing the values as described above.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気光学素子の製造方法に関し、特にファラデ
ー効果を利用した光アイソレータ、光サーキュレータ、
光スィッチ等に用いられる磁気光学素子用ガーネット結
晶の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a magneto-optical element, and in particular to an optical isolator, an optical circulator, and an optical circulator using the Faraday effect.
The present invention relates to a method of manufacturing garnet crystal for magneto-optical elements used in optical switches and the like.

従来の技術 最近、光通信分野において、光源に用いられる半導体レ
ーザにおける戻り光誘起雑音が問題となっており、伝送
品質の低下をもたらしている。この問題を解決するため
に、光アイソレータが半導体レーザの出力段に設けられ
ている。1.3μm帯の長波長帯アイソレータには、電
子通信学会技術研究報告0QE7B−133にある様に
、Y3Fe5O12(YIG)で表わされるイツトリウ
ム。
BACKGROUND OF THE INVENTION Recently, in the field of optical communications, feedback induced noise in semiconductor lasers used as light sources has become a problem, causing a reduction in transmission quality. To solve this problem, an optical isolator is provided at the output stage of the semiconductor laser. Yttrium represented by Y3Fe5O12 (YIG) is used for the 1.3 μm band long wavelength band isolator, as stated in IEICE technical research report 0QE7B-133.

鉄、ガーネット結晶が用いられる。このY I Gの波
長1.3μmにおけるファラデー回転角は2200/y
aであるので、光アイソレータに用いる場合、偏光面を
46°回転させる結晶長として、約2.1mm必要とな
る。このYIGの製法は、フラックス法又はフローティ
ングゾーン法によるものである。しかしながら、これら
の製法によるバルリ単結晶は。
Iron and garnet crystals are used. The Faraday rotation angle of this Y I G at a wavelength of 1.3 μm is 2200/y
a, when used in an optical isolator, the crystal length required to rotate the plane of polarization by 46° is approximately 2.1 mm. This YIG production method is based on a flux method or a floating zone method. However, the Baruri single crystal produced by these methods.

製造日数が長く、又、一時に製造できる量が少ない事か
ら、コストが高くなる欠点がある。しかし。
It takes a long time to manufacture, and the amount that can be manufactured at one time is small, resulting in high costs. but.

最近ではビスマスを含むガーネット結晶(B tl(e
 )3Fle Ep12 (R@ ”、希土類元素)カ
従来ノYIGに比較して、ファラデー回転角が一桁程度
大きく、必要な結晶長として、200−2500μmと
従来の%程度で良い事から、光アイソレータに応用され
ようとしている。さらに、  (BtRe )3Fe6
0.□結晶が1例えばGd5Qa6o1゜(GGG)で
表わされるガドリウム、ガリウムガーネット基板上に。
Recently, garnet crystals containing bismuth (B tl(e
)3Fle Ep12 (R@'', rare earth element) Compared to conventional YIG, the Faraday rotation angle is about an order of magnitude larger, and the required crystal length is 200-2500 μm, which is about % of the conventional value, making it suitable for optical isolators. In addition, (BtRe)3Fe6
0. □ On a gadolinium or gallium garnet substrate where the crystal is expressed as 1, for example, Gd5Qa6o1° (GGG).

エピタキシャル法で200〜500μm成長する事がで
きれば、格段の低コスト化が期待できる。
If it is possible to grow 200 to 500 μm using the epitaxial method, a significant cost reduction can be expected.

発明が解決しようとする問題点 しかしながら、基板に用いるGGGと 、  (B為Re)3Fe5o12結晶の熱膨張係数の
差が大きく、例えば200〜600μmの厚膜結晶を成
長させた場合、割れが生じ歩留りを著しく低下させる問
題点がある。
Problems to be Solved by the Invention However, there is a large difference in the coefficient of thermal expansion between GGG used for the substrate and (B-Re)3Fe5o12 crystal, and when a thick film crystal of, for example, 200 to 600 μm is grown, cracks occur and the yield decreases. There is a problem that significantly reduces the

問題点を解決するための手段 本発明は、上記問題点を解決するために、希土類ガリウ
ムガーネット結晶からなる基板上に、ビスマス及び鉄を
含むガーネット結晶をエピタキシャル法により成長させ
る際に、前記ビスマス及び鉄を含むガーネット結晶と前
記基板との間に、徐々にガリウム又はアルミニウム濃度
が変化するビスマス及び鉄及びガリウム又はアルミニウ
ムを含むガーネット結晶からなる格子定数差緩和層を設
けるものであり、具体的には成長速度を徐々に変化させ
る事により格子定数差緩和層を得るものであジ、さらに
、前記基板の回転数を徐々に変化させて格子定数差緩和
層を得るものであり、さらに気相成長法においては前記
基板の温度を徐々に変化させて格子定数差緩和層を得る
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a method for growing a garnet crystal containing bismuth and iron by an epitaxial method on a substrate made of rare earth gallium garnet crystal. A lattice constant difference relaxation layer made of bismuth and garnet crystal containing iron and gallium or aluminum in which the gallium or aluminum concentration gradually changes is provided between the garnet crystal containing iron and the substrate, and specifically, The lattice constant difference relaxation layer is obtained by gradually changing the growth rate, and the lattice constant difference relaxation layer is obtained by gradually changing the rotation speed of the substrate, and furthermore, the lattice constant difference relaxation layer is obtained by a vapor phase growth method. In this method, a lattice constant difference relaxation layer is obtained by gradually changing the temperature of the substrate.

作用 本発明は上記した方法により1割れの発生が無く、歩留
り良く所望の厚みのビスマス及び鉄を含むガーネット結
晶が得られるものであり、以下にその理由を述べる。
Function: According to the present invention, a garnet crystal containing bismuth and iron having a desired thickness can be obtained without occurrence of single cracks and with a high yield by the method described above, and the reason for this will be described below.

問題点で述べた様に、直接GGG基板上にビスマス及び
鉄を含むガーネット結晶例えば。
As mentioned in the problem section, for example, garnet crystals containing bismuth and iron can be placed directly on the GGG substrate.

(BtRe)3Fe、0.2を液相エピタキシャル法で
成長させる時に割れが発生し、著しく歩留りを悪化させ
るのは、熱膨張係数カG G G テ8.8X10  
[:1/’C) 。
When (BtRe)3Fe, 0.2 is grown using the liquid phase epitaxial method, cracks occur and the yield deteriorates significantly due to the thermal expansion coefficient G G G Te 8.8X10
[:1/'C).

(BtR,)3Fe6012が約11 X 10−6(
1/”C〕  と大きな差が有るためで有る。従って、
第3図に示す様に、室温で格子定数が一致していても、
成長温度での格子定数差が大きく5割れの原因となる。
(BtR,)3Fe6012 is about 11 x 10-6 (
This is because there is a large difference from 1/”C]. Therefore,
As shown in Figure 3, even if the lattice constants match at room temperature,
The difference in lattice constant at the growth temperature is large and causes 5 cracks.

しかし、第1図に示す様に、熱膨張係数と格子定数が、
基板1と(B I R@ )3Fe 50123の中間
の値であり、その値が徐々に変化する格子定数差を緩和
する結晶層2を設置する事によって、結晶の割れを防ぐ
事ができる。一般に、第2図に示すように(BiRe)
3(FeGa)6012、又は(B I Re )3(
F eAl )s○12結晶においては、 Bi 濃度
が増加すると、膨張係数は大きくなり、格子定数も大き
くなる。逆に、Ga又はM の濃度が増加すると、膨張
係数は小さくなり、格子定数も小さくなる。従って、基
板1と(B I Re )3F eso12結晶3の間
の格子定数差緩和層として、 Bi 及びGa又はMの
濃度が徐々に変化する結晶を使用する事ができる。
However, as shown in Figure 1, the thermal expansion coefficient and lattice constant are
By providing the crystal layer 2 which alleviates the difference in lattice constant whose value is intermediate between that of the substrate 1 and (B I R@ )3Fe 50123 and whose value changes gradually, cracking of the crystal can be prevented. Generally, as shown in Figure 2 (BiRe)
3(FeGa)6012, or (B I Re )3(
In the FeAl)s○12 crystal, as the Bi concentration increases, the expansion coefficient increases and the lattice constant also increases. Conversely, as the concentration of Ga or M increases, the expansion coefficient decreases and the lattice constant also decreases. Therefore, as the lattice constant difference relaxation layer between the substrate 1 and the (B I Re )3F eso12 crystal 3, a crystal in which the concentration of Bi and Ga or M gradually changes can be used.

さらに、 Bi及びGa  又はAβの濃度を徐々に変
化させる方法として、成長速度を徐々に変化させ、エピ
タキシャル成長時の偏析の成長速度依存性を利用する。
Furthermore, as a method of gradually changing the concentration of Bi and Ga or Aβ, the growth rate is gradually changed and the dependence of segregation during epitaxial growth on the growth rate is utilized.

エピタキシャル成長における有効偏析係数(keff)
は一般に固相と液相中の濃度比であるが、成長中の定常
状態では。
Effective segregation coefficient (keff) in epitaxial growth
is generally the concentration ratio in the solid and liquid phases, but at steady state during growth.

となる。ここで、に0  は平衡偏析係数、fは成長速
度、δは拡散層の厚み、Dは液相中での拡散定数である
。(1)式かられかる様に、 Biの様にに0〈1の場
合、成長速度fを大きくすれば、有効偏析係数k。ff
は大きくなり、逆に、GaやAlの様にに0〈1 の場
合、成長速度fを大きくすれば有効偏析係数k。ffは
小さくなる。従って、(BiRe)3(FeGa)60
.2又は、(BIRe)3(FeAl)6o12の成長
速度を徐々に大きくする事により、第2図に示した格子
定数と熱膨張係数を持った格子定数差緩和層を得る事が
できる。成長速度fは、基板の回転数、成長温度を変化
させる事により、制御する事ができる。
becomes. Here, 0 is the equilibrium segregation coefficient, f is the growth rate, δ is the thickness of the diffusion layer, and D is the diffusion constant in the liquid phase. As can be seen from equation (1), in the case of 0 < 1 like Bi, if the growth rate f is increased, the effective segregation coefficient k. ff
On the other hand, in the case of Ga and Al where 0<1, increasing the growth rate f increases the effective segregation coefficient k. ff becomes smaller. Therefore, (BiRe)3(FeGa)60
.. By gradually increasing the growth rate of 2 or (BIRe)3(FeAl)6o12, a lattice constant difference relaxation layer having the lattice constant and thermal expansion coefficient shown in FIG. 2 can be obtained. The growth rate f can be controlled by changing the rotation speed of the substrate and the growth temperature.

実施例 本発明の一実施例の構造を第1図に示す。本実施例では
、基板にCa −Mg−Zn置換GGG結晶1、格子定
数差緩和層2に(BiGdLu)3(FeGa )60
12を用い、その上に(BtGdLu)3Fe601゜
、 3を成長させる場合、格子定数差緩和層を得るのに
成長温度を変化させる事を利用した、液相エピタキシャ
ル成長による製造方法を示す。基板の格子定数は12.
497人であるCa −Mg−Zn置換Gd5Ga5Q
12結品を用いた。成長に用いたフラックスは。
Embodiment The structure of an embodiment of the present invention is shown in FIG. In this example, the substrate is a Ca-Mg-Zn substituted GGG crystal 1, and the lattice constant difference relaxation layer 2 is (BiGdLu)3(FeGa)60.
12 and on which (BtGdLu)3Fe601°,3 is grown, a manufacturing method using liquid phase epitaxial growth is shown in which changing the growth temperature is used to obtain a lattice constant difference relaxation layer. The lattice constant of the substrate is 12.
497 Ca-Mg-Zn substituted Gd5Ga5Q
12 pieces were used. What is the flux used for growth?

Pbo−B1203−B2Q3系テアリ、水平ディピン
ク法で基板回転数を100 rpmとした。格子定数差
緩和層は、組成が、(Blo、8Gd1.2Lu1.0
)(Fe4.3Gao、7)012から(Blo、9G
d4.1Lu1.。)(Fe4.dGal、0)012
まで30μmの厚みに渡って徐々に変化するものを、成
長温度を10deg変化させる事によって得た。
The Pbo-B1203-B2Q3 system Tearly was used, and the substrate rotation speed was set to 100 rpm using the horizontal dipinking method. The composition of the lattice constant difference relaxation layer is (Blo, 8Gd1.2Lu1.0
) (Fe4.3Gao, 7) from 012 (Blo, 9G
d4.1Lu1. . ) (Fe4.dGal, 0)012
By changing the growth temperature by 10 deg, the growth temperature gradually changed over a thickness of 30 μm.

さらにその上に、  (B 11. oGdl、 oL
u 1. o ) F eso12結晶を300μmの
厚みで1割れの発生がなく。
Furthermore, on top of that, (B 11. oGdl, oL
u1. o) Feso12 crystal with a thickness of 300 μm without any cracks.

成長を行った。また、この実施例においては各層の格子
定数差(Δa/Il)は、3×10 以内におさまって
おり、極めて結晶性の良い物であった。なお本実施例で
は、格子定数差緩和層に (BtGdLu )3(FeGa )601□を用いた
が、(B i Re )3(FeAl)6o12でも良
好な結果を得ている。また格子定数差緩和層を得るのに
、成長温度の変化による成長速度の変化を利用したが、
基板の回転数を変化させる事を利用しても良い。さらに
本実施例は、液相エピタキシャル成長法を用いた場合に
ついて述べて来たが、(1)式で示される様な拡散律速
で成長が行われている成長法、例えば、スパッタ法やC
VD法などの気相成長に対しても適用できるものである
I grew up. Further, in this example, the lattice constant difference (Δa/Il) between each layer was within 3×10 2 , indicating extremely good crystallinity. In this example, (BtGdLu)3(FeGa)601□ was used for the lattice constant difference relaxation layer, but good results were also obtained with (B i Re )3(FeAl)6o12. In addition, changes in growth rate due to changes in growth temperature were used to obtain a lattice constant difference relaxation layer, but
Changing the rotation speed of the substrate may also be used. Furthermore, although this embodiment has been described using a liquid phase epitaxial growth method, other methods such as sputtering or C
It can also be applied to vapor phase growth such as the VD method.

発明の効果 以上述べてきた様に、本発明による製造方法を用いて、
基板との間に、熱膨張係数の差を緩和するだめの、格子
定数差緩和層を設けることにより。
Effects of the invention As described above, using the manufacturing method according to the present invention,
By providing a lattice constant difference relaxation layer between the substrate and the substrate to alleviate the difference in thermal expansion coefficient.

割れの発生が無く、歩留り良く、所望の磁気光学素子を
得ることができ、その゛工業的価値は大なるものがある
A desired magneto-optical element can be obtained with no cracking and a high yield, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による製造方法を説明するた
めの断面図、第2図は本実施例方法の作用を説明するた
めの特性図、第3図は従来方法を説明するだめの特性図
である。 1・・・・・・GGG基板、2・・・・・・格子定数差
緩和層、3・−−−−−(BtRe )3Fe601゜
結晶。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3−
−−(12に)jFe、D(g 2−−−(kk)y(FeGa)At 11x(Btk
’5(FtAI)5υ12逼 /(
FIG. 1 is a sectional view for explaining the manufacturing method according to an embodiment of the present invention, FIG. 2 is a characteristic diagram for explaining the operation of the method of this embodiment, and FIG. 3 is a cross-sectional view for explaining the conventional method. It is a characteristic diagram. DESCRIPTION OF SYMBOLS 1... GGG substrate, 2... Lattice constant difference relaxation layer, 3.---(BtRe)3Fe601° crystal. Name of agent: Patent attorney Toshio Nakao and 1 other person3-
--(12)jFe,D(g 2---(kk)y(FeGa)At 11x(Btk
'5(FtAI)5υ12〼 /(

Claims (4)

【特許請求の範囲】[Claims] (1)希土類ガリウムガーネット結晶からなる基板上に
、ビスマス、及び鉄を含むガーネット結晶をエピタキシ
ャル法により成長させるに際し、前記ビスマス及び鉄を
含むガーネット結晶と前記基板との間に、徐々にビスマ
ス及びガリウム又はアルミニウム濃度が変化するビスマ
ス及び鉄及びガリウム又はアルミニウムを含むガーネッ
ト結晶からなる格子定数差緩和層を設けるようにした磁
気光学素子の製造方法。
(1) When growing a garnet crystal containing bismuth and iron by an epitaxial method on a substrate made of rare earth gallium garnet crystal, the bismuth and gallium are gradually grown between the garnet crystal containing bismuth and iron and the substrate. Alternatively, a method for manufacturing a magneto-optical element in which a lattice constant difference relaxing layer is provided which is made of garnet crystal containing bismuth, iron, and gallium or aluminum with varying aluminum concentrations.
(2)磁気光学素子の製造を液相及び気相エピタキシャ
ル法により行うものとし、成長速度を徐々に変化させる
ことにより格子定数差緩和層を得るようにした特許請求
の範囲第1項記載の磁気光学素子の製造方法。
(2) The magnetism according to claim 1, wherein the magneto-optical element is manufactured by liquid phase and vapor phase epitaxial methods, and the lattice constant difference relaxation layer is obtained by gradually changing the growth rate. A method for manufacturing an optical element.
(3)磁気光学素子の製造を液相及び気相エピタキシャ
ル法により行うものとし、基板の回転数を徐々に変化さ
せることにより格子定数差緩和層を得るようにした特許
請求の範囲第1項記載の磁気光学素子の製造方法。
(3) The magneto-optical element is manufactured by liquid phase and vapor phase epitaxial methods, and the lattice constant difference relaxation layer is obtained by gradually changing the rotational speed of the substrate. A method for manufacturing a magneto-optical element.
(4)磁気光学素子の製造をスパッタ法、CVD法等の
気相成長法により行うものとし、基板の温度を徐々に変
化させることにより格子定数差緩和層を得るようにした
特許請求の範囲第1項記載の磁気光学素子の製造方法。
(4) The magneto-optical element is manufactured by a vapor phase growth method such as a sputtering method or a CVD method, and the lattice constant difference relaxation layer is obtained by gradually changing the temperature of the substrate. A method for manufacturing a magneto-optical element according to item 1.
JP10513187A 1987-04-28 1987-04-28 Method for manufacturing magneto-optical element Expired - Fee Related JPH0774118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10513187A JPH0774118B2 (en) 1987-04-28 1987-04-28 Method for manufacturing magneto-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10513187A JPH0774118B2 (en) 1987-04-28 1987-04-28 Method for manufacturing magneto-optical element

Publications (2)

Publication Number Publication Date
JPS63270396A true JPS63270396A (en) 1988-11-08
JPH0774118B2 JPH0774118B2 (en) 1995-08-09

Family

ID=14399208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10513187A Expired - Fee Related JPH0774118B2 (en) 1987-04-28 1987-04-28 Method for manufacturing magneto-optical element

Country Status (1)

Country Link
JP (1) JPH0774118B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element
WO1993009672A1 (en) * 1991-11-22 1993-05-27 Commonwealth Scientific And Industrial Research Organisation Insect pest control
WO2022004077A1 (en) * 2020-07-03 2022-01-06 信越化学工業株式会社 Bismuth-substituted rare earth iron garnet single crystal film production method, faraday rotator, and optical isolator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element
WO1993009672A1 (en) * 1991-11-22 1993-05-27 Commonwealth Scientific And Industrial Research Organisation Insect pest control
WO2022004077A1 (en) * 2020-07-03 2022-01-06 信越化学工業株式会社 Bismuth-substituted rare earth iron garnet single crystal film production method, faraday rotator, and optical isolator
JP2022013228A (en) * 2020-07-03 2022-01-18 信越化学工業株式会社 Method for manufacturing bismuth substitution rare earth iron garnet single crystal film, faraday rotor and optical isolator

Also Published As

Publication number Publication date
JPH0774118B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JPS63270396A (en) Production of magnetooptical element
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JPH0576611B2 (en)
JPS60134404A (en) Magnetooptical material
JPH09202697A (en) Production of bismuth-substituted type garnet
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
JPS6369799A (en) Production of garnet crystal
JPH0533769B2 (en)
JP2841260B2 (en) Magneto-optical element
JPS6369718A (en) Magneto-optical crystal
JPH11100300A (en) Bismuth-substituted garnet material and its production
JP2742537B2 (en) Magneto-optical thin film and method of manufacturing the same
JPH0354454B2 (en)
WO1994017437A1 (en) Magneto-optical element
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPS6272597A (en) Oxide garnet single crystal
JP2514398B2 (en) Method for growing single crystal for magneto-optical element
JPH0251494A (en) Material for magneto-optical element
JPH05134221A (en) Magneto-optical material and production thereof and optical element formed by using this process
JP2729288B2 (en) Manufacturing method of magneto-optical thin film
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
JPS61242986A (en) Production of magneto-optical crystal
JPS63233097A (en) Thin single crystal film
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees