JPS6272597A - Oxide garnet single crystal - Google Patents

Oxide garnet single crystal

Info

Publication number
JPS6272597A
JPS6272597A JP21124685A JP21124685A JPS6272597A JP S6272597 A JPS6272597 A JP S6272597A JP 21124685 A JP21124685 A JP 21124685A JP 21124685 A JP21124685 A JP 21124685A JP S6272597 A JPS6272597 A JP S6272597A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
garnet
pulling
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21124685A
Other languages
Japanese (ja)
Inventor
Arata Sakaguchi
阪口 新
Toshihiko Riyuuou
俊彦 流王
Satoru Fukuda
悟 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21124685A priority Critical patent/JPS6272597A/en
Publication of JPS6272597A publication Critical patent/JPS6272597A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a substrate single crystal for epitaxial growth of a garnet structural body of which the cations consist of 3 kinds of the oxides of Y, In and Al and which has good productivity. CONSTITUTION:The cations of the titled single crystal consist of 3 kinds of Y, In and Al and the crystal structure thereof is expressed by, for example, the formula Y3In2Al2O12. The crystal lattice constant thereof is 12.42-12.45Angstrom and the segregation coefft. is approximately 1. Since the single crystal has the above-mentioned crystal lattice constant and segregation coefft., this crystal is useful as the garnet substrate single crystal for the epitaxial growth of the bismuth-substd. magnetic garnet film expressed by the formula (BiRe)3(FeM)5O12 and since the crystal has excellent light transmittability, the crystal is useful as the substrate for an optical isolator as well. The single crystal is easily produced without twisting the single crystal in the pulling-up state by weighing respective raw materials to obtain the above-mentioned compsn. then housing the raw materials into a crucible and pulling up the crystal by a Czochralski process after heating and melting the crystal at 1,700-1,800 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、文献未載の新規な磁性膜用ガーネット単結晶
、特には陽イオンがY、In、AMの3種の酸化物から
なる磁気バブル素子、磁気光学素子用として有用とされ
る酸化物ガーネッl結晶に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a novel garnet single crystal for magnetic films that has not yet been published in any literature, particularly a magnetic film whose cations are composed of three oxides of Y, In, and AM. This invention relates to an oxide garnet crystal that is useful for bubble elements and magneto-optical elements.

〔従来の技術〕[Conventional technology]

希土類鉄系の磁性ガーネット薄膜をエピタキシャル成長
させたガーネット構造をもつ磁性膜は磁気バブル素子、
磁気光学素子として使用されているが、このエピタキシ
ャル成長させるガーネット構造体についてはバブルメモ
リーにおける異方性磁界を大きくすること、また磁気光
学用としてはファラデイ回転能を大きくすることからB
i。
A magnetic film with a garnet structure made by epitaxially growing a rare earth iron-based magnetic garnet thin film can be used as a magnetic bubble element,
This epitaxially grown garnet structure is used as a magneto-optical element, but B
i.

R、F e 、 M (ここにRはCa、Yまたは希土
類元十の1種以上、MはGa、A交などの鉄とt換可能
な金属元素)の陽イオン酸化物からなるビスマス置換磁
性ガーネット膜の使用が良好な結果を示すものとされ、
このものの使用が注目されている。 他方、このガーネ
ット構造をとるエピタキシャル成長層を作るために使用
されるガーネット基板単結晶については l)結晶の格子定数がガーネット構造をもつ磁性膜と約
0.01Aの範囲内で合致していること。
Bismuth substitution magnetism consisting of cationic oxides of R, Fe, M (where R is Ca, Y, or one or more of the rare earth elements, M is a metal element that can be exchanged with iron such as Ga or A) It is said that the use of garnet film shows good results,
The use of this product is attracting attention. On the other hand, regarding the garnet substrate single crystal used to make the epitaxially grown layer having this garnet structure, l) the lattice constant of the crystal matches that of the magnetic film having the garnet structure within a range of about 0.01A;

2)結晶を構成する元素の偏析係数が、lに近い値であ
ること が要求されるのであるが、上記したビスマス置換磁性ガ
ーネット膜の格子定数が12.42〜12.45Aとさ
れるのに対し、従来この種の基板単結晶とされたガドリ
ニウム・ガリウム・ガーネット(GGG)、ネオジム・
ガリウム・ガーネッh (NGO)などはその格子定数
が、それぞれ12.38.12.51Aであることから
、このビスマス置換磁性ガーネットaをエピタキシャル
成長させるための最適な基板とはいえず、従来公知の各
種の基板単結晶の中ではその格子定数が12.43Aで
あるサマリウム会ガリウムーガーネッ) (SGG)だ
けがこれに使用されるものとされ、実用化されている。
2) The segregation coefficient of the elements constituting the crystal is required to be a value close to 1, but even though the lattice constant of the above-mentioned bismuth-substituted magnetic garnet film is 12.42 to 12.45A, In contrast, conventional single crystal substrates of this type, such as gadolinium gallium garnet (GGG) and neodymium
Since gallium garnet (NGO) has a lattice constant of 12.38 and 12.51 A, respectively, it cannot be said to be an optimal substrate for epitaxial growth of this bismuth-substituted magnetic garnet a, and various conventionally known substrates are used. Among the substrate single crystals, only samarium gallium garnet (SGG), which has a lattice constant of 12.43 A, is considered to be used for this purpose and has been put into practical use.

 しかし、このSGGについてはチョクラルスキー法に
おける単結晶引上げ時に結晶がねじれるという現象が起
るためにその製造が難しく、生産性がわるいという欠点
があるため、これに代る基板中結晶の提供が求められて
いる。
However, this SGG has the disadvantage that it is difficult to manufacture and has low productivity due to the phenomenon that the crystal is twisted when pulling a single crystal using the Czochralski method, so it is necessary to provide an alternative crystal in the substrate. It has been demanded.

〔発明の構成〕[Structure of the invention]

本発明はこのような不利を伴なわない生産性のよい、ガ
ーネット構造体をエピタキシャル成長させるための基板
中結晶に関するもので、これは陽イオンがY、In、A
Jlの3種からなる酸化物ガーネット単結晶に関するも
のである。
The present invention relates to a crystal in a substrate for epitaxially growing a garnet structure, which does not have such disadvantages and has good productivity.
The present invention relates to an oxide garnet single crystal consisting of three types of Jl.

すなわち1本発明者らは前記したエピタキシャル成長層
として(7)Bi 、R,Fe、M(R,Mは前記に同
じ)の陽イオン酸化物からなるビスマス置換磁性ガーネ
ット膜の結晶格子定数である12.42〜12.45λ
に近似する格子定数をもつガーネット構造体について種
々検討した結果、上記した陽イオンがY、In、Ajl
の3種からなる酸化物ガーネット単結晶が格子定数12
.42λとされるものであることを見出すと共に、この
ものは偏析係数が略々lであり、このものはチョクラル
スキー法による単結晶引上げ時にも結晶がねじれること
もなく、容易に引上げることができるので生産性もすぐ
れたものであるということを確認して本発明を完成させ
た。
That is, 1. The present inventors used the crystal lattice constant 12 of the bismuth-substituted magnetic garnet film made of cationic oxides of (7) Bi, R, Fe, and M (R and M are the same as above) as the epitaxial growth layer described above. .42~12.45λ
As a result of various studies on garnet structures with lattice constants approximating
The oxide garnet single crystal consisting of three types has a lattice constant of 12.
.. 42λ, and the segregation coefficient of this material was approximately 1, and the crystal did not twist even when pulling a single crystal using the Czochralski method, and it could be easily pulled. The present invention was completed after confirming that it is possible to improve productivity.

本発明の酸化物ガーネット単結晶は陽イオンとしてイツ
トリウム(Y)、インジウム(I n)およびアルミニ
ウム(A!L)の3元素を構成要素とするものであるが
、このものはその結晶から切出したウェーハを熱リン酸
でエツチングしてからその格子定数を測定したところ1
2.419Aであって前記したBi、R,Fe、Mの陽
イオン酸化物からなる、例えば式 (B 1Re)   (FeM)s 012で示される
ビスマス置換磁性ガーネット膜の格子定fi12.42
〜l 2.45Aと略々一致するものであるし、この偏
析係数がこの結晶の重量分析値からY。
The oxide garnet single crystal of the present invention is composed of three elements as cations: yttrium (Y), indium (In), and aluminum (A!L), and this crystal is cut from the crystal. After etching a wafer with hot phosphoric acid and measuring its lattice constant, we found 1
The lattice constant fi12.42 of a bismuth-substituted magnetic garnet film, for example, represented by the formula (B 1Re) (FeM)s 012, which is 2.419A and is made of the above-mentioned cationic oxides of Bi, R, Fe, and M.
~l 2.45A, and this segregation coefficient is Y from the gravimetric analysis value of this crystal.

In、AMのいずれについても1.00−1.02とさ
れるものであることから、上記したビスマスfFi換磁
性ガーネット膜をエピタキシャル成長させるためのガー
ネット基板単結晶として最適とされるものであることが
確認された。
Since both In and AM are considered to be 1.00-1.02, it is considered to be the optimal garnet substrate single crystal for epitaxially growing the above-mentioned bismuth fFi commutative garnet film. confirmed.

本発明の酸化物ガーネット単結晶は上記したように陽イ
オンがY、In、Allの3種からなるも”のとされる
が、このものはガーネット構造の(C)サイトにY、[
alサイトにIn、(d)サイトにAnを配lしたもの
と考えられる。したかってこれには弐Y3I n21’
−130t2で示される結晶構造をもつものが例示され
るがこのものはY  O、In2O3およびAIL20
3の所定量をるつぼ中に仕込んで高周波誘導で加熱溶融
したのち、この融液からチョクラルスキー法で単結晶を
引上げることによって製造される。
As mentioned above, the oxide garnet single crystal of the present invention is said to have three types of cations: Y, In, and All, and this crystal has Y and [
It is thought that In is placed at the al site and An is placed at the (d) site. But this is 2Y3I n21'
-130t2 is exemplified;
It is produced by putting a predetermined amount of No. 3 into a crucible and heating and melting it by high-frequency induction, and then pulling a single crystal from this melt using the Czochralski method.

すなわち、本発明者らは例えば前記した式Y3In2A
fL30.2で示されるガーネット単結晶の工業的な製
造方法について種々検討し、これにはチョクラルスキー
法による単結晶中とげ法によることがよいと判断し、こ
の諸条件についての研究を進めた。ここに使用される Y  O、In2O3,AfL203はできるだけ高純
度のものとすることがよく、したがってこれらはいずれ
も好ましくは純度が99.9%以上のものとされる。こ
れらの配合比は目的とする単結晶が例えば 式 Y3■n2A9.3012とされるもノテあること
がらY036〜39モル%、■n20322〜28モル
%、およびAfL20336〜39モル%となるように
する必要がある。これらはそれぞれを秤量後るつぼ内に
収納して溶融されるが、このるつぼはこれらの溶融温度
が1,700℃以上とされるのでイリジウム製のものと
すればよい。このものの溶融は常法にしたがって高周波
誘導によって行えばよく、シたがってこれには例えば7
KHz、l0KWの高周波を用いてこれらを1.700
〜1.800℃に加熱して溶融させればよい。
That is, the present inventors have obtained, for example, the above formula Y3In2A
We investigated various methods for industrially producing garnet single crystals shown by fL30.2, and determined that the single crystal medium thorn method using the Czochralski method would be suitable for this purpose, and proceeded with research on these conditions. . The Y 2 O, In2O3, and AfL203 used here are preferably as pure as possible, and therefore, all of them preferably have a purity of 99.9% or more. These compounding ratios should be set to Y036-39 mol%, ■n20322-28 mol%, and AfL20336-39 mol%, since the target single crystal has the formula Y3■n2A9.3012, but there are some caveats. There is a need. After each of these is weighed, they are placed in a crucible and melted, and since the melting temperature of these is 1,700° C. or higher, this crucible may be made of iridium. The melting of this material can be carried out by high frequency induction according to the conventional method, and therefore, for example, 7
These are 1.700 using high frequency of KHz, 10KW.
What is necessary is just to heat it to ~1.800 degreeC and melt it.

目的とする単結晶はこの溶融物からのチョクラルスキー
法による単結晶引上げによって行えばよいが、この場合
の雰囲気は酸素を1〜5%またはCO2ガスを25〜1
00%含有する窒素ガス、アルゴンガス雰囲気とすれば
よい。また、単結晶引上げに使用される種子結晶は目的
とする単結晶と同質の式例えば Y3In2A文。0.
2で示されるものとすればよいが、これはガドリニウム
・ガリウム・ガーネット(GGG)などのようなガーネ
ット型結晶体の単結晶としてもよく、この場合の単結晶
の引上げ速度は1〜20mm/時とすればよい。
The desired single crystal can be produced by pulling a single crystal from this melt using the Czochralski method, but the atmosphere in this case is 1 to 5% oxygen or 25 to 1% CO2 gas.
An atmosphere containing 00% nitrogen gas or argon gas may be used. In addition, the seed crystal used for pulling the single crystal has a formula of the same quality as the target single crystal, for example, Y3In2A sentence. 0.
2, but it may also be a single crystal of a garnet-type crystal such as gadolinium gallium garnet (GGG), and in this case, the pulling speed of the single crystal is 1 to 20 mm/hour. And it is sufficient.

なお、この単結晶の引上げではSGGのように引上げ時
に単結晶がねじれるということがなく、この引上げは極
めて容易に行うことができ、引上げ終了後に単結晶を融
体から引離し、冷却すれば目的とする単結晶を得ること
ができる。
Note that this single crystal pulling does not twist the single crystal during pulling unlike SGG, and this pulling can be performed extremely easily.After pulling, the single crystal is separated from the melt and cooled to achieve the desired purpose. A single crystal can be obtained.

このようにして得られた本発明の例えば式Y3I n2
An。012で示される単結晶は、前記したようにその
結晶格子定数が約12.42Aであり、偏析係数も略々
1であるということから、式(B 1Re)  ’(F
eM)5012で示されるビスマスl換磁性ガーネット
膜をエピタキシャル成長させるためのガーネット基板単
結晶として有用とされるものであるが、これはまた光透
過性にもすぐれているので光アイソレーター用の基板と
しても有用とされる。
For example, the formula Y3I n2 of the present invention thus obtained
An. As mentioned above, the single crystal represented by 012 has a crystal lattice constant of approximately 12.42A and a segregation coefficient of approximately 1, so the formula (B 1Re) '(F
It is said to be useful as a single crystal garnet substrate for epitaxially growing a bismuth l commutative garnet film shown by eM) 5012, but it also has excellent optical transparency, so it can also be used as a substrate for optical isolators. Considered useful.

つぎに本発明の実施例をあムfる。Next, examples of the present invention will be described.

実施例 l 外径50mm、高さ50mmのイリジウムるつぼ中に、
Y2O3198,Ig (0,87モル)In2 o3
162.4g (0,58モル)およびAl2O289
,5g(0,88モル)を秤取して仕込み、窒素ガス9
8%、酸素ガス2%の雰囲気ガス中で高周波誘導で1.
750℃に加熱して溶解させ、この融液に5mm角のG
GG種子結晶を浸漬し、これを10rpmの回転下に5
〜6mm/時の速度で引上げて単結晶引上げを行なった
ところ86−3gの透明な結晶が得られた。
Example l In an iridium crucible with an outer diameter of 50 mm and a height of 50 mm,
Y2O3198, Ig (0.87 mol) In2 o3
162.4g (0.58 mol) and Al2O289
, 5g (0.88 mol) was weighed and charged, and nitrogen gas 9
8% and 2% oxygen gas by high frequency induction.
Heat it to 750℃ to melt it, and add a 5mm square G to this melt.
GG seed crystals are immersed and rotated at 10 rpm for 5 minutes.
When the single crystal was pulled at a speed of ~6 mm/hour, 86-3 g of transparent crystal was obtained.

つぎにこの結晶の上部と下部から6約tgの試料を切出
し、高周波結合誘導プラズマ発光分析装置で各成分金属
元票について定量分析を行なったところ、つぎの第1表 第  1  表 に示したとおりの結果が得られたので、このものは次式 %式% の結晶構造をもつものであることが確認されたが、この
定量分析結果にもとづいてこれら各金属の偏析係数を算
出したところ、これらは第2表に示したとおりであり、
いずれも略々lであることが確認された。
Next, approximately 6 tg of samples were cut from the upper and lower parts of this crystal, and a quantitative analysis of each component metal source was performed using a high-frequency coupled induction plasma emission spectrometer, as shown in Table 1 below. This result confirmed that this material had a crystal structure expressed by the following formula %. When the segregation coefficients of each of these metals were calculated based on the results of this quantitative analysis, it was found that these is shown in Table 2,
It was confirmed that all of them were approximately l.

第2表 また、この結晶についてはこの結晶上部および結晶下部
から厚さinmのウェーハを切り出し、熱リン酸でエツ
チング後、格子定数精密測定装置・APL2 (理学電
機社製商品名)を用い、ポンド法でその格子定数を測定
したところ、これはいずれも12.419Aの値を示し
た。
Table 2 also shows that for this crystal, a wafer with a thickness of inch was cut from the upper and lower parts of the crystal, etched with hot phosphoric acid, and then etched using a lattice constant precision measuring device APL2 (trade name manufactured by Rigaku Denki Co., Ltd.). When the lattice constants were measured by the method, they all showed a value of 12.419A.

実施例 2〜4 上記した実施例1における金属酸化物の配合量をつざの
第3表に示した量としたほかは実施例1と同様に処理し
たところ、この場合にも透明な単結晶が得られ、これら
は、その分析結果から式Y 3In2 A 13012
で示される結晶構造をもつものであった。
Examples 2 to 4 The same treatment as in Example 1 was carried out except that the amount of metal oxide in Example 1 was changed to the amount shown in Table 3 below. are obtained, and these have the formula Y 3In2 A 13012 from the analysis results.
It had the crystal structure shown below.

第3表 実施例 5 上記した実施例1における金f!酸化物の溶融。Table 3 Example 5 Gold f! in Example 1 above! Melting of oxides.

この融液からの単結晶引上げにおけるガス雰囲気を窒素
ガス50%、CO2ガス50%のものとしたほかは実施
例1と同様に処理したところ、この場合にも実施例1と
同様な結果が得られた。
The same process as in Example 1 was performed except that the gas atmosphere for pulling the single crystal from this melt was 50% nitrogen gas and 50% CO2 gas, and the same results as in Example 1 were obtained in this case as well. It was done.

Claims (1)

【特許請求の範囲】 1、陽イオンがY、In、Alの3種からなる酸化物ガ
ーネット単結晶。 2、格子定数が12.42〜12.45Åの範囲にある
特許請求の範囲第1項記載の酸化物ガー ネット単結晶。 3、結晶構造がY_3In_2Al_3O_1_2で示
されるものである特許請求の範囲第1項記載の 酸化物ガーネット単結晶。
[Claims] 1. An oxide garnet single crystal containing three types of cations: Y, In, and Al. 2. The oxide garnet single crystal according to claim 1, which has a lattice constant in the range of 12.42 to 12.45 Å. 3. The oxide garnet single crystal according to claim 1, which has a crystal structure of Y_3In_2Al_3O_1_2.
JP21124685A 1985-09-25 1985-09-25 Oxide garnet single crystal Pending JPS6272597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21124685A JPS6272597A (en) 1985-09-25 1985-09-25 Oxide garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21124685A JPS6272597A (en) 1985-09-25 1985-09-25 Oxide garnet single crystal

Publications (1)

Publication Number Publication Date
JPS6272597A true JPS6272597A (en) 1987-04-03

Family

ID=16602715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21124685A Pending JPS6272597A (en) 1985-09-25 1985-09-25 Oxide garnet single crystal

Country Status (1)

Country Link
JP (1) JPS6272597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465304A (en) * 1987-09-04 1989-03-10 Hitachi Construction Machinery Controller of hydraulic circuit
CN109311756A (en) * 2016-06-17 2019-02-05 出光兴产株式会社 Oxide sintered body and sputtering target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465304A (en) * 1987-09-04 1989-03-10 Hitachi Construction Machinery Controller of hydraulic circuit
CN109311756A (en) * 2016-06-17 2019-02-05 出光兴产株式会社 Oxide sintered body and sputtering target
US11328911B2 (en) 2016-06-17 2022-05-10 Idemitsu Kosan Co., Ltd. Oxide sintered body and sputtering target
CN109311756B (en) * 2016-06-17 2022-07-22 出光兴产株式会社 Oxide sintered body and sputtering target

Similar Documents

Publication Publication Date Title
JP2011121840A (en) Terbium oxide crystal for magneto-optic element
US4293371A (en) Method of making magnetic film-substrate composites
JPS6272597A (en) Oxide garnet single crystal
JPH0294608A (en) Oxide garnet single crystal and manufacture thereof
JP4147573B2 (en) Garnet single crystal substrate and manufacturing method thereof
JPH09328396A (en) Garnet crystal for substrate of magnetooptic element and its production
JPH0297496A (en) Oxide garnet single crystal
JPS6272596A (en) Oxide garnet single crystal
JP4292565B2 (en) Garnet single crystal substrate and manufacturing method thereof
JPH09202697A (en) Production of bismuth-substituted type garnet
JP2010059030A (en) Garnet single crystal substrate and method for manufacturing the same
JPH07115996B2 (en) Neodymium gallium garnet single crystal and method for producing the same
JPH0817130B2 (en) Oxide Garnet Single Crystal
JP2763040B2 (en) Oxide garnet single crystal
JP2869951B2 (en) Magnetic garnet single crystal and microwave device material
JPS63270396A (en) Production of magnetooptical element
JPH0354454B2 (en)
JP3614248B2 (en) Garnet crystal for substrate of magneto-optical element and manufacturing method thereof
JPH03103398A (en) Oxide garnet single crystal and production thereof
JPH11100300A (en) Bismuth-substituted garnet material and its production
JP3547089B2 (en) Microwave device material
JPS58155719A (en) Manufacture of single crystal body
JP5717207B2 (en) Terbium oxide crystals for magneto-optic elements
JPS6271205A (en) Magnetic device
JPH10139596A (en) Single crystal substrate