JP6933424B1 - How to grow SGGG single crystal and SGGG single crystal - Google Patents

How to grow SGGG single crystal and SGGG single crystal Download PDF

Info

Publication number
JP6933424B1
JP6933424B1 JP2020076244A JP2020076244A JP6933424B1 JP 6933424 B1 JP6933424 B1 JP 6933424B1 JP 2020076244 A JP2020076244 A JP 2020076244A JP 2020076244 A JP2020076244 A JP 2020076244A JP 6933424 B1 JP6933424 B1 JP 6933424B1
Authority
JP
Japan
Prior art keywords
single crystal
elements
sggg
growing
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020076244A
Other languages
Japanese (ja)
Other versions
JP2021172543A (en
Inventor
松本 博
博 松本
裕人 渡部
裕人 渡部
和啓 峯島
和啓 峯島
佐々木 剛
剛 佐々木
Original Assignee
株式会社Smmプレシジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Smmプレシジョン filed Critical 株式会社Smmプレシジョン
Priority to JP2020076244A priority Critical patent/JP6933424B1/en
Application granted granted Critical
Publication of JP6933424B1 publication Critical patent/JP6933424B1/en
Publication of JP2021172543A publication Critical patent/JP2021172543A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】高出力用光アイソレータのファラデー回転子に適用される酸化物ガーネット単結晶膜を液相エピタキシャル成長させる際に使用されるCaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶基板に用いられるSGGG単結晶の育成方法を提供すること。【解決手段】回転反転操作を伴う回転引上げ法により組成式(Gd,Ca,Ga,Mg,Zr)8O12で示されるSGGG単結晶を育成する方法であって、上記組成式における8個の金属元素中、Gd元素とCa元素の合計個数が3.035個以上3.045個以下、Zr元素の個数が0.640個を超え0.650個以下の範囲に設定されるように原料融液の組成を調製して育成することを特徴とする。【選択図】なしPROBLEM TO BE SOLVED: To use an SGGG used for a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal substrate used for liquid-phase epitaxial growth of an oxide garnet single crystal film applied to a Faraday rotor of a high-power optical isolator. To provide a method for growing a single crystal. SOLUTION: This is a method for growing an SGGG single crystal represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8O12 by a rotation pulling method accompanied by a rotation reversal operation, and eight metal elements in the above composition formula. Among them, the raw material melt is set so that the total number of Gd elements and Ca elements is set in the range of 3.035 or more and 3.045 or less, and the number of Zr elements is set in the range of more than 0.640 and 0.650 or less. It is characterized in that the composition is prepared and grown. [Selection diagram] None

Description

本発明は、CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶の育成方法に関するものである。 The present invention relates to a method for growing a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal.

光アイソレータは、磁界を印加することにより入射光の偏光面を回転させるファラデー回転子を有しており、近年、光アイソレータは、光通信の分野だけでなくファイバーレーザー加工機にも使用されるようになっている。また、光アイソレータに用いられるファラデー回転子の材料として、希土類鉄ガーネット(RIG:Rare-earth iron garnet)等の酸化物ガーネット単結晶膜が知られている。 Optical isolators have a Faraday rotator that rotates the plane of polarization of incident light by applying a magnetic field, and in recent years, optical isolators have been used not only in the field of optical communication but also in fiber laser processing machines. It has become. Further, as a material for a Faraday rotator used in an optical isolator, an oxide garnet single crystal film such as a rare earth iron garnet (RIG) is known.

上記酸化物ガーネット単結晶膜は、CaMgZr置換型ガドリニウム・ガリウム・ガーネット(Substituted Gd3Ga512:SGGG)単結晶を非磁性ガーネット単結晶基板(種結晶用基板)とし、液相エピタキシャル(Liquid Phase Epitaxy;LPE)成長により得ることができる。尚、CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶は、(Gd3-xCax)(Ga5-x-2yMgyZrx+y)O12、(Gd,Ca)3(Ga,Mg,Zr)512、(Gd,Ca,Ga,Mg,Zr)812等の組成式で表されている。 In the oxide garnet single crystal film, a CaMgZr-substituted gadolinium gallium garnet (Substituted Gd 3 Ga 5 O 12 : SGGG) single crystal is used as a non-magnetic garnet single crystal substrate (seed crystal substrate), and a liquid phase epitaxial (Liquid) is used. It can be obtained by Phase Epitaxy (LPE) growth. The CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal is (Gd 3-x Ca x ) (Ga 5-x-2y Mg y Zr x + y ) O 12 , (Gd, Ca) 3 (Ga). , Mg, Zr) 5 O 12 , (Gd, Ca, Ga, Mg, Zr) 8 O 12 and the like.

CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶を育成する方法としてチョクラルスキー(CZ)法等の回転引上げ法が知られている。CZ法とは、結晶育成炉内に配置された坩堝内に、予め混合したGd23、Ga23、MgO、ZrO2、CaCO3を所定量仕込み、育成炉で加熱溶融させて原料融液を得た後、坩堝内の原料融液に種結晶を接触させ、該種結晶を回転させながら徐々に引上げて単結晶を育成する方法で、肩部と直胴部を有するSGGG単結晶インゴットをCZ法により育成している。 As a method for growing a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal, a rotary pulling method such as the Czochralski (CZ) method is known. In the CZ method, a predetermined amount of Gd 2 O 3 , Ga 2 O 3 , MgO, ZrO 2 , and CaCO 3 mixed in advance is charged in a crucible arranged in a crystal growth furnace, and the raw material is heated and melted in the growth furnace. After obtaining the melt, the seed crystal is brought into contact with the raw material melt in the crucible, and the seed crystal is gradually pulled up while rotating to grow a single crystal. An SGGG single crystal having a shoulder and a straight body. Ingots are grown by the CZ method.

育成されたSGGG単結晶インゴットを基板状に加工するため、内周刃切断機等の装置によりSGGG単結晶インゴットの肩部を切断し、得られた直胴部を円筒状に研削した後、内周刃切断機またはワイヤーソー等で所望の厚さのウェハーに切断し、次いで、得られたウェハーを所望の条件で研磨加工して上記非磁性ガーネット単結晶基板(種結晶用基板)を製造している。 In order to process the grown SGGG single crystal ingot into a substrate shape, the shoulder portion of the SGGG single crystal ingot is cut by a device such as an inner peripheral blade cutting machine, and the obtained straight body portion is ground into a cylindrical shape and then inside. The wafer is cut into a wafer of a desired thickness with a peripheral blade cutting machine or a wire saw, and then the obtained wafer is polished under desired conditions to produce the non-magnetic garnet single crystal substrate (seed crystal substrate). ing.

CZ法等の回転引上げ法によるSGGG単結晶インゴットの育成では、最初に、結晶径を種結晶から次第に大きくする円錐形の肩部の育成を行う。肩部の育成は、融液の温度差により発生する融液の「自然対流」を利用する。坩堝内の融液上面においては、外周から中心に向けて融液が流れ、該融液が種結晶下の融液内に潜り込むように流れる。結晶成長を行うため、上記種結晶を比較的ゆっくり回転させ、育成される肩部の固液界面形状は、融液の「自然対流」を反映して坩堝底部側へ向けた凸形状になっていく。 In the growth of the SGGG single crystal ingot by the rotary pulling method such as the CZ method, first, the conical shoulder portion whose crystal diameter is gradually increased from the seed crystal is grown. The shoulders are grown using the "natural convection" of the melt generated by the temperature difference of the melt. On the upper surface of the melt in the crucible, the melt flows from the outer circumference toward the center, and the melt flows so as to slip into the melt under the seed crystal. In order to carry out crystal growth, the seed crystal is rotated relatively slowly, and the solid-liquid interface shape of the shoulder part that is grown becomes a convex shape toward the bottom of the crucible, reflecting the "natural convection" of the melt. go.

上記肩部の中央部には、結晶の異方性によって成長スピードが速い部分(コアと称する部分)ができる。コアはその周辺部分と格子定数がわずかに異なることから、コアとその周辺との間に歪が生じ、コアが存在するSGGG単結晶基板(非磁性ガーネット単結晶基板)を用いてRIG単結晶膜を液相エピタキシャル(LPE)成長すると、RIG単結晶膜に割れが発生する。このため、コアが存在するSGGG単結晶基板を種結晶用基板として使用することができない。 In the central portion of the shoulder portion, a portion (a portion called a core) having a high growth speed is formed due to the anisotropy of the crystal. Since the core has a slightly different lattice constant from its peripheral portion, distortion occurs between the core and its periphery, and a RIG single crystal film is used using an SGGG single crystal substrate (non-magnetic garnet single crystal substrate) in which the core exists. When liquid phase epitaxial (LPE) growth occurs, cracks occur in the RIG single crystal film. Therefore, the SGGG single crystal substrate having the core cannot be used as the seed crystal substrate.

そこで、CZ法等の回転引上げ法によりSGGG単結晶インゴットを育成する場合、肩部の結晶径を大きくした段階で、結晶(種結晶)の回転速度を急激に上昇させ、融液中に「強制対流」を発生させて上記「自然対流」と競合状態を作り、上述した肩部の凸形状部を溶かし、固液界面形状をほぼ平坦な状態にしてから非磁性ガーネット単結晶基板(種結晶用基板)として使用可能な直胴部の育成を行っている。尚、上記結晶の回転速度を急激に上昇させて固液界面形状をほぼ平坦な状態にする一連の操作を「界面反転操作」と呼び、「界面反転操作」により肩部の固液界面形状が平坦になることを「界面反転」と呼んでいる。 Therefore, when growing an SGGG single crystal ingot by a rotation pulling method such as the CZ method, the rotation speed of the crystal (seed crystal) is rapidly increased at the stage where the crystal diameter of the shoulder is increased, and "forced" in the melt. "Convection" is generated to create a competitive state with the above "natural convection", the convex shape of the shoulder is melted to make the solid-liquid interface shape almost flat, and then a non-magnetic garnet single crystal substrate (for seed crystals). We are training a straight body that can be used as a substrate). A series of operations for rapidly increasing the rotation speed of the crystal to make the solid-liquid interface shape almost flat is called an "interface reversal operation", and the "interface reversal operation" causes the solid-liquid interface shape of the shoulder to be changed. Flattening is called "interfacial inversion".

上記CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶は、組成式(Gd,Ca,Ga,Mg,Zr)812で示される8個の金属元素と12個の酸素原子で構成されており、一致溶融結晶でなく各元素はわずかながら偏析を示す。これにより、育成された直胴部の上部と下部では結晶組成がわずかに異なり、格子定数の差として現れる。更に、結晶育成後、坩堝内に残った原料の組成と初期原料の組成は異なるため、初期原料(上述の予め混合して構成されたGd23、Ga23、MgO、ZrO2、CaCO3から成る原料)でSGGG単結晶を育成し、その後の育成で、坩堝内に残った原料(原料残渣)に初期組成と同一組成の原料を追加チャージして育成した場合、育成毎に格子定数がずれてしまい、SGGG単結晶の育成を重ねるに従い、SGGG単結晶基板の格子定数は所望の数値範囲に入らなくなることがあった。そして、育成毎に格子定数がずれてしまうと、育成終了後の結晶冷却中に育成された直胴部にクラックが入り易くなり、特に、直胴部の直径が80mm以上、直胴部の長さが95mm以上の場合に顕著となる問題が存在した。 The CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal is composed of 8 metal elements represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12 and 12 oxygen atoms. Each element, not a coincident molten crystal, shows a slight segregation. As a result, the crystal composition is slightly different between the upper part and the lower part of the grown straight body portion, and it appears as a difference in lattice constant. Further, since the composition of the raw material remaining in the crucible after the crystal growth and the composition of the initial raw material are different, the initial raw materials (Gd 2 O 3 , Ga 2 O 3 , MgO, ZrO 2 , which are premixed as described above, are used. When an SGGG single crystal is grown with (a raw material composed of CaCO 3 ), and in the subsequent growth, a raw material having the same composition as the initial composition is additionally charged to the raw material (raw material residue) remaining in the crucible, and the lattice is grown for each growth. The constants deviated, and as the SGGG single crystal was repeatedly grown, the lattice constant of the SGGG single crystal substrate sometimes did not fall within the desired numerical range. If the lattice constant deviates with each growth, cracks are likely to occur in the straight body grown during crystal cooling after the growth, and in particular, the diameter of the straight body is 80 mm or more and the length of the straight body is long. There was a problem that became noticeable when the diameter was 95 mm or more.

そこで、特許文献1は、組成式(Gd,Ca,Ga,Mg,Zr)812で示される8個の金属元素中、Gd元素とCa元素の合計個数が3.06個以上、3.08個以下の範囲に設定されるように原料融液の組成を調製し、更に、上記「界面反転操作」直前の肩部中央に存在するコアの状態を適正に設定する(すなわち、コアが肩部の中央から肩部の半径方向31%以内の領域に形成されるようにする)ことで防止する方法を開示している。特許文献1に開示された育成方法によれば、原料の追加チャージを伴う連続育成を行っても育成毎の格子定数のずれが抑制され、育成終了後の結晶冷却中に育成された直胴部にクラックが入り難くなるためSGGG単結晶を歩留り良く育成することが可能となる。尚、この育成方法によるSGGG単結晶の格子定数の範囲は「12.4950Å〜12.4990Å」であり、この範囲から外れたSGGG単結晶基板(種結晶用基板)を用いてRIG単結晶膜をLPE成長すると大きな歩留り悪化を招くことが分かっている。このため、RIG単結晶膜におけるLPE育成の収率安定化、品質のばらつきを低減させるには、SGGG単結晶基板(種結晶用基板)の格子定数を+/−0.001Åの範囲で制御することが求められる。 Therefore, in Patent Document 1, the total number of Gd elements and Ca elements is 3.06 or more among the eight metal elements represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12. The composition of the raw material melt is prepared so as to be set in the range of 08 or less, and the state of the core existing in the center of the shoulder immediately before the above "interfacial inversion operation" is appropriately set (that is, the core is shouldered). It discloses a method of preventing it by forming it in a region within 31% of the radial direction of the shoulder portion from the center of the portion). According to the growing method disclosed in Patent Document 1, even if continuous growing with an additional charge of the raw material is performed, the deviation of the lattice constant for each growing is suppressed, and the straight body portion grown during crystal cooling after the growing is completed. Since cracks are less likely to occur in the segagaga single crystal, it is possible to grow the SGGG single crystal with good yield. The range of the lattice constant of the SGGG single crystal by this growing method is "12.4950 Å to 12.4990 Å", and the RIG single crystal film is formed by using the SGGG single crystal substrate (seed crystal substrate) outside this range. It is known that LPE growth causes a large deterioration in yield. Therefore, in order to stabilize the yield of LPE growth in the RIG single crystal film and reduce the variation in quality, the lattice constant of the SGGG single crystal substrate (seed crystal substrate) is controlled in the range of +/- 0.001 Å. Is required.

特開2017−200864号公報Japanese Unexamined Patent Publication No. 2017-20864

ところで、RIG単結晶膜等から成るファラデー回転子を有する光アイソレータは、上述したように光通信の分野だけでなくファイバーレーザー加工機にも広く使用されるようになっている。特に、ファイバーレーザー加工機に使用される光アイソレータは、近年、高出力に耐えられるものが要求されている。このため、ファイバーレーザー加工機の光アイソレータに適用されるRIG単結晶膜は格子定数の大きい方が優位である。 By the way, an optical isolator having a Faraday rotator made of a RIG single crystal film or the like has come to be widely used not only in the field of optical communication but also in a fiber laser machine as described above. In particular, optical isolators used in fiber laser processing machines have been required in recent years to withstand high output. Therefore, the RIG single crystal film applied to the optical isolator of the fiber laser machine has a larger lattice constant, which is superior.

しかし、RIG単結晶膜の格子定数は、液相エピタキシャル(LPE)成長時におけるSGGG単結晶基板の格子定数で決定され、特許文献1に開示された育成方法によるSGGG単結晶の格子定数の範囲は上記「12.4950Å〜12.4990Å」であるため、下限値(12.4950Å)付近の格子定数を有するSGGG単結晶については、ファイバーレーザー加工機の光アイソレータ(高出力用光アイソレータ)に適用されるRIG単結晶膜のSGGG単結晶基板として利用できなくなる問題が存在した。 However, the lattice constant of the RIG single crystal film is determined by the lattice constant of the SGGG single crystal substrate during liquid phase epitaxial (LPE) growth, and the range of the lattice constant of the SGGG single crystal by the growing method disclosed in Patent Document 1 is Since it is the above "12.4950 Å to 12.4990 Å", the SGGG single crystal having a lattice constant near the lower limit (12.4950 Å) is applied to the optical isolator (high output optical isolator) of the fiber laser processing machine. There was a problem that the RIG single crystal film could not be used as an SGGG single crystal substrate.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、格子定数の上記範囲における下限値が比較的大きく、育成終了後の結晶冷却中に育成された直胴部にクラックが入り難いSGGG単結晶の育成方法を提供することにある。 The present invention has been made by paying attention to such a problem, and the problem is that the lower limit of the lattice constant in the above range is relatively large, and the straight cylinder grown during crystal cooling after the growth is completed. An object of the present invention is to provide a method for growing an SGGG single crystal in which cracks are unlikely to occur in a portion.

そこで、上記課題を解決するため、本発明者等は、特許文献1に開示された育成方法を基本にして初回チャージの新たな方策について実験、検討を繰り返した結果、上記組成式(Gd,Ca,Ga,Mg,Zr)812で示されるSGGG単結晶における8個の金属元素中、「Gd元素とCa元素の合計個数」を所定の数値範囲に管理するだけでなく、Zrの組成を微調整することで解決できることを見出すに至った。尚、上述した「界面反転操作」直前の肩部中央に存在するコアの状態を適正に設定することで結晶冷却中における結晶割れを回避する手法は、特許文献1に開示された育成方法と同様である。 Therefore, in order to solve the above-mentioned problems, the present inventors have repeated experiments and studies on a new policy of initial charge based on the growing method disclosed in Patent Document 1, and as a result, the above-mentioned composition formula (Gd, Ca) , Ga, Mg, Zr) 8 Of the eight metal elements in the SGGG single crystal represented by O 12 , "the total number of Gd elements and Ca elements" is not only controlled within a predetermined numerical range, but also the composition of Zr is controlled. I came to find that it can be solved by making fine adjustments. The method of avoiding crystal cracking during crystal cooling by appropriately setting the state of the core existing in the center of the shoulder immediately before the above-mentioned "interface inversion operation" is the same as the growing method disclosed in Patent Document 1. Is.

すなわち、本発明に係る第1の発明は、
回転反転操作を伴う回転引上げ法により組成式(Gd,Ca,Ga,Mg,Zr)812で示されるCaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶を育成する方法において、
上記組成式における8個の金属元素中、Gd元素とCa元素の合計個数が3.040個以上3.045個以下、Zr元素の個数が0.645個以上0.650個以下の範囲に設定されるように原料融液の組成を調製して育成することを特徴とする。
That is, the first invention according to the present invention is
In the method for growing a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12 by a rotation pulling method accompanied by a rotation inversion operation,
Of the eight metal elements in the above composition formula, the total number of Gd elements and Ca elements is set in the range of 3.040 or more and 3.045 or less, and the number of Zr elements is set in the range of 0.645 or more and 0.650 or less. It is characterized in that the composition of the raw material melt is prepared and grown so as to be carried out.

第2の発明は、
組成式(Gd,Ca,Ga,Mg,Zr)812で示されるSGGG単結晶において、
上記組成式における8個の金属元素中、Gd元素とCa元素の合計個数が3.072個以上3.076個以下、Zr元素の個数が0.660個以上0.670個以下であることを特徴とする。
The second invention is
In the SGGG single crystal represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12,
Of the eight metal elements in the above composition formula, the total number of Gd elements and Ca elements is 3.072 or more and 3.076 or less, and the number of Zr elements is 0.660 or more and 0.670 or less. It is a feature.

本発明に係る育成方法によれば、
SGGG単結晶の組成式(Gd,Ca,Ga,Mg,Zr)812における8個の金属元素中、Gd元素とCa元素の合計個数が3.040個以上3.045個以下、Zr元素の個数が0.645個以上0.650個以下の範囲に設定されるように原料融液の組成を調製して育成するため、Gd元素とCa元素の合計個数のみを所定の数値範囲(3.06個以上3.08個以下)に管理する特許文献1の育成方法に較べて格子定数の比較的大きいSGGG単結晶を安定して育成することが可能となる。
According to the growing method according to the present invention
Composition formula of SGGG single crystal (Gd, Ca, Ga, Mg, Zr) Of the 8 metal elements in 8 O 12 , the total number of Gd and Ca elements is 3.040 or more and 3.045 or less, Zr element. In order to prepare and grow the composition of the raw material melt so that the number of the raw material melts is set in the range of 0.645 or more and 0.650 or less, only the total number of Gd element and Ca element is set in the predetermined numerical range (3). It is possible to stably grow an SGGG single crystal having a relatively large lattice constant as compared with the growing method of Patent Document 1 in which .06 or more and 3.08 or less) are managed.

このため、高出力用光アイソレータに適用されるRIG単結晶膜のLPE成長に使用されるSGGG単結晶基板(種結晶用基板)を提供できる効果を有する。 Therefore, it has an effect of being able to provide an SGGG single crystal substrate (seed crystal substrate) used for LPE growth of a RIG single crystal film applied to a high-power optical isolator.

以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

坩堝内へ原料の追加チャージを伴うCZ法等の回転引上げ法によるSGGG単結晶の育成方法においては、育成回数が増加するに従い、結晶育成炉内における断熱材の劣化や坩堝形状の変形等が進むため、結晶育成毎の原料融解状態(炉状態)を初期の原料融解状態と同一に再現させることは基本的に困難で、Gaの蒸発量を結晶育成毎に許容範囲内で一致させることはできない。このため、組成式(Gd,Ca,Ga,Mg,Zr)812で示される各金属元素の偏析係数を一定にして追加チャージ組成を決定し、SGGG単結晶の育成を行ったとしても組成ずれは次第に大きくなる。特に、蒸発に伴うGa量の変動は制御が難しく、Ga量の変動はSGGG単結晶における格子定数の変動に影響する。 In the method of growing an SGGG single crystal by a rotary pulling method such as the CZ method in which an additional charge of a raw material is accompanied in the crucible, deterioration of the heat insulating material and deformation of the crucible shape in the crystal growing furnace progress as the number of times of growing increases. Therefore, it is basically difficult to reproduce the raw material melting state (furnace state) for each crystal growth in the same manner as the initial raw material melting state, and the amount of Ga evaporation cannot be matched within the permissible range for each crystal growth. .. Therefore, even if the additional charge composition is determined by keeping the segregation coefficient of each metal element represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12 constant and the SGGG single crystal is grown, the composition is composed. The deviation gradually increases. In particular, the fluctuation of the Ga amount due to evaporation is difficult to control, and the fluctuation of the Ga amount affects the fluctuation of the lattice constant in the SGGG single crystal.

特許文献1に開示された育成方法では、上記組成式で示されるSGGG単結晶の金属元素における8個を維持する方向で「Gd元素とCa元素の合計個数」が変動し、Ga量の変動分が補われているが、本発明に係る育成方法では、上記「Gd元素とCa元素の合計個数」に加え、Zr元素の個数によってもGa量の変動分が補われている。 In the growing method disclosed in Patent Document 1, the "total number of Gd elements and Ca elements" fluctuates in the direction of maintaining 8 of the metal elements of the SGGG single crystal represented by the above composition formula, and the variation in the amount of Ga. However, in the growing method according to the present invention, in addition to the above-mentioned "total number of Gd element and Ca element", the fluctuation amount of Ga amount is also compensated by the number of Zr elements.

Ga量の変動分を補うように上記「Gd元素とCa元素の合計個数」が変動した場合、この変動量が大きいと、結晶育成終了後の結晶冷却中において結晶割れが起こることは特許文献1に記載した通りである。 When the above-mentioned "total number of Gd element and Ca element" fluctuates so as to compensate for the fluctuation in the amount of Ga, if this fluctuation amount is large, crystal cracking occurs during crystal cooling after the completion of crystal growth. As described in.

特許文献1に開示された育成方法では、組成式(Gd,Ca,Ga,Mg,Zr)812における8個の金属元素中、「Gd元素とCa元素の合計個数」が3.060個以上3.080以内とすることで、原料の追加チャージを伴うSGGG単結晶の連続育成を行っても、格子定数は「12.4950Å〜12.4990Å」の範囲で安定して育成できる。 In the growing method disclosed in Patent Document 1, among the eight metal elements in the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12 , the "total number of Gd elements and Ca elements" is 3.060. When the content is set to 3.080 or less, the lattice constant can be stably grown in the range of "12.4950 Å to 124.990 Å" even if the SGGG single crystal is continuously grown with an additional charge of the raw material.

本発明では、特許文献1に開示された育成方法を基本にして初回チャージの新たな方策を見出している。すなわち、本発明に係る育成方法は、組成式(Gd,Ca,Ga,Mg,Zr)812における8個の金属元素中、「Gd元素とCa元素の合計個数」が3.040個以上3.045個以内とし、特許文献1の「Gd元素とCa元素の合計個数」より低めに設定する。更に「Zr元素の個数」が0.645個以上0.650個以下の範囲になるように組成を設定する。「Zr元素の個数」は格子定数と相関があり、「Zr元素の個数」の値を大きくすることで格子定数も大きくなる傾向にある。このため「Zr元素の個数」を管理することで格子定数を大きな方向に管理することが可能となる。「Zr元素の個数」は一般に0.63個であり、「Zr元素の個数」を大きい方に管理することで格子定数を大きめに管理することが可能となる。特に、融液組成における「Zr元素の個数」が0.645個になるよう設定するとより好ましい。 In the present invention, a new measure for initial charge is found based on the breeding method disclosed in Patent Document 1. That is, in the growing method according to the present invention, the "total number of Gd elements and Ca elements" is 3.040 or more among the eight metal elements in the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12. The number should be 3.045 or less, which is lower than the "total number of Gd element and Ca element" in Patent Document 1. Further, the composition is set so that the "number of Zr elements" is in the range of 0.645 or more and 0.650 or less. The "number of Zr elements" has a correlation with the lattice constant, and increasing the value of the "number of Zr elements" tends to increase the lattice constant. Therefore, by managing the "number of Zr elements", it is possible to manage the lattice constant in a large direction. The "number of Zr elements" is generally 0.63, and by managing the "number of Zr elements" to be larger, the lattice constant can be managed to be larger. In particular, it is more preferable to set the "number of Zr elements" in the melt composition to be 0.645.

次に、「Gd元素とCa元素の合計個数」が3.040個以上3.045個以下、かつ、「Zr元素の個数」が0.645個以上0.650個以下の範囲に設定された原料融液の組成で育成された単結晶を分析した結果、組成式(Gd,Ca,Ga,Mg,Zr)812における8個の金属元素中、「Gd元素とCa元素の合計個数」が3.072個以上3.076個以下、かつ、「Zr元素の個数」が0.660個以上0.670個以下の範囲になる。単結晶の育成時、「Gd元素とCa元素の合計個数」は0.030個から0.036個程度増加し、「Zr元素の個数」も0.015個から0.020個増加している。これは、Gaの変動を「Gd元素とCa元素」およびZr元素が補完したものと推測している。特に、「Zr元素の個数」が増加することで、単結晶中では0.660個以上0.670個以下の範囲になり、格子定数を大きくすることが可能となった。このときの格子定数は「12.4970Å〜12.4990Å」の範囲であり、変動幅を0.002Åまで狭くすることが可能となった。 Next, the "total number of Gd elements and Ca elements" was set in the range of 3.040 or more and 3.045 or less, and the "number of Zr elements" was set in the range of 0.645 or more and 0.650 or less. As a result of analyzing the single crystal grown with the composition of the raw material melt, among the eight metal elements in the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12 , "the total number of Gd elements and Ca elements" Is 3.072 or more and 3.076 or less, and the "number of Zr elements" is in the range of 0.660 or more and 0.670 or less. When growing a single crystal, the "total number of Gd elements and Ca elements" increased from 0.030 to 0.036, and the "number of Zr elements" also increased from 0.015 to 0.020. .. It is presumed that the fluctuation of Ga was complemented by "Gd element and Ca element" and Zr element. In particular, by increasing the "number of Zr elements", the number of Zr elements in a single crystal is in the range of 0.660 or more and 0.670 or less, and the lattice constant can be increased. The lattice constant at this time was in the range of "12.4970 Å to 12.4990 Å", and the fluctuation range could be narrowed to 0.002 Å.

次に、SGGG単結晶の育成方法について説明する。 Next, a method for growing the SGGG single crystal will be described.

SGGG単結晶の育成では、育成終了後の結晶冷却中に育成された直胴部にクラックが入り結晶割れを生ずることがある。結晶冷却中における結晶割れは、上述した「界面反転操作」直前の肩部中央に存在するコアが、肩部の中央から肩部の半径方向31%を越える領域に形成される場合、すなわち「界面反転操作」直前の肩部中央に存在するコアの大きさが、肩部の半径方向31%を越える大きさの場合に顕著に発生し、更に、SGGG単結晶における直胴部の直径が80mm以上で、直胴部の長さが95mm以上の場合に顕著に発生する。尚、肩部に存在するコアは、結晶のファセットが成長するために発生する領域で、肩部の中央付近に現れる。 In the growth of the SGGG single crystal, cracks may occur in the straight body portion grown during crystal cooling after the growth is completed, resulting in crystal cracking. Crystal cracking during crystal cooling occurs when the core existing in the center of the shoulder immediately before the above-mentioned "interfacial inversion operation" is formed in a region exceeding 31% in the radial direction of the shoulder from the center of the shoulder, that is, "interfacial". It occurs remarkably when the size of the core existing in the center of the shoulder immediately before the "reversal operation" exceeds 31% in the radial direction of the shoulder, and the diameter of the straight body of the SGGG single crystal is 80 mm or more. Therefore, it occurs remarkably when the length of the straight body portion is 95 mm or more. The core existing in the shoulder is a region generated due to the growth of crystal facets, and appears near the center of the shoulder.

そして、上述したようにコアはその周辺部に較べて格子定数が大きいため周辺部とコアの境界で歪が発生する。結晶中央部におけるコア領域が大きい場合、上記歪を原因として結晶冷却中における結晶割れの原因となる。 As described above, since the core has a larger lattice constant than the peripheral portion, distortion occurs at the boundary between the peripheral portion and the core. When the core region in the central portion of the crystal is large, the strain causes crystal cracking during crystal cooling.

このため、SGGG単結晶の育成では、上述したようにコア領域を「界面反転」という手法(界面反転操作)を用いて融液の流を変え、固液界面を平坦にした後、直胴部の育成を行っている。界面反転操作により直胴部にコアが存在しなくなるため、SGGG単結晶の直胴部をウェハー状に薄く切断した際、ウェハー面内における格子定数の分布を小さくすることが可能となる。尚、コアサイズを小さくするには肩部の長さを短くすることが有効である。 For this reason, in the growth of SGGG single crystals, as described above, the core region is changed in the flow of the melt by using a technique called "interface inversion" (interface inversion operation) to flatten the solid-liquid interface, and then the straight body portion. We are training. Since the core does not exist in the straight body portion by the interface inversion operation, it is possible to reduce the distribution of the lattice constants in the wafer plane when the straight body portion of the SGGG single crystal is thinly cut into a wafer shape. In order to reduce the core size, it is effective to shorten the length of the shoulder portion.

以下、本発明の実施例について具体的に説明する。 Hereinafter, examples of the present invention will be specifically described.

[実施例1]
組成式(Gd,Ca,Ga,Mg,Zr)812で示されるSGGG単結晶の「Gd元素とCa元素の合計個数」が3.04個、「Zr元素の個数」が0.645個となるように原料融液中の各元素の量を決定した。
[Example 1]
Composition formula (Gd, Ca, Ga, Mg , Zr) is 3.04 zero "Total number of Gd element and Ca element" of SGGG single crystal represented by 8 O 12, "the number of Zr element" is 0.645 The amount of each element in the raw material melt was determined so as to be individual.

そして、チョクラルスキー(CZ)法にて、肩部の長さが75mm、直胴部の直径が80.5mm、直胴部の長さが95mmとなるようにSGGG単結晶を育成した。 Then, by the Czochralski (CZ) method, the SGGG single crystal was grown so that the length of the shoulder portion was 75 mm, the diameter of the straight body portion was 80.5 mm, and the length of the straight body portion was 95 mm.

得られたSGGG単結晶の直胴部における冷却中の結晶割れは発生しなかった。 No crystal cracking occurred during cooling in the straight body portion of the obtained SGGG single crystal.

更にSGGG単結晶の育成終了間際の直胴部を切断して厚さ0.6mm程度の3インチウェハー(試料1.1、試料1.2および試料1.3)を求め、ICPおよび蛍光X線で組成分析を実施したところ、「Gd元素とCa元素の合計個数」と「Zr元素の個数」、および、格子定数は表1に示す結果になった。 Furthermore, the straight body portion of the SGGG single crystal just before the end of growth was cut to obtain a 3-inch wafer (sample 1.1, sample 1.2 and sample 1.3) having a thickness of about 0.6 mm, and ICP and fluorescent X-rays were obtained. When the composition analysis was carried out in, the "total number of Gd element and Ca element", "number of Zr element", and lattice constant were the results shown in Table 1.

Figure 0006933424
Figure 0006933424

いずれのウェハー(試料1.1、試料1.2および試料1.3)も、8個の金属元素中「Gd元素とCa元素の合計個数」が3.072個以上3.076個以下の範囲に入り、「Zr元素の個数」も0.660個から0.670個の範囲に入った。 In each of the wafers (Sample 1.1, Sample 1.2 and Sample 1.3), the "total number of Gd elements and Ca elements" in the eight metal elements is in the range of 3.072 or more and 3.076 or less. The "number of Zr elements" also fell within the range of 0.660 to 0.670.

また、各ウェハーの格子定数は「12.4970Å〜12.4990Å」の範囲に入り、高出力用光アイソレータに適用されるRIG単結晶膜のLPE成長に使用されるSGGG単結晶基板(種結晶用基板)として利用でき、かつ、ウェハーの割れは発生しなかった。 In addition, the lattice constant of each wafer falls within the range of "12.4970 Å to 12.4990 Å", and the SGGG single crystal substrate (for seed crystals) used for LPE growth of the RIG single crystal film applied to high-power optical isolators. It could be used as a substrate), and no cracks occurred in the wafer.

[比較例1]
実施例1と同様の条件で、SGGG単結晶の「Gd元素とCa元素の合計個数」が3.04個、「Zr元素の個数」が0.640個(0.645個以上の要件を満たさない)になるように原料融液中の各元素の量を決定した。
[Comparative Example 1]
Under the same conditions as in Example 1, 3.04 0 "Total number of Gd element and Ca element" of SGGG single crystal, "Zr number of elements" is 0.640 or a (0.645 or more requirements The amount of each element in the raw material melt was determined so as to be (not satisfied).

そして、肩部の長さが75mm、直胴部の直径が80.5mm、直胴部の長さが95mmとなるようにSGGG単結晶を育成した。 Then, the SGGG single crystal was grown so that the length of the shoulder portion was 75 mm, the diameter of the straight body portion was 80.5 mm, and the length of the straight body portion was 95 mm.

SGGG単結晶の育成終了間際の直胴部を切断して厚さ0.6mm程度の3インチウェハー(試料2.1および試料2.2)を求め、ICPおよび蛍光X線で組成分析を実施したところ、「Gd元素とCa元素の合計個数」と「Zr元素の個数」、および、格子定数は表2に示す結果になった。 A 3-inch wafer (Sample 2.1 and Sample 2.2) having a thickness of about 0.6 mm was obtained by cutting the straight body portion just before the end of growing the SGGG single crystal, and the composition was analyzed by ICP and fluorescent X-ray. However, the "total number of Gd elements and Ca elements", "number of Zr elements", and the lattice constant are the results shown in Table 2.

Figure 0006933424
Figure 0006933424

ウェハー(試料2.1)に関し、8個の金属元素中「Gd元素とCa元素の合計個数」が3.071個で3.072個以上3.076個以下の範囲に入らなかったが、ウェハー(試料2.2)は、8個の金属元素中「Gd元素とCa元素の合計個数」が3.073個で3.072個以上3.076個以下の範囲に入り、いずれのウェハー(試料2.1および試料2.2)も割れは発生しなかった。 Regarding the wafer (Sample 2.1), the "total number of Gd elements and Ca elements" among the eight metal elements was 3.071, which did not fall within the range of 3.072 or more and 3.076 or less, but the wafer. In (Sample 2.2), the "total number of Gd elements and Ca elements" among the eight metal elements was 3.073, which was in the range of 3.072 or more and 3.076 or less, and any wafer (sample). No cracks occurred in 2.1 and sample 2.2).

しかし、「Zr元素の個数」は0.660個から0.670個の範囲に入らず、かつ、格子定数も「12.4970Å〜12.4990Å」の範囲に入らなかった。このため、高出力用光アイソレータに適用されるRIG単結晶膜のLPE成長に使用されるSGGG単結晶基板(種結晶用基板)として利用することはできなかった。 However, the "number of Zr elements" did not fall within the range of 0.660 to 0.670, and the lattice constant did not fall within the range of "12.4970 Å to 12.4990 Å". Therefore, it could not be used as an SGGG single crystal substrate (seed crystal substrate) used for LPE growth of a RIG single crystal film applied to a high-power optical isolator.

[実施例2]
実施例1と同様の組成、すなわち、組成式(Gd,Ca,Ga,Mg,Zr)812で示されるSGGG単結晶の「Gd元素とCa元素の合計個数」が3.04個、「Zr元素の個数」が0.645個となるように原料融液中の各元素の量を決定し、坩堝中の原料を融解させ、次いで、この条件を24時間以上保持してGaの蒸発を促した後、肩部の長さが75mm、直胴部の直径が80.5mm、直胴部の長さが95mmとなるようにSGGG単結晶を育成した。
[Example 2]
The composition as in Example 1, i.e., formula (Gd, Ca, Ga, Mg , Zr) 8 O "Total number of Gd element and Ca element" of SGGG single crystal represented by 12 3.04 0, The amount of each element in the raw material melt is determined so that the "number of Zr elements" is 0.645, the raw material in the pit is melted, and then this condition is maintained for 24 hours or more to evaporate Ga. After urging, the SGGG single crystal was grown so that the length of the shoulder portion was 75 mm, the diameter of the straight body portion was 80.5 mm, and the length of the straight body portion was 95 mm.

そして、SGGG単結晶の育成終了間際の直胴部を切断して厚さ0.6mm程度の3インチウェハー(試料3.1)を求め、ICPおよび蛍光X線で組成分析を実施したところ、「Gd元素とCa元素の合計個数」と「Zr元素の個数」、および、格子定数は表3に示す結果になった。 Then, the straight body portion of the SGGG single crystal just before the end of growth was cut to obtain a 3-inch wafer (sample 3.1) having a thickness of about 0.6 mm, and the composition was analyzed by ICP and fluorescent X-ray. The "total number of Gd elements and Ca elements", "number of Zr elements", and the lattice constant are the results shown in Table 3.

Figure 0006933424
Figure 0006933424

Gaの蒸発量が増えたことで、ウェハー(試料3.1)の「Gd元素とCa元素の合計個数」は3.076個まで増加したが、「Zr元素の個数」は0.660個と実施例1より若干減少した。 Due to the increase in the amount of evaporation of Ga, the "total number of Gd elements and Ca elements" of the wafer (Sample 3.1) increased to 3.076, but the "number of Zr elements" was 0.660. It decreased slightly from Example 1.

また、ウェハーの格子定数は「12.4970Å〜12.4990Å」の範囲に入り、高出力用光アイソレータに適用されるRIG単結晶膜のLPE成長に使用されるSGGG単結晶基板(種結晶用基板)として利用でき、かつ、ウェハーの割れは発生しなかった。 In addition, the lattice constant of the wafer falls within the range of "12.4970 Å to 12.4990 Å", and the SGGG single crystal substrate (seed crystal substrate) used for LPE growth of the RIG single crystal film applied to high-power optical isolators. ), And the wafer did not crack.

実施例1と同様の組成であれば、Gaの蒸発量が多少増えても格子定数は目的の範囲内に入ることが確認された。 With the same composition as in Example 1, it was confirmed that the lattice constant was within the target range even if the amount of evaporation of Ga increased slightly.

本発明方法によれば、SGGG単結晶の組成式(Gd,Ca,Ga,Mg,Zr)812における8個の金属元素中、Gd元素とCa元素の合計個数が3.040個以上3.045個以下、Zr元素の個数が0.645個以上0.650個以下の範囲に設定されるように原料融液の組成を調製して育成するため、Gd元素とCa元素の合計個数を所定の数値範囲に管理する特許文献1の方法に較べ格子定数が比較的大きいSGGG単結晶を安定して育成することが可能となる。このため、育成されたSGGG単結晶について高出力用光アイソレータに使用されるRIG単結晶膜のLPE成長用SGGG単結晶基板として適用される産業上の利用可能性を有している。 According to the method of the present invention, the total number of Gd elements and Ca elements among the eight metal elements in the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12 of the SGGG single crystal is 3.040 or more 3 In order to prepare and grow the composition of the raw material melt so that the number of .045 elements and the number of Zr elements are set in the range of 0.645 or more and 0.650 or less, the total number of Gd elements and Ca elements is adjusted. It is possible to stably grow an SGGG single crystal having a relatively large lattice constant as compared with the method of Patent Document 1 which manages within a predetermined numerical range. Therefore, the grown SGGG single crystal has industrial applicability to be applied as an SGGG single crystal substrate for LPE growth of a RIG single crystal film used for a high-power optical isolator.

Claims (2)

回転反転操作を伴う回転引上げ法により組成式(Gd,Ca,Ga,Mg,Zr)812で示されるCaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶を育成する方法において、
上記組成式における8個の金属元素中、Gd元素とCa元素の合計個数が3.040個以上3.045個以下、Zr元素の個数が0.645個以上0.650個以下の範囲に設定されるように原料融液の組成を調製して育成することを特徴とするSGGG単結晶の育成方法。
In the method for growing a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12 by a rotation pulling method accompanied by a rotation inversion operation,
Among the eight metal elements in the above composition formula, the total number of Gd elements and Ca elements is set in the range of 3.040 or more and 3.045 or less, and the number of Zr elements is set in the range of 0.645 or more and 0.650 or less. A method for growing an SGGG single crystal, which comprises preparing and growing the composition of the raw material melt so as to be carried out.
組成式(Gd,Ca,Ga,Mg,Zr)812で示されるSGGG単結晶において、
上記組成式における8個の金属元素中、Gd元素とCa元素の合計個数が3.072個以上3.076個以下、Zr元素の個数が0.660個以上0.670個以下であることを特徴とするSGGG単結晶。
In the SGGG single crystal represented by the composition formula (Gd, Ca, Ga, Mg, Zr) 8 O 12,
Of the eight metal elements in the above composition formula, the total number of Gd elements and Ca elements is 3.072 or more and 3.076 or less, and the number of Zr elements is 0.660 or more and 0.670 or less. Characterized SGGG single crystal.
JP2020076244A 2020-04-22 2020-04-22 How to grow SGGG single crystal and SGGG single crystal Active JP6933424B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076244A JP6933424B1 (en) 2020-04-22 2020-04-22 How to grow SGGG single crystal and SGGG single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076244A JP6933424B1 (en) 2020-04-22 2020-04-22 How to grow SGGG single crystal and SGGG single crystal

Publications (2)

Publication Number Publication Date
JP6933424B1 true JP6933424B1 (en) 2021-09-08
JP2021172543A JP2021172543A (en) 2021-11-01

Family

ID=77550032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076244A Active JP6933424B1 (en) 2020-04-22 2020-04-22 How to grow SGGG single crystal and SGGG single crystal

Country Status (1)

Country Link
JP (1) JP6933424B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147573B2 (en) * 2002-02-15 2008-09-10 日立化成工業株式会社 Garnet single crystal substrate and manufacturing method thereof
JP6547360B2 (en) * 2015-03-06 2019-07-24 住友金属鉱山株式会社 Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP6500807B2 (en) * 2016-02-25 2019-04-17 住友金属鉱山株式会社 Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP6610417B2 (en) * 2016-05-06 2019-11-27 住友金属鉱山株式会社 Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP2019182682A (en) * 2018-04-04 2019-10-24 住友金属鉱山株式会社 Method for manufacturing nonmagnetic garnet single crystal

Also Published As

Publication number Publication date
JP2021172543A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP5601273B2 (en) Method for producing oxide single crystal
WO2021005731A1 (en) Monocrystalline gallium arsenide substrate
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP6610417B2 (en) Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP4193610B2 (en) Single crystal manufacturing method
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP4218448B2 (en) Garnet single crystal, its growth method, and garnet substrate for liquid phase epitaxial growth method using the same
JP6436073B2 (en) Method for growing CaMgZr-substituted gadolinium / gallium / garnet single crystal
JP2007008759A (en) Bismuth-substituted magnetic garnet film and its production method
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP2019182682A (en) Method for manufacturing nonmagnetic garnet single crystal
JP6822109B2 (en) Bismuth-substituted rare earth iron garnet crystal film, its manufacturing method, and optical isolator
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP6922521B2 (en) How to grow non-magnetic garnet single crystal
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP6969091B2 (en) Non-magnetic garnet single crystal, non-magnetic garnet single crystal substrate, non-magnetic garnet single crystal manufacturing method, and non-magnetic garnet single crystal substrate manufacturing method
JP6819862B2 (en) Method for growing bismuth-substituted rare earth iron garnet single crystal film and bismuth-substituted rare earth iron garnet single crystal film
JP2008143738A (en) Magnetic garnet single crystal and its manufacturing method
JP3152322B2 (en) Twinless (Nd, La) GaO3 single crystal and method for producing the same
JP4200690B2 (en) GaAs wafer manufacturing method
JP2005089223A (en) Single crystal and its manufacturing method
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP2016056055A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JPH03103398A (en) Oxide garnet single crystal and production thereof
JP6369453B2 (en) Nonmagnetic garnet single crystal growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6933424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250