JP3197383B2 - Manufacturing method of thin film by epitaxial growth - Google Patents
Manufacturing method of thin film by epitaxial growthInfo
- Publication number
- JP3197383B2 JP3197383B2 JP06483593A JP6483593A JP3197383B2 JP 3197383 B2 JP3197383 B2 JP 3197383B2 JP 06483593 A JP06483593 A JP 06483593A JP 6483593 A JP6483593 A JP 6483593A JP 3197383 B2 JP3197383 B2 JP 3197383B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crystal film
- lattice constant
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は単結晶膜の製造法、特に
エピタキシャル成長による単結晶膜の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal film, and more particularly to a method for producing a single crystal film by epitaxial growth.
【0002】[0002]
【従来の技術】エピタキシャル成長による単結晶膜の製
造法は、半導体、光学素子、磁性体、磁気光学素子等、
種々の分野で使用される各種の単結晶膜の製造法に広く
使用されている。エピタキシャル成長では、成長させる
べき結晶の格子定数に近い格子定数の結晶基板の面に液
体または気体の原料を接触させて所定の結晶を成長させ
る。これにより結晶性の良い単結晶膜が製造できる。例
えば、ファラデー回転子等の磁気光学素子として知られ
ている磁性ガーネットは、液相の原料を用い、結晶基板
としてCa、Mg、ZrドープGGG単結晶等を使用
し、その表面に100μm以上の膜厚に結晶を成長させ
る液相エピタキシャル成長法(LPE)で製造される。2. Description of the Related Art A method of manufacturing a single crystal film by epitaxial growth includes a method of manufacturing a semiconductor, an optical element, a magnetic body, a magneto-optical element, and the like.
It is widely used in the production of various single crystal films used in various fields. In epitaxial growth, a liquid or a gaseous raw material is brought into contact with a surface of a crystal substrate having a lattice constant close to the lattice constant of a crystal to be grown to grow a predetermined crystal. Thereby, a single crystal film having good crystallinity can be manufactured. For example, a magnetic garnet known as a magneto-optical element such as a Faraday rotator uses a liquid-phase raw material, uses a Ca, Mg, Zr-doped GGG single crystal or the like as a crystal substrate, and has a film of 100 μm or more on its surface. It is manufactured by liquid phase epitaxy (LPE) for growing crystals to a large thickness.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな厚膜を必要とする場合には、往々にして基板と単結
晶膜の間に応力が発達して単結晶膜に歪みが入り、場合
により割れが生じる。従来この問題は結晶基板の格子定
数と単結晶膜の格子定数をできるだけ一致させることに
よって回避できるものと信じられているが、実際には基
板と単結晶膜の化学組成、厚さ、熱膨張係数等の因子が
影響し、格子定数を一致させるだけでは十分ではない。
また、異なる温度で格子定数が一致する2種の膜を交互
に重ねていく方法が提案されているが、この方法では工
程が増え、非常に手間がかかる。However, when such a thick film is required, stress often develops between the substrate and the single crystal film, causing distortion in the single crystal film. Cracks occur. Conventionally, it is believed that this problem can be avoided by making the lattice constant of the crystal substrate and the lattice constant of the single crystal film as close as possible, but in reality the chemical composition, thickness, and thermal expansion coefficient of the substrate and the single crystal film It is not enough to make lattice constants coincide with each other.
In addition, a method has been proposed in which two types of films having the same lattice constant are alternately stacked at different temperatures. However, this method requires many steps and is extremely troublesome.
【0004】したがって、本発明は結晶基板上にエピタ
キシャル成長法により単結晶膜を成膜するに際し、応力
の発生を防止し、割れの問題を回避することを目的とす
る。Accordingly, an object of the present invention is to prevent the generation of stress and avoid the problem of cracking when a single crystal film is formed on a crystal substrate by an epitaxial growth method.
【0005】[0005]
【課題を解決するための手段】本発明は、結晶基板上に
エピタキシャル成長法により単結晶膜を形成するに当た
り、初期には基板の格子定数と単結晶膜の格子定数を近
接させておき、成長につれて単結晶膜の格子定数のずれ
を増大させて所定の格子定数とすることを特徴とする単
結晶膜の製造法である。この場合、格子定数のずれは正
負いずれもあり得る。例えば、磁性ガーネットでは、成
長につれて単結晶膜の格子定数の大きさを増大させて所
定の格子定数とする必要がある。図1は後で説明するよ
うに磁性ガーネットの単結晶膜を成長と共に格子定数を
増大させた様子を示す。これにより、700μmの膜厚
で割れを生じなかった。According to the present invention, when a single crystal film is formed on a crystal substrate by an epitaxial growth method, the lattice constant of the substrate and the lattice constant of the single crystal film are initially set close to each other. A method for manufacturing a single crystal film, characterized in that a deviation of the lattice constant of the single crystal film is increased to a predetermined lattice constant. In this case, the shift of the lattice constant may be either positive or negative. For example, in a magnetic garnet, it is necessary to increase the magnitude of the lattice constant of the single crystal film as it grows to a predetermined lattice constant. FIG. 1 shows a state where a single crystal film of a magnetic garnet is grown and its lattice constant is increased as described later. As a result, no crack was generated at a film thickness of 700 μm.
【0006】本発明の方法は、従来の常識とは異なり、
出発点で基板と単結晶膜の格子定数が接近していれば、
結晶の成長につれて格子定数は却ってずれた方が良い、
という意外な発見に基づいている。もし従来のように結
晶の成長中に格子定数を一定に保つと割れが生じる率が
本発明の方法に比べて高くなる。このような結果が生じ
る理由は現在のところ解明されていない。割れの原因は
はほぼ次のように推測される。すなわち、基板と単結晶
膜の熱膨張係数の差が充分に大きく、育成温度が充分に
高く、かつ育成した単結晶膜が充分に厚い(例えばBi
置換磁性ガーネット膜の場合100μm以上)と言う条
件が満たされると割れが生じる。これらのいずれが欠け
ても割れの原因となる応力が発生しないか、または、発
生しても割れには至らないかである。まず成長の初期に
基板の格子定数とは異なる格子定数を有する膜が析出す
るとバイメタルモデルによって反りが発生する。更に析
出してくる以後の膜がこの反りによる曲率半径に沿って
成長すれば、この曲率半径は一定となり安定化される。
ここで曲率半径は膜の格子定数の一定な変化に対応す
る。一方、曲率半径に対応する格子定数変化よりも変化
の小さな(例えば格子定数一定の場合等)膜が表面に成
長する場合、表面近傍の格子には引張り応力(膜側に凸
の曲率の場合、すなわち成長初期の膜の格子定数の方が
基板より大きい場合)或いは圧縮応力(膜側に凹、つま
り基板より膜の方が格子定数が小さい場合)を受けて、
膜が厚くなると割れを引き起こすと考えられる。ここで
成長初期の格子定数のずれは基板と膜の熱膨張係数の差
によって発生する。すなわち、室温で格子定数を一致さ
せると熱膨張係数及が異なる場合、育成温度で基板と膜
の格子定数に差異を生じ格子定数のずれが発生する。一
方、育成温度で格子定数を一致させると室温で基板と膜
の格子定数に差異を生じて格子定数のずれが発生し膜育
成後の冷却中に割れてしまう。Bi置換磁性ガーネット
は測定の結果Ca、Zr、Mg添加型GGG基板に比べ
約1×10-6/℃だけ熱膨張係数が大きい。これから育
成温度(例えば800℃)での格子定数のずれを求め、
バイメタルモデルを用いて初期膜厚(50μm以下)で
の曲率半径を求めると、約1〜2mとなる。これより曲
率半径に沿った格子定数変化を求めると、0.5〜1×
10-4%/μmとなり実験結果とほぼ一致した。出発点
で基板と単結晶膜の格子定数がどの程度接近していれば
良いかは十分に解明できていないが、完全な一致のほか
に±0.2%程度のずれは許容されるものであり、割れ
を生じない条件は結晶物質毎に容易に決定できる。[0006] The method of the present invention is different from the conventional common sense.
If the lattice constants of the substrate and the single crystal film are close at the starting point,
It is better to shift the lattice constant as the crystal grows,
It is based on a surprising discovery. If the lattice constant is kept constant during crystal growth as in the prior art, the rate of cracking will be higher than in the method of the present invention. The reason for this result has not yet been elucidated. The cause of the crack is presumed as follows. That is, the difference in thermal expansion coefficient between the substrate and the single crystal film is sufficiently large, the growth temperature is sufficiently high, and the grown single crystal film is sufficiently thick (for example, Bi).
When the condition of (substituted magnetic garnet film is 100 μm or more) is satisfied, cracking occurs. Either one of these lacks does not generate stress that causes cracking, or does not cause cracking even if it occurs. First, when a film having a lattice constant different from the lattice constant of the substrate is deposited in the early stage of growth, a warp is generated by the bimetal model. Further, if the subsequent deposited film grows along the radius of curvature due to the warpage, the radius of curvature becomes constant and stabilized.
Here, the radius of curvature corresponds to a constant change in the lattice constant of the film. On the other hand, when a film whose change is smaller than the change in the lattice constant corresponding to the radius of curvature (for example, when the lattice constant is constant) grows on the surface, a tensile stress is applied to the lattice near the surface (in the case of a curvature convex to the film side, That is, the film receives a compressive stress (when the lattice constant of the film is larger than the substrate in the initial stage of growth) or a compressive stress (when the film has a smaller lattice constant than the substrate).
It is thought that cracks are caused when the film is thick. Here, the shift of the lattice constant at the initial stage of growth is caused by the difference in the thermal expansion coefficient between the substrate and the film. That is, when the lattice constants are matched at room temperature, if the coefficients of thermal expansion are different, the lattice constants of the substrate and the film differ at the growth temperature, and the lattice constant shifts. On the other hand, if the lattice constants are matched at the growth temperature, a difference occurs between the lattice constants of the substrate and the film at room temperature, causing a shift in the lattice constant and breaking during cooling after film growth. As a result of the measurement, the Bi-substituted magnetic garnet has a larger thermal expansion coefficient by about 1 × 10 −6 / ° C. than the GGG substrate with Ca, Zr, and Mg added. From this, the deviation of the lattice constant at the growth temperature (for example, 800 ° C.) is obtained,
When the radius of curvature at the initial film thickness (50 μm or less) is obtained using a bimetal model, it is about 1-2 m. From this, the change in the lattice constant along the radius of curvature is found to be 0.5 to 1 ×
It was 10 -4 % / μm, which was almost in agreement with the experimental result. How close the lattice constant of the substrate and the single crystal film should be at the starting point is not fully understood, but in addition to perfect agreement, a deviation of about ± 0.2% is acceptable. Yes, the conditions under which cracking does not occur can be easily determined for each crystal material.
【0007】単結晶膜の格子定数の変化は供給原料の組
成を制御することにより行う。例えばLPE法ではメル
ト組成の配合比及び育成温度の経時変化により組成を調
整する。一方気相法のCVD法では気相成膜室に導入す
る成分ガスの組成比を時間的に変化させる。多元同時ス
パッタのターゲットに印加する電力を時間的に変化させ
ることにより組成を調整できる。The change in the lattice constant of the single crystal film is performed by controlling the composition of the raw material. For example, in the LPE method, the composition is adjusted by changing the blending ratio of the melt composition and the growth temperature over time. On the other hand, in the CVD method of the vapor phase method, the composition ratio of the component gas introduced into the vapor deposition chamber is changed with time. The composition can be adjusted by temporally changing the power applied to the target of multiple simultaneous sputtering.
【0008】より具体的に説明すると、例えばLPE法
により、Bi置換磁性ガーネット単結晶膜を製造する場
合、Bix R3-x Fe5-w Mw O12(ただしRはY、C
a、Pb、La、Ce、Pr、Nd、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、Yb、Luより選
択される一種以上の元素、MはAl、Ga、In、S
c、Ti、Si、Geより選択される一種以上の元素で
ある。また通常x=0〜2、w= 0〜2である)を与
える様に計量した材料を、例えばCa、Mg、Zr添加
GGGよりなる非磁性単結晶基板上にLPE成長させ
る。これによりほぼ所定の結晶性を有するBi置換型稀
土類ガーネット材料が生成する。時間の経過と共に育成
温度を低下させ、成分Bi量を調整し、格子定数を膜厚
と共に増大させる。格子定数に影響するパラメータとし
ては、メルト総量、基板面積、膜成長速度を挙げられ
る。また膜成長速度を決めるパラメータとしては、メル
ト組成比R1、R3 、R4 、R5 (総称してRパラメー
タと呼ばれる)が挙げられる。ここに組成比は次のよう
に定義される。 R1 =(Fe2 O3 +M2 O3 )/ΣR2 O3 R3 =(Bi2 O3 +PbO)/B2 O3 R4 =(Fe2 O3 +M2 O3 +ΣR2 O3 )/全量 R5 =Bi2 O3 /PbO より具体的に言うと、磁性ガーネットのR1 は5/3で
あるのに対して、Bi置換型ではR1 は10以上に設定
される。従って、基板上に膜が成長するに従って、R1
は増加していく、またR3 、R4 、R5 は膜成長により
各式の分子が小さくなり、減少して行く。もっともR
3 、R5 の変化は小さい。厚さ100μmを超えるよう
な膜を育成する場合、これらRパラメータ、特にR1 、
R4 の変化を無視することはできなくなる。経験的に等
温下においてR1 増加、R4 減少により膜組成に含まれ
るBi量は減少し、膜の格子定数は減少してしまう。し
たがって、全体にわたって同一組成の膜すなわち同じ格
子定数を有する単結晶膜を製作する場合、これらを考慮
した勾配で育成温度を低下して行かなければならない。
一方、Biを増加させる場合、すなわち格子定数を大き
くして行く場合は、上記の勾配より更に大きな勾配で育
成温度を低下することにより実現できる。実施例で説明
するように、格子定数の変化率は(0.4〜9)×10
-4%/μmの範囲にあると良いことが分かった。More specifically, when a Bi-substituted magnetic garnet single crystal film is manufactured by, for example, the LPE method, a Bi x R 3-x Fe 5-w M w O 12 (where R is Y, C
a, Pb, La, Ce, Pr, Nd, Sm, Eu, G
at least one element selected from d, Tb, Dy, Ho, Er, Tm, Yb, and Lu; M is Al, Ga, In, S
At least one element selected from c, Ti, Si, and Ge. Further, a material weighed so as to give x = 0 to 2 and w = 0 to 2) is grown by LPE on a nonmagnetic single crystal substrate made of, for example, GGG with Ca, Mg and Zr added. As a result, a Bi-substituted rare earth garnet material having substantially predetermined crystallinity is produced. As the time elapses, the growth temperature is lowered, the amount of the component Bi is adjusted, and the lattice constant increases with the film thickness. Parameters affecting the lattice constant include the total amount of the melt, the substrate area, and the film growth rate. The parameters for determining the film growth rate include melt composition ratios R 1 , R 3 , R 4 , and R 5 (collectively referred to as R parameters). Here, the composition ratio is defined as follows. R 1 = (Fe 2 O 3 + M 2 O 3 ) / ΣR 2 O 3 R 3 = (Bi 2 O 3 + PbO) / B 2 O 3 R 4 = (Fe 2 O 3 + M 2 O 3 + ΣR 2 O 3 ) More specifically, R 5 = Bi 2 O 3 / PbO More specifically, R 1 of the magnetic garnet is 5/3, whereas R 1 is set to 10 or more in the Bi substitution type. Therefore, as the film grows on the substrate, R 1
Increase, and the molecules of R 3 , R 4 , and R 5 become smaller due to film growth, and decrease. Most R
3, the change in R 5 is small. When growing a film having a thickness exceeding 100 μm, these R parameters, especially R 1 ,
To ignore the change of R 4 can not. Empirically, the amount of Bi contained in the film composition decreases due to an increase in R 1 and a decrease in R 4 under isothermal conditions, and the lattice constant of the film decreases. Therefore, when fabricating a film having the same composition over the entirety, that is, a single crystal film having the same lattice constant, the growth temperature must be lowered at a gradient taking these factors into consideration.
On the other hand, when Bi is increased, that is, when the lattice constant is increased, it can be realized by lowering the growth temperature at a gradient larger than the above gradient. As described in the examples, the rate of change of the lattice constant is (0.4 to 9) × 10
It was found that it was better to be in the range of -4 % / μm.
【0009】そのほか、SiC、Si系半導体、その他
の結晶等についても本発明が適用できる。In addition, the present invention can be applied to SiC, Si-based semiconductors, other crystals, and the like.
実施例1 Bi2 O3 、Tb4 O7 、Nd2 O3 、Fe2 O3 にフ
ラックスとしてPbO、B2 O3 を加えたものを下記磁
性ガーネットを与える配合比で使用し、格子定数12.
497ÅのCa、Mg、Zr添加GGGよりなる直径2
インチの非磁性単結晶基板上に、温度813℃でLPE
法により単結晶膜を製作した。成長した膜の平均組成は
Bi0.7 Tb2.1 Nd0.2 Fe5 O12であり、格子定数
12.494Åであった。この時の成膜条件はメルト総
量2kg、R1 =24、R3 =10、R4 =0.12、
R5 =0.3であった。次に同様の操作で813℃にて
エピタキシャル成長を開始した後、0.6℃/Hの速度
で炉温を降下させ、格子定数を1.9×10-5Å/μm
(1.5×10-4%/μm)の割合で変えながら育成を
行った。格子定数は試料を25℃にて測定した値である
(他の実施例も同様)。膜は700μmの厚さまで割れ
は生じなかった。Use Example 1 Bi 2 O 3, Tb 4 O 7, Nd 2 O 3, Fe 2 O 3 to PbO as flux, not containing added B 2 O 3 at the mixing ratio giving the following magnetic garnet lattice constant 12 .
Diameter 2 consisting of GGG added with 497% Ca, Mg and Zr
LPE at 813 ° C on an inch non-magnetic single crystal substrate
A single crystal film was manufactured by the method. The average composition of the grown film was Bi 0.7 Tb 2.1 Nd 0.2 Fe 5 O 12 and the lattice constant was 12.494 °. At this time, the film forming conditions were as follows: melt total amount 2 kg, R 1 = 24, R 3 = 10, R 4 = 0.12,
R 5 = 0.3. Next, after epitaxial growth was started at 813 ° C. by the same operation, the furnace temperature was decreased at a rate of 0.6 ° C./H, and the lattice constant was set to 1.9 × 10 −5 Å / μm.
(1.5 × 10 −4 % / μm) while growing. The lattice constant is a value obtained by measuring a sample at 25 ° C. (the same applies to other examples). The film did not crack up to a thickness of 700 μm.
【0010】実施例2 実施例1と同様な原料を用い、実施例1と同様な非磁性
単結晶基板に、下記磁性ガーネットを与える配合比で使
用し、温度908℃でLPE法によりたっけしょうまく
を製作した。成長した膜の平均組成はBi0.8 Tb2.1
Nd0.1 Fe5O12であり、格子定数12.491Åで
あった。この時の成膜条件はメルト総量10kg、R1
=26、R3 =10、R4 =0.18、R5 =0.6で
あった。次に同様の操作で908℃にてエピタキシャル
成長を開始した後、膜厚200μmまでは0.1℃/H
で、膜厚200μmでは0.3℃/Hで降下させ、格子
定数を1.0×10-5Å/μm(0.8×10-4%/μ
m)の条件で変えながら育成を行った。膜は700μm
の厚さまで割れは生じなかった。 比較例1 実施例2において、エピタキシャル成長を次のように行
った。温度を0.1℃/Hの速度で降下させ、格子定数
を0.4×10-5Å/μm(0.3×10-4%/μm)
の割合で変えながら育成を行った。膜は350μmの厚
さで割れを生じた。Example 2 Using the same raw materials as in Example 1 and using the same non-magnetic single-crystal substrate as in Example 1 at a compounding ratio giving the following magnetic garnet, let it be run at a temperature of 908 ° C. by the LPE method. Maku was made. The average composition of the grown film is Bi 0.8 Tb 2.1
Nd 0.1 Fe 5 O 12 and a lattice constant of 12.491 °. The film forming conditions at this time were as follows: total melt amount 10 kg, R 1
= 26, R 3 = 10, R 4 = 0.18, were R 5 = 0.6. Next, after epitaxial growth is started at 908 ° C. by the same operation, 0.1 ° C./H is applied until the film thickness reaches 200 μm.
When the film thickness is 200 μm, the lattice constant is lowered at 0.3 ° C./H and the lattice constant is set to 1.0 × 10 −5 Å / μm (0.8 × 10 −4 % / μm).
The growth was carried out while changing the conditions under m). 700 μm film
No cracks occurred up to the thickness. Comparative Example 1 In Example 2, epitaxial growth was performed as follows. The temperature is lowered at a rate of 0.1 ° C./H, and the lattice constant is set to 0.4 × 10 −5 Å / μm (0.3 × 10 −4 % / μm).
Cultivation while changing the ratio of The film cracked at a thickness of 350 μm.
【0011】実施例3 Bi2 O3 、Ho2 O3 、La2 O3 、Y2 O3 、Fe
2 O3 、Ga2 O3 にフラックスとしてPbO、B2 O
3 を加えたものを下記磁性ガーネットを与える配合比で
使用し、格子定数12.502ÅのNd3 Ga5 O12よ
りなる非磁性単結晶基板上に、温度745℃でLPE法
により単結晶膜を作製した。成長した膜の平均組成はB
i1.4 Ho0.10La0.2 Y0.4 Fe4.5 Ga0.5 O12で
あり、格子定数12.504Åであった。次に同様の操
作で745℃にてエピタキシャル成長を開始した後、
1.2℃/Hの速度で炉温を降下させ、格子定数を2.
9×10-5Å/μm(2.3×10-4%/μm)の割合
で変えながら育成を行った。膜は500μmの厚さまで
割れは生じなかった。 比較例2 実施例3において、エピタキシャル成長を次のように行
った。温度を5.0℃/Hの速度で降下させ、格子定数
を12×10-5Å/μm(10×10-4%/μm)の割
合で変えながら育成を行った。膜は150μmの厚さで
割れを生じた。Embodiment 3 Bi 2 O 3 , Ho 2 O 3 , La 2 O 3 , Y 2 O 3 , Fe
PbO, B 2 O as flux to 2 O 3 , Ga 2 O 3
The mixture obtained by adding 3 is used in a compounding ratio giving the following magnetic garnet, and a single crystal film is formed by a LPE method at a temperature of 745 ° C. on a nonmagnetic single crystal substrate made of Nd 3 Ga 5 O 12 having a lattice constant of 12.502 °. Produced. The average composition of the grown film is B
i 1.4 Ho 0.10 La 0.2 Y 0.4 Fe 4.5 Ga 0.5 O 12 and a lattice constant of 12.504 °. Next, after starting epitaxial growth at 745 ° C. by the same operation,
The furnace temperature was lowered at a rate of 1.2 ° C./H, and the lattice constant was set to 2.
Growing was carried out while changing at a rate of 9 × 10 −5 μ / μm (2.3 × 10 −4 % / μm). The film did not crack up to a thickness of 500 μm. Comparative Example 2 In Example 3, epitaxial growth was performed as follows. The growth was performed while the temperature was lowered at a rate of 5.0 ° C./H and the lattice constant was changed at a rate of 12 × 10 −5 Å / μm (10 × 10 −4 % / μm). The film cracked at a thickness of 150 μm.
【0012】実施例4 Y2 O3 、La2 O3 、Ga2 O3 、Fe2 O3 にフラ
ックスとしてPbO、B2 O3 を加えたものを下記磁性
ガーネットを与える配合比で使用し、格子定数12.3
75ÅのGGG(Gd3 Ga5 O12)よりなる非磁性単
結晶基板上に、温度745℃でLPE法により単結晶膜
を作製した。成長した膜の平均組成はY2.9 La0.1 F
e4.5 Ga0.5 O12、格子定数は12.377Åであっ
た。次に同様の操作で745℃にてエピタキシャル成長
を開始した後、1.2℃/Hの速度で炉温を降下させて
格子定数を1.0×10-5Å/μm(0.8×10-4%
/μm)の割合で変えながら育成を行った。膜は200
μmの厚さまで割れは生じなかった。 実施例5 Bi2 O3 、Gd2 O3 、Yb2 O3 、Fe2 O3 、T
iO2 にフラックスとしてPbO、B2 O3 を加えたも
のを下記磁性ガーネットを与える配合比で使用し、格子
定数12.497ÅのCa、Mg、Zr添加GGGより
なる非磁性単結晶基板上に、温度745℃でLPE法に
より単結晶膜を作製した。成長した膜の平均組成はBi
1.0 Gd1.4 Yb0.6 Fe4.95Ti0.05O12、格子定数
12.495Åであった。次に同様の操作で745℃に
てエピタキシャル成長を開始した後、1.2℃/Hの速
度で炉温を降下させて格子定数を2.3×10-5Å/μ
m(1.8×10-4%/μm)の割合で変えながら育成
を行った。膜は700μmの厚さまで割れは生じなかっ
た。Example 4 A mixture of Y 2 O 3 , La 2 O 3 , Ga 2 O 3 , and Fe 2 O 3 to which PbO and B 2 O 3 were added as fluxes was used in a mixing ratio to give the following magnetic garnet. Lattice constant 12.3
A single crystal film was formed on a nonmagnetic single crystal substrate made of GGG (Gd 3 Ga 5 O 12 ) at a temperature of 75 ° by the LPE method at a temperature of 745 ° C. The average composition of the grown film is Y 2.9 La 0.1 F
e 4.5 Ga 0.5 O 12 , and the lattice constant was 12.377 °. Next, after epitaxial growth was started at 745 ° C. by the same operation, the furnace temperature was lowered at a rate of 1.2 ° C./H to set the lattice constant to 1.0 × 10 −5 Å / μm (0.8 × 10 5 -4 %
/ Μm) while changing the ratio. The membrane is 200
No cracks occurred up to a thickness of μm. Example 5 Bi 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , T
A mixture obtained by adding PbO and B 2 O 3 as a flux to iO 2 at a compounding ratio giving the following magnetic garnet was used. On a nonmagnetic single crystal substrate made of GGG doped with Ca, Mg, and Zr having a lattice constant of 12.497 °, A single crystal film was formed at a temperature of 745 ° C. by an LPE method. The average composition of the grown film is Bi
1.0 Gd 1.4 Yb 0.6 Fe 4.95 Ti 0.05 O 12 , and the lattice constant was 12.495 °. Next, after the epitaxial growth was started at 745 ° C. by the same operation, the furnace temperature was lowered at a rate of 1.2 ° C./H to set the lattice constant to 2.3 × 10 −5 Å / μ.
m (1.8 × 10 −4 % / μm) while growing. The film did not crack up to a thickness of 700 μm.
【0013】比較例3 実施例5において、エピタキシャル成長を次のように行
った。温度を750℃一定とし、格子定数を−4.0×
10-5Å/μm(3.2×10-4%/μm)の割合で変
えながら育成を行った。膜は50μmの厚さで割れを生
じた。Comparative Example 3 In Example 5, epitaxial growth was performed as follows. The temperature was kept constant at 750 ° C., and the lattice constant was -4.0 ×
Growing was carried out while changing at a rate of 10 −5 Å / μm (3.2 × 10 −4 % / μm). The film cracked at a thickness of 50 μm.
【0014】以上の実施例及び比較例から、成長させる
べき単結晶膜の格子定数を基板のそれに近接させ、且つ
その変化率を所定の範囲(0.4〜9)×10-4%/μ
mに設定することにより応力の発生を防いで割れを防止
することができることが分かる。また本実施例では、単
結晶膜の不純物に就いて特に言及していないが、LPE
法で通常フラックス、るつぼ、原料から混入する不可避
不純物として、膜中にPb、Pt等が混入する。From the above examples and comparative examples, the lattice constant of the single crystal film to be grown is made to be close to that of the substrate, and the rate of change thereof is set within a predetermined range (0.4 to 9) × 10 −4 % / μ.
It can be seen that by setting m, it is possible to prevent generation of stress and prevent cracking. In this embodiment, although no particular reference is made to impurities in the single crystal film, the LPE
According to the method, Pb, Pt, and the like are mixed in the film as inevitable impurities mixed from the flux, the crucible, and the raw material.
【0015】[0015]
【発明の効果】実施例から分かるように、本発明は結晶
基板上にエピタキシャル成長法により単結晶膜を成膜す
るに際し、応力の発生を防止し、割れを防止することが
できる。As can be seen from the examples, according to the present invention, when a single crystal film is formed on a crystal substrate by an epitaxial growth method, generation of stress can be prevented and cracks can be prevented.
【図1】結晶性ガーネットに関する実施例1〜5におけ
る単結晶膜の厚さと格子定数の変化の関係を示すグラフ
である。FIG. 1 is a graph showing a relationship between a thickness of a single crystal film and a change in a lattice constant in Examples 1 to 5 relating to crystalline garnet.
フロントページの続き (72)発明者 内田 信也 東京都中央区日本橋一丁目13番1号ティ ーディーケイ株式会社内 (56)参考文献 特開 昭63−270396(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 CA(STN) JICSTファイル(JOIS) EPAT(QUESTEL) WPI(DIALOG)Continuation of the front page (72) Inventor Shinya Uchida 1-1-13 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (56) References JP-A-63-270396 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) C30B 1/00-35/00 CA (STN) JICST file (JOIS) EPAT (QUESTEL) WPI (DIALOG)
Claims (11)
結晶膜において、基板側から成長方向に向かって、格子
定数のずれを増大させた単結晶膜。1. A single crystal film obtained by epitaxial growth, wherein the shift of the lattice constant increases from the substrate side toward the growth direction.
有する請求項1の単結晶膜。2. The single crystal film according to claim 1, wherein the composition has a gradient from the substrate toward the growth direction.
×10-4%/μmで増大させた請求項1の単結晶膜。3. The method according to claim 1, wherein the shift of the lattice constant is a change rate (0.4 to 9).
2. The single crystal film according to claim 1, wherein the thickness is increased by × 10 −4 % / μm.
3に記載の単結晶膜。4. The single crystal film according to claim 3, wherein the single crystal film is a magnetic garnet.
した請求項4の単結晶膜。5. The single crystal film according to claim 4, wherein the single crystal film is formed by a liquid phase epitaxial method.
請求項1ないし5のいずれかに記載の単結晶膜。6. The single crystal film according to claim 1, wherein the single crystal film has a thickness of 100 μm or more.
を行うに当たり、初期には基板の格子定数と単結晶膜の
格子定数を近接させておき、成長につれて単結晶膜の格
子定数のずれを所定の変化率で増大させたことを特徴と
する単結晶膜の製造法。7. When epitaxially growing a single-crystal film on a substrate, the lattice constant of the substrate and the lattice constant of the single-crystal film are initially set close to each other, and the deviation of the lattice constant of the single-crystal film is reduced as the growth proceeds. A method for producing a single crystal film, characterized by increasing the rate of change.
0-4%/μmの範囲にある請求項7の単結晶膜の製造
法。8. The rate of change of the lattice constant is (0.4 to 9) × 1.
8. The method for producing a single crystal film according to claim 7, wherein the thickness is in the range of 0 -4 % / μm.
8に記載の単結晶膜の製造法。9. The method according to claim 8, wherein the single crystal film is a magnetic garnet.
造される請求項9に記載の単結晶膜の製造法。10. The method according to claim 9, wherein the single crystal film is manufactured by a liquid phase epitaxial method.
る請求項7ないし10のいずれかに記載の単結晶膜の製
造法。11. The method for producing a single crystal film according to claim 7, wherein the single crystal film has a thickness of 100 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06483593A JP3197383B2 (en) | 1992-03-02 | 1993-03-02 | Manufacturing method of thin film by epitaxial growth |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-78765 | 1992-03-02 | ||
JP7876592 | 1992-03-02 | ||
JP06483593A JP3197383B2 (en) | 1992-03-02 | 1993-03-02 | Manufacturing method of thin film by epitaxial growth |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0692796A JPH0692796A (en) | 1994-04-05 |
JP3197383B2 true JP3197383B2 (en) | 2001-08-13 |
Family
ID=26405947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06483593A Expired - Lifetime JP3197383B2 (en) | 1992-03-02 | 1993-03-02 | Manufacturing method of thin film by epitaxial growth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3197383B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3753920B2 (en) * | 2000-03-22 | 2006-03-08 | Tdk株式会社 | Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same |
JP4539053B2 (en) * | 2003-08-11 | 2010-09-08 | Tdk株式会社 | Single crystal substrate and manufacturing method thereof |
US20070104639A1 (en) * | 2003-12-11 | 2007-05-10 | Tae-Hyun Youn | Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby |
JP4572810B2 (en) * | 2005-11-02 | 2010-11-04 | Tdk株式会社 | Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same |
JP2011256073A (en) * | 2010-06-09 | 2011-12-22 | Sumitomo Metal Mining Co Ltd | Method for manufacturing bismuth-substituted type rare earth iron garnet crystal film |
JP5459244B2 (en) * | 2010-11-29 | 2014-04-02 | 住友金属鉱山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP5459243B2 (en) * | 2011-03-08 | 2014-04-02 | 住友金属鉱山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP5459245B2 (en) * | 2011-03-08 | 2014-04-02 | 住友金属鉱山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP7327148B2 (en) * | 2019-12-20 | 2023-08-16 | 住友金属鉱山株式会社 | Liquid phase epitaxial growth method for bismuth-substituted rare earth-iron garnet films |
-
1993
- 1993-03-02 JP JP06483593A patent/JP3197383B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0692796A (en) | 1994-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3753920B2 (en) | Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same | |
JP3197383B2 (en) | Manufacturing method of thin film by epitaxial growth | |
US5662740A (en) | Process for producing thin film by epitaxial growth | |
JP2004269305A (en) | Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method | |
JPWO2003000963A1 (en) | Substrate for forming magnetic garnet single crystal film, optical element and method for manufacturing the same | |
JP2010059030A (en) | Garnet single crystal substrate and method for manufacturing the same | |
JPWO2004070091A1 (en) | Magnetic garnet single crystal film forming substrate, manufacturing method thereof, optical element and manufacturing method thereof | |
JPH09328396A (en) | Garnet crystal for substrate of magnetooptic element and its production | |
JPS62143893A (en) | Growth of magneto-optical crystal | |
JPH09202697A (en) | Production of bismuth-substituted type garnet | |
JP2924282B2 (en) | Magneto-optical material, method of manufacturing the same, and optical element using the same | |
JP2733899B2 (en) | Method for growing rare earth gallium perovskite single crystal | |
JPH0840799A (en) | Base of growing single crystal | |
JPS63270396A (en) | Production of magnetooptical element | |
JP2004269283A (en) | Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method | |
JPH07288231A (en) | Single-crystal growing substrate | |
JP2763040B2 (en) | Oxide garnet single crystal | |
JPH07115996B2 (en) | Neodymium gallium garnet single crystal and method for producing the same | |
US4293372A (en) | Growth of single-crystal magnetoplumbite | |
JPH0793212B2 (en) | Oxide garnet single crystal | |
JP4572810B2 (en) | Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same | |
JP2000264789A (en) | Magnetic garnet material and faraday rotor using same | |
RU2209260C2 (en) | Substrate for growing epitaxial layers of gallium arsenide | |
JP3171476B2 (en) | Method for producing magnetic garnet single crystal film | |
JP2002308696A (en) | Garnet single crystal substrate and method for producing bismuth-substituted rare earth garnet single crystal film using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010515 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080608 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090608 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090608 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |