JPH07115996B2 - Neodymium gallium garnet single crystal and method for producing the same - Google Patents

Neodymium gallium garnet single crystal and method for producing the same

Info

Publication number
JPH07115996B2
JPH07115996B2 JP62196026A JP19602687A JPH07115996B2 JP H07115996 B2 JPH07115996 B2 JP H07115996B2 JP 62196026 A JP62196026 A JP 62196026A JP 19602687 A JP19602687 A JP 19602687A JP H07115996 B2 JPH07115996 B2 JP H07115996B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
gallium garnet
garnet single
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62196026A
Other languages
Japanese (ja)
Other versions
JPS6442396A (en
Inventor
新二 牧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP62196026A priority Critical patent/JPH07115996B2/en
Publication of JPS6442396A publication Critical patent/JPS6442396A/en
Publication of JPH07115996B2 publication Critical patent/JPH07115996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ネオジウム・ガリウム・ガーネット単結晶お
よびその製造方法、特にはバブリメモリ用基板材料、光
学用基材材料として有用されるネオジウム・ガリウム・
ガーネット単結晶およびその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a neodymium gallium garnet single crystal and a method for producing the same, particularly a neodymium gallium
The present invention relates to a garnet single crystal and a method for producing the same.

〔従来の技術〕[Conventional technology]

ネオジウム・ガリウム・ガーネット単結晶は磁気バブル
用基板材料、光学用基板材料などに用いられているが、
これらの用途に使用されるネオジウム・ガリウム・ガー
ネット単結晶には高い品質、すなわち一定かつ一様な格
子定数と無欠陥であることが要求される。
The neodymium / gallium / garnet single crystal is used as a substrate material for magnetic bubbles, an optical substrate material, etc.
The neodymium gallium garnet single crystal used for these applications is required to have high quality, that is, constant and uniform lattice constant and defect-free.

また、このバルブメモリ用基板、光学用基板用の単結晶
については次第に大きい直径のものが要求されるように
なり、最近では需要のかなりの部分が直径2インチから
3インチのものに移行しており、近い将来には4インチ
にいたる大きなものの使用が予想されることから、単結
晶製造時に高い品質の確保と同時に結晶に関するクラッ
チ発生の防止が課題となっている。すなわち、単結晶の
大直径はそれと共に単結晶インゴット内における組成や
特性値の不均一が大きくなり、単結晶インゴットが基板
への加工工程のみならず、エピタキシャル膜成長工程や
パターン作成工程等の製造工程においても不利を伴うこ
とになる。
Further, as for the single crystal for the valve memory substrate and the optical substrate, the one having a gradually larger diameter is required, and recently, a considerable part of the demand is shifted from the one having a diameter of 2 inches to the one having a diameter of 3 inches. However, since it is expected that a large one up to 4 inches will be used in the near future, securing a high quality at the time of manufacturing a single crystal, and at the same time, preventing the occurrence of a clutch related to the crystal is an issue. That is, the large diameter of the single crystal causes a large nonuniformity of the composition and characteristic values in the single crystal ingot, and the single crystal ingot is not only processed into a substrate but also manufactured in an epitaxial film growth step, a pattern forming step, etc. There are also disadvantages in the process.

しかして、このネオジウム・ガリウム・ガーネット単結
晶のような複合化合物単結晶の製造は通常化学量論的な
組成の融液から単結晶を育成する方法が採られている
が、この場合には得られる単結晶の偏析係数が1.00から
大きく外れるようになるために融液と単結晶の組成が一
致せず、また単結晶が安定に成長しないので長いものを
引き上げることができず、転位が起き易いという欠点が
あり、これにはまたこのようにして得た単結晶から切り
出したウエーハを基板として用いた各デバイスは特性値
が一定しないという不利もある。
Thus, a method for growing a single crystal from a melt having a stoichiometric composition is usually used for the production of the composite compound single crystal such as the neodymium gallium garnet single crystal. The composition of melt and single crystal does not match because the segregation coefficient of the single crystal is greatly deviated from 1.00, and the single crystal does not grow stably, so long ones cannot be pulled up and dislocation easily occurs. However, this also has a disadvantage in that each device using a wafer cut from the thus obtained single crystal as a substrate has inconsistent characteristic values.

〔発明の構成〕[Structure of Invention]

本発明はこのような不利を解決したネオジウム・ガリウ
ム・ガーネット単結晶およびその製造方法に関するもの
で、これはNd2O3を37.60〜37.80モル%含有するネオジ
ウム・ガリウム・ガーネット単結晶およびNd2O3を37.60
〜37.80モル%含有するコングルエント組成よりなるNd2
O3とGa2O3との混合融液からネオジウム・ガリウム・ガ
ーネット単結晶を成長させることを特徴とするものであ
る。
The present invention relates to a neodymium gallium garnet single crystal and a method for producing the same, in which such disadvantages are solved, which is a neodymium gallium garnet single crystal containing 37.60 to 37.80 mol% of Nd 2 O 3 and Nd 2 O. 3 to 37.60
~37.80 consisting congruent composition containing mol% Nd 2
It is characterized in that a neodymium-gallium-garnet single crystal is grown from a mixed melt of O 3 and Ga 2 O 3 .

すなわち、本発明者らは前記したような不利を伴わない
ネオジウム・ガリウム・ガーネット単結晶およびの製造
方法について種々検討した結果、チョクラルスキー法に
よる単結晶引上げ時に使用される融液をコングルエント
組成であるNd2O3が37.60〜37.80モル%で残余が実質的
にGa2O3であるものとしてこれからネオジウム・ガリウ
ム・ガーネット単結晶を成長させると、得られる単結晶
はNd2O3を37.60〜37.80モル%含有していることを確認
すると共に、その偏析係数がほぼ1.00を示すし、単結晶
の組成も各部分で一定となるので4″のような大口径の
単結晶ウエーハの製造も容易に行なうことができ、しか
もクラック率が小さく、結晶転移も少ないということを
見出して本発明を完成させた。
That is, as a result of various studies on the method for producing a neodymium gallium garnet single crystal without the above disadvantages, the present inventors have found that the melt used in pulling a single crystal by the Czochralski method has a congruent composition. If a Nd 2 O 3 is grown at 37.60 to 37.80 mol% and the balance is essentially Ga 2 O 3 , a neodymium gallium garnet single crystal is grown from the Nd 2 O 3 at 37.60 to 37.60%. It was confirmed that the content was 37.80 mol%, the segregation coefficient was about 1.00, and the composition of the single crystal was constant in each part, so it was easy to manufacture a single crystal wafer with a large diameter such as 4 ″. The present invention has been completed based on the finding that it can be performed at a low temperature, a small crack rate, and a small crystal transition.

本発明の方法は上記したようなコングルエントな組成か
らなる融液からネオジウム・ガリウム・ガーネット単結
晶を成長させるものであるが、こゝに使用されるNd
2O3、Ga2O3はできるだけ高純度のものとすることがよ
く、したがってこれらはいずれも好ましく99.99%以上
のものとすることがよく、これらの配合比は上記したよ
うにそのコングルエントの組成がNd2O3が37.60〜37.80
モル%で残余が実質的にGa2O3となるものとする必要が
ある。これらはそれぞれを秤量後るつぼ内に収納して溶
融されるが、このるつぼはこれらの溶融温度が1,600℃
以上とされるのでイリジウム製のものとすればよい。こ
のものの溶融は常法にしたがって高周波誘導によって行
なえばよく、したがってこれには例えば7KHz、10KWの高
周波を用いてこれらを1,700〜1,800℃に加熱して溶融さ
せればよい。
The method of the present invention is to grow a neodymium gallium garnet single crystal from a melt having a congruent composition as described above.
It is preferable that 2 O 3 and Ga 2 O 3 are as pure as possible, and therefore, it is preferable that all of them be 99.99% or more, and the mixing ratio of them is as described above. Is Nd 2 O 3 is 37.60 to 37.80
It is necessary to make the balance substantially Ga 2 O 3 in mol%. Each of these is weighed and then stored in a crucible to be melted. This crucible has a melting temperature of 1,600 ° C.
As described above, it may be made of iridium. This may be melted by high-frequency induction according to a conventional method, and for this purpose, for example, a high frequency of 7 KHz and 10 KW may be used to heat these to 1,700 to 1,800 ° C. to melt them.

目的とする単結晶の製造はこの溶融物からのチョクラル
スキー法による単結晶引上げによって行なえばよいが、
この場合の雰囲気は酸素を1〜5%またはCO2を25〜100
%含有する窒素ガス、アルゴンガス雰囲気とすればよ
い。また、単結晶引上げに使用される種子結晶は目的と
する単結晶と同質の式例えば式Nd3Ga5O12で示されるも
のとすればよいが、これはガドニウム・ガリウム・ガー
ネット(GGG)などのようなガーネット型結晶体の単結
晶としてもよく、この場合の単結晶の引上げ速度は1〜
20mm/時とすればよい。
The target single crystal may be produced by pulling a single crystal from the melt by the Czochralski method,
The atmosphere in this case is 1 to 5% oxygen or 25 to 100 CO 2 .
% Nitrogen gas or argon gas atmosphere may be used. Further, the seed crystal used for pulling the single crystal may be represented by a formula of the same quality as the target single crystal, for example, the formula Nd 3 Ga 5 O 12 , which is a gadnium gallium garnet (GGG) or the like. A single crystal of a garnet-type crystal body such as
It should be 20 mm / hour.

なお、この単結晶の引上げではSGGのように引上げ時に
単結晶がねじれるということがなく、この引上げは極め
て容易に行なうことができ、引上げ終了後に単結晶を融
体から引離し、冷却すれば目的とする単結晶を得ること
ができる。
It should be noted that pulling of this single crystal does not cause twisting of the single crystal during pulling unlike SGG, and this pulling can be performed extremely easily. Can be obtained.

このようにして得られた本発明の式Nd3Ga5O12で示され
る単結晶はNd2O3を37.60〜37.80モル%含有することを
特徴とするもので、このものはクラック率が小さく、転
移数も極端に少なく、しかも前記したようにその結晶格
子定数が約12.509Åであり、偏析係数も略々1であると
いうことから、式(BiRe)(FeM)5O12で示されるビ
スマス置換磁性ガーネット膜をエピタキシャル成長させ
るためのガーネット基板単結晶として有用とされるもの
であるが、これはまた光透過性にもすぐれているので光
アイソレーター用の基板としても有用とされる。
Single crystal represented by the formula Nd 3 Ga 5 O 12 of the present invention obtained in this manner is characterized in that it contains Nd 2 O 3 from 37.60 to 37.80 mol%, the intended crack rate is small The number of transitions is extremely small, and the crystal lattice constant is approximately 12.509Å and the segregation coefficient is approximately 1 as described above. Therefore, it is represented by the formula (BiRe) 3 (FeM) 5 O 12. Although it is useful as a garnet substrate single crystal for epitaxially growing a bismuth-substituted magnetic garnet film, it is also useful as a substrate for an optical isolator because it also has excellent light transmittance.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例1 外径100mm、高さ100mmのイリジウムるつぼ中に、Nd2O31
562.0g(37.70モル%)、Ga2O31,438.0g(62.30モル
%)を秤取して仕込み、酸素ガスを1〜5%含有する窒
素ガス雰囲気ガス中で高周波誘導で1,650℃に加熱して
融解させ、この融液に5mm角のGGG種子結晶を浸漬し、こ
れを20rpmの回転下に1〜10mm/時の速度で引上げて単結
晶引上げを行なったところ、1,500gの透明な結晶が得ら
れた。
Example 1 Nd 2 O 3 1 was placed in an iridium crucible having an outer diameter of 100 mm and a height of 100 mm.
562.0 g (37.70 mol%) and Ga 2 O 3 1,438.0 g (62.30 mol%) were weighed in and charged, and heated to 1,650 ° C. by high frequency induction in a nitrogen gas atmosphere gas containing 1 to 5% oxygen gas. When melted, a 5 mm square GGG seed crystal was immersed in this melt, and when this was pulled at a speed of 1 to 10 mm / hour under a rotation of 20 rpm to pull a single crystal, 1,500 g of a transparent crystal was obtained. Was given.

つぎにこの結晶の下部および結晶引上げ後のるつぼ中の
融液から試料各1gをとり、Nd2O3についての定量分析を
行なったところ、第1表に示した結果が得られたので、
このものは式Nd3.02Ga4.98O12の結晶構造をもつもので
あることが確認されたが、この定量分析結果にもとずい
てNdの偏析係数を算出したところ、1.00であった。
Next, when 1 g of each sample was taken from the melt in the lower part of the crystal and in the crucible after pulling the crystal, quantitative analysis for Nd 2 O 3 was performed, and the results shown in Table 1 were obtained.
It was confirmed that this had a crystal structure of the formula Nd 3.02 Ga 4.98 O 12 , but the Nd segregation coefficient was calculated to be 1.00 based on the results of this quantitative analysis.

また、この結晶についてはこの結晶上部および結晶下部
から厚さ1mmのウエーハを切り出し、熱リン酸でエッチ
ング後、格子定数精密測定装置・APL2(理学電機社製商
品名)を用い、ボンド法でその格子定数を測定したとこ
ろ、これはいずれも12.509Åの値を示した。
For this crystal, a wafer with a thickness of 1 mm was cut out from the crystal upper part and the crystal lower part, etched with hot phosphoric acid, and then the lattice constant precision measurement device APL2 (trade name of Rigaku Denki Co., Ltd.) was used to bond it. When the lattice constants were measured, they all showed a value of 12.509Å.

なお、このものは同一条件で結晶を10回引き上げたとこ
ろ、引上げ後、冷却中または加工切断中にクラックを起
こしたものはなく、この結晶上部および下部から切り出
した厚さ1mmのウエーハを熱リン酸でエッチング後、転
位を観察したが、これはいずれも5コ/cm2以下であっ
た。
In addition, when the crystal was pulled 10 times under the same conditions, no cracks occurred during cooling or during working cutting after pulling, and 1 mm thick wafers cut from the upper and lower parts of the crystal were hot-phosphorized. After etching with acid, dislocations were observed, which were 5 co / cm 2 or less.

比較例1〜2 上記した実施例1におけるNd2O3、Ga2O3の配合量を第2
表に示した量としたほかは実施例1と同様に処理したと
ころ、この場合にも透明な単結晶が得られ、これらにつ
いてのNd2O3(重量%)、偏析係数については第3表に
示したとおりの結果が得られ、これらのクラック率、転
位数については第4表に示したとおりの結果が得られ
た。
Comparative Examples 1 to 2 The compounding amounts of Nd 2 O 3 and Ga 2 O 3 in Example 1 described above were changed to the second amount.
In the same manner as in Example 1 except that the amounts shown in the table were used, transparent single crystals were obtained. Nd 2 O 3 (wt%) and segregation coefficient of these were shown in Table 3. The results shown in Table 4 were obtained, and the crack ratio and the number of dislocations were obtained as shown in Table 4.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Journal of Crystal Growth,12(1972),(米),N orth−Holland Publis hing co,C.D.BRANDL E,et al,“The Elimin ation of Deffects i n Czochralski Grown Rare−Earth Gallium Garnets”P.195−200 ─────────────────────────────────────────────────── --Continued front page (56) References Journal of Crystal Growth, 12 (1972), (US), North-Holland Publishing Co., C. D. BRANDL E, et al, "The Elimination of Defects in Czochralski Grown Rare-Earth Gallium Garnets" P.P. 195-200

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Nd2O3を37.60〜37.80モル%、残余がGa2O3
であることを特徴とするネオジウム・ガリウム・ガーネ
ット単結晶。
1. Nd 2 O 3 is 37.60 to 37.80 mol%, and the balance is Ga 2 O 3.
Neodymium gallium garnet single crystal characterized by
【請求項2】Nd2O3を37.60〜37.80モル%含有するコン
グルエント組成よりなるNd2O3とGa2O3との混合融液から
ネオジウム・ガリウム・ガーネット単結晶を成長させる
ことを特徴とするネオジウム・ガリウム・ガーネット単
結晶の製造方法。
And wherein wherein growing the Nd 2 O 3 neodymium gallium garnet single crystals from the melt mixture of Nd 2 O 3 and Ga 2 O 3 consisting of congruent composition containing 37.60 to 37.80 mol% A method for manufacturing a neodymium gallium garnet single crystal.
JP62196026A 1987-08-05 1987-08-05 Neodymium gallium garnet single crystal and method for producing the same Expired - Lifetime JPH07115996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62196026A JPH07115996B2 (en) 1987-08-05 1987-08-05 Neodymium gallium garnet single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62196026A JPH07115996B2 (en) 1987-08-05 1987-08-05 Neodymium gallium garnet single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6442396A JPS6442396A (en) 1989-02-14
JPH07115996B2 true JPH07115996B2 (en) 1995-12-13

Family

ID=16350983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62196026A Expired - Lifetime JPH07115996B2 (en) 1987-08-05 1987-08-05 Neodymium gallium garnet single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07115996B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412767B2 (en) * 1993-05-14 2003-06-03 日本電信電話株式会社 Method for producing NdGaO3 single crystal
JP5015466B2 (en) * 2006-02-03 2012-08-29 ジオスター株式会社 Joint structure of earthquake-resistant flexible pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JournalofCrystalGrowth,12(1972),(米),North−HollandPublishingco,C.D.BRANDLE,etal,"TheEliminationofDeffectsinCzochralskiGrownRare−EarthGalliumGarnets"P.195−200

Also Published As

Publication number Publication date
JPS6442396A (en) 1989-02-14

Similar Documents

Publication Publication Date Title
JPWO2004067813A1 (en) Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP3197383B2 (en) Manufacturing method of thin film by epitaxial growth
JP2007008759A (en) Bismuth-substituted magnetic garnet film and its production method
JPH07115996B2 (en) Neodymium gallium garnet single crystal and method for producing the same
JP4218448B2 (en) Garnet single crystal, its growth method, and garnet substrate for liquid phase epitaxial growth method using the same
JP4147573B2 (en) Garnet single crystal substrate and manufacturing method thereof
WO2005056887A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JPH09328396A (en) Garnet crystal for substrate of magnetooptic element and its production
JPH0793212B2 (en) Oxide garnet single crystal
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP4292565B2 (en) Garnet single crystal substrate and manufacturing method thereof
JPH0380194A (en) Rare earth-gallium-perovskite single crystal and production thereof
JP2733899B2 (en) Method for growing rare earth gallium perovskite single crystal
JP3152322B2 (en) Twinless (Nd, La) GaO3 single crystal and method for producing the same
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JPS6272597A (en) Oxide garnet single crystal
JP2002308696A (en) Garnet single crystal substrate and method for producing bismuth-substituted rare earth garnet single crystal film using the same
JP2763040B2 (en) Oxide garnet single crystal
JP2507997B2 (en) Single crystal growth method
JPS6272596A (en) Oxide garnet single crystal
JP2003089598A (en) Method for growing garnet single crystal and garnet single crystal substrate
JPH0776156B2 (en) Oxide garnet single crystal
JPH0817130B2 (en) Oxide Garnet Single Crystal
JPS58155719A (en) Manufacture of single crystal body