JP6369453B2 - Nonmagnetic garnet single crystal growth method - Google Patents

Nonmagnetic garnet single crystal growth method Download PDF

Info

Publication number
JP6369453B2
JP6369453B2 JP2015243037A JP2015243037A JP6369453B2 JP 6369453 B2 JP6369453 B2 JP 6369453B2 JP 2015243037 A JP2015243037 A JP 2015243037A JP 2015243037 A JP2015243037 A JP 2015243037A JP 6369453 B2 JP6369453 B2 JP 6369453B2
Authority
JP
Japan
Prior art keywords
diameter
crystal
single crystal
dislocation density
per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015243037A
Other languages
Japanese (ja)
Other versions
JP2017109878A (en
Inventor
辰宮 一樹
一樹 辰宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015243037A priority Critical patent/JP6369453B2/en
Publication of JP2017109878A publication Critical patent/JP2017109878A/en
Application granted granted Critical
Publication of JP6369453B2 publication Critical patent/JP6369453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、回転引上げ法により(Gd3-xCax)(Ga5-x-2yZrx+yMgy)O12で表される非磁性ガーネット(SGGG)単結晶を育成する方法に係り、特に、転位密度が規格内となる非磁性ガーネット単結晶の育成方法に関するものである。 The present invention relates a rotary pulling method (Gd 3-x Ca x) (Ga 5-x-2y Zr x + y Mg y) nonmagnetic garnet represented by O 12 (SGGG) single crystal to a method for growing, in particular Further, the present invention relates to a method for growing a nonmagnetic garnet single crystal whose dislocation density is within the standard.

通信用光アイソレータに用いられるファラデー回転子の材料として、Bi置換型希土類鉄ガーネット単結晶膜(Bi-RIG:Rare-earth iron garnet)が広く用いられており、このBi-RIG単結晶膜は、非磁性ガーネット(SGGG)基板を種基板結晶にして液相エピタキシャル(Liquid Phase Epitaxy;LPE)成長法で育成されている(特許文献1〜2参照)。また、Bi-RIG単結晶膜の育成を安定させるため種基板結晶であるSGGGの転位密度には厳しい規格が定められている。   Bi-substituted rare earth iron garnet (Bi-RIG) is widely used as a material for a Faraday rotator used in communication optical isolators, and this Bi-RIG single crystal film is A non-magnetic garnet (SGGG) substrate is used as a seed substrate crystal and grown by a liquid phase epitaxy (LPE) growth method (see Patent Documents 1 and 2). In addition, in order to stabilize the growth of the Bi-RIG single crystal film, strict standards are set for the dislocation density of SGGG which is a seed substrate crystal.

上記SGGG単結晶の育成はチョクラルスキー(CZ:Czochralski)法等の回転引上げ法により行われ、予め混合したGd23、Ga23、MgO、ZrO2、CaCO3を坩堝内に所定量仕込み、高周波炉で加熱溶融して原料融液を得た後、坩堝内の原料融液に種結晶を接触させ、種結晶を回転させながら該種結晶を徐々に引き上げてSGGG単結晶を育成している(特許文献3参照)。尚、育成中におけるSGGG単結晶の直径制御については自動(auto diameter control:ADC)で行われているが、SGGG単結晶の育成初期段階は、ADCの直径演算処理データに用いられる結晶重量の値が小さく、直径演算処理を正確に行うことが困難なため手動制御で行われ、結晶直径が概ねφ25mm以上となった時点で自動制御が可能となる。 The SGGG single crystal is grown by a rotational pulling method such as Czochralski (CZ) method, and premixed Gd 2 O 3 , Ga 2 O 3 , MgO, ZrO 2 and CaCO 3 are placed in a crucible. After preparing a fixed quantity and heating and melting in a high-frequency furnace to obtain a raw material melt, the seed crystal is brought into contact with the raw material melt in the crucible, and the seed crystal is gradually pulled up while rotating the seed crystal to grow an SGGG single crystal. (See Patent Document 3). The diameter control of the SGGG single crystal during growth is performed automatically (auto diameter control: ADC), but the initial stage of growth of the SGGG single crystal is the value of the crystal weight used for the diameter calculation processing data of the ADC. Is small, and it is difficult to accurately perform the diameter calculation process, so manual control is performed, and automatic control becomes possible when the crystal diameter is approximately φ25 mm or more.

そして、育成されたSGGG単結晶インゴットにおける直胴部の上部および下部を内周刃切断機でウエハー状に切断して評価サンプルを求め、コロイダルシリカ等の研磨液を用いて上記評価サンプルを鏡面に仕上げてSGGG基板とし、該SGGG基板の格子定数や転位密度を測定して規格に対する合否判定がなされている。   Then, the upper and lower portions of the straight body portion of the grown SGGG single crystal ingot are cut into a wafer shape with an inner peripheral cutting machine to obtain an evaluation sample, and the evaluation sample is used as a mirror surface by using a polishing liquid such as colloidal silica. The SGGG substrate is finished, and the lattice constant and dislocation density of the SGGG substrate are measured to make a pass / fail judgment with respect to the standard.

特開2003−238294号公報JP 2003-238294 A 特開2003−238295号公報JP 2003-238295 A 特開2005−029400号公報JP 2005-029400 A

ところで、直径制御を手動で行いかつ結晶直径が概ねφ25mm以上となった時点で自動に切り替える従来法について本発明者が評価試験を行ったところ、SGGG基板の転位密度に関して視野6.3mm2当たり平均0.1個以下とする規格を満たしていないことが判明し、上記従来法には改善を必要とする課題が存在していた。 By the way, when the present inventor conducted an evaluation test on the conventional method in which the diameter control is manually performed and the crystal diameter is approximately φ25 mm or more, and the method is switched automatically, the average per field of 6.3 mm 2 regarding the dislocation density of the SGGG substrate. It was found that the standard of 0.1 or less was not satisfied, and the conventional method had a problem that required improvement.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、転位密度が規格内となる非磁性ガーネット単結晶の育成方法を提供することにある。   The present invention has been made paying attention to such problems, and the object of the present invention is to provide a method for growing a nonmagnetic garnet single crystal in which the dislocation density is within the standard.

そこで、従来法で育成されたSGGG基板の転位密度が規格外となる原因について本発明者が鋭意調査したところ、手動制御の後半においてSGGG結晶の直径が急激に大きくなっており、かつ、手動から自動に切り替える直径制御のタイミングが早過ぎると直径の変動が大きくなり、急激な直径増加によって転位を引き起こしていることが確認された。本発明はこのような技術的発見により完成されたものである。   Therefore, when the present inventors diligently investigated the cause of the dislocation density of the SGGG substrate grown by the conventional method being out of specification, the diameter of the SGGG crystal suddenly increased in the second half of manual control, and When the timing of diameter control to switch to automatic was too early, the fluctuation of the diameter became large, and it was confirmed that the dislocation was caused by the rapid diameter increase. The present invention has been completed by such technical discovery.

すなわち、請求項1に係る発明は、
回転引上げ法により(Gd3-xCax)(Ga5-x-2yZrx+yMgy)O12で表される非磁性ガーネット単結晶(x=0、y=0を含む)を育成する方法であって、結晶の直径制御を手動から自動に切り替えて行う非磁性ガーネット単結晶の育成方法において、
育成中における結晶の直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加量を2.7mm以下とし、かつ、手動から自動に切り替える直径制御のタイミングを結晶の直径がφ33mm以上のときとすることを特徴とするものである。
That is, the invention according to claim 1
How to train by rotation pulling method (including x = 0, y = 0) (Gd 3-x Ca x) (Ga 5-x-2y Zr x + y Mg y) magnetic garnet single crystal represented by O 12 In the method of growing a non-magnetic garnet single crystal that is switched from manual to automatic diameter control of the crystal,
When the crystal diameter during growth is between φ25 mm and φ35 mm, the increase in diameter per mm of crystal pulling distance is 2.7 mm or less, and the timing of diameter control for switching from manual to automatic is greater than φ33 mm It is characterized by that.

本発明に係る非磁性ガーネット単結晶の育成方法によれば、
育成中における結晶の直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加量を2.7mm以下とし、手動から自動に切り替える直径制御のタイミングを結晶の直径がφ33mm以上のときとしているため、育成される単結晶の直径が急激に増加しないことから転位の発生を抑制することが可能となる。
According to the method for growing a non-magnetic garnet single crystal according to the present invention,
During crystal growth, when the crystal diameter is between 25 mm and 35 mm, the increase in diameter per 1 mm of crystal pulling distance is 2.7 mm or less, and the timing of diameter control to switch from manual to automatic is when the crystal diameter is 33 mm or more. Therefore, since the diameter of the single crystal to be grown does not increase rapidly, it becomes possible to suppress the occurrence of dislocations.

このため、転位密度が規格内となる非磁性ガーネット単結晶を安定して育成できる効果を有する。   For this reason, it has the effect that the nonmagnetic garnet single crystal whose dislocation density is within the standard can be stably grown.

面積6.3mm2当たりの105視野(一列27ヶ所×4列で、中央が3ケ重複するため計105視野)に対し平均転位個数が観察されるSGGG基板の平面図。105 field per area 6.3 mm 2 plan view of the SGGG substrate average dislocation number is observed to (in one row 27 place × 4 columns, a total of 105 field for the center to 3 Ke duplicates). 直径制御を手動から自動(ADC)に切り替えた時の結晶直径が本発明で規定するφ33mm以上の条件を共に満たす実施例1〜7と比較例7〜10に係る結晶引上距離1mm当たりの直径増加(mm)[直径傾き]を変化させたときの視野6.3mm2当たりの平均転位個数(/6.3mm2)を示す「結晶引上距離1mm当たりの直径増加(mm)」と「平均転位個数(/6.3mm2)」との関係を示すグラフ図。Diameter per 1 mm of crystal pulling distance according to Examples 1 to 7 and Comparative Examples 7 to 10 in which the crystal diameter when the diameter control is switched from manual to automatic (ADC) satisfies both the conditions of φ33 mm or more specified in the present invention increase (mm) "diameter increase per crystal pulling distance 1 mm (mm)" indicates the average dislocation number per field of view 6.3mm 2 (/6.3mm 2) when changing the diameter Skew "average The graph which shows the relationship with the number of dislocations (/6.3mm < 2 >). 結晶引上げ距離1mm当たりの直径増加が本発明で規定する2.7mm以下の条件を共に満たす実施例1〜7と比較例1〜2、4、6に係る手動から自動(ADC)に切り替える直径制御のタイミング時における結晶直径(mm)を変化させたときの視野6.3mm2当たりの平均転位個数(/6.3mm2)を示す「ADC開始直径(mm)」と「平均転位個数(/6.3mm2)」との関係を示すグラフ図。Diameter control for switching from manual to automatic (ADC) according to Examples 1-7 and Comparative Examples 1-2, 4 and 6 in which the increase in diameter per 1 mm of the crystal pulling distance satisfies the condition of 2.7 mm or less specified in the present invention. field 6.3mm average dislocation number per 2 (/6.3mm 2) indicates "ADC start diameter (mm)" and "average dislocation number when changing the crystal diameter (mm) at the timing of (/ 6 .3 mm 2 ) ”. 実施例1〜7と比較例1〜10に係る「結晶引上距離1mm当たりの直径増加(mm)」と「ADC開始直径(mm)」との関係を示しており、直径制御を手動から自動(ADC)に切り替えた時の結晶直径が本発明で規定するφ33mm以上の条件と結晶引上げ距離1mm当たりの直径増加が本発明で規定する2.7mm以下の条件を共に満たしている実施例1〜7が規格内(すなわち合格「〇」)、上記条件の少なくとも一方を満たしていない比較例1〜10が規格外(すなわち不合格「×」)であることを示すグラフ図。The relationship between “diameter increase (mm) per 1 mm of crystal pulling distance” and “ADC start diameter (mm)” according to Examples 1 to 7 and Comparative Examples 1 to 10 is shown, and the diameter control is automatically performed manually. Example 1 in which the crystal diameter when switching to (ADC) satisfies both the condition of φ33 mm or more specified in the present invention and the increase in diameter per 1 mm of the crystal pulling distance satisfies the condition of 2.7 mm or less specified in the present invention. FIG. 7 is a graph showing that 7 is within the standard (that is, pass “◯”), and Comparative Examples 1 to 10 that do not satisfy at least one of the above conditions are out of the standard (that is, fail “×”).

以下、本発明に係る実施の形態について説明する。   Embodiments according to the present invention will be described below.

まず、転位密度が規格外となったロットについて本発明者が調査したところ、手動制御の後半でSGGG単結晶の直径が急激に大きくなっており、成長するのに要した引上距離は、結晶の直径φ15mmからφ25mmまでが5.0mmであるのに対し、結晶の直径φ25mmから35mmまでは1.7mmで成長し、かつ、手動から自動(ADC)に切り替える直径制御のタイミングは結晶の直径がφ36.8mmのときであった。また、上記SGGG単結晶の直径増加について、引上距離1mm当たりに増加する結晶直径(以下「直径傾き」と称する場合がある)に換算した場合、前者は2.0mmであるが、後者は6.9mmと急激に成長していることが確認された。   First, when the present inventor investigated a lot whose dislocation density was out of specification, the SGGG single crystal diameter increased rapidly in the second half of manual control, and the pulling distance required for growth The diameter from φ15mm to φ25mm is 5.0mm, while the crystal diameter from φ25mm to 35mm grows at 1.7mm, and the timing of diameter control to switch from manual to automatic (ADC) It was when φ36.8 mm. Further, when the diameter increase of the SGGG single crystal is converted into a crystal diameter that increases per pulling distance of 1 mm (hereinafter sometimes referred to as “diameter inclination”), the former is 2.0 mm, while the latter is 6 mm. It was confirmed that the growth was as rapid as .9 mm.

また、転位がSGGG単結晶インゴットの直胴部に伝播する状況を調べるため、引上軸(111)面に対して直交する(112)面でインゴットの肩部分を切断し、得た結晶板をジヨードメタンに浸して偏光の下で観察したところ、手動による直径制御の領域である結晶直径がφ30mm付近の面内中心に発生した転位が起点となって固液界面に対し垂直に直胴部まで伝播しており、この急激な直径の増加によって結晶に対する応力が増大して転位が発生したと推測された。   Further, in order to investigate the situation where dislocations propagate to the straight body portion of the SGGG single crystal ingot, the shoulder portion of the ingot is cut along the (112) plane orthogonal to the pulling-up axis (111) plane, When observed under polarized light by immersing in diiodomethane, the crystal diameter, which is the area of manual diameter control, propagates to the straight body perpendicular to the solid-liquid interface starting from dislocations generated at the in-plane center near φ30 mm. It was speculated that this sudden increase in diameter increased the stress on the crystal and caused dislocations.

ところで、結晶直径の増加を緩やかにするためには育成雰囲気や原料融液中の温度勾配を急峻にすることが有効で、これを実現する方法として、高周波を発生して坩堝を加熱させるワークコイルの位置を坩堝の下部の発熱が強くなるように調整し、原料融液中における「自然対流」(原料融液内の温度差に起因する対流)を強くする手法が考えられる。   By the way, it is effective to make the temperature gradient in the growth atmosphere and the raw material melt steep in order to moderate the increase of the crystal diameter. As a method for realizing this, a work coil that generates a high frequency and heats the crucible It is conceivable to adjust the position of the crucible so that the heat generation at the lower part of the crucible becomes strong, thereby strengthening the “natural convection” (convection caused by the temperature difference in the raw material melt) in the raw material melt.

そこで、「自然対流」を強くした状況下においてSGGG単結晶の育成を実施したところ、結晶の直径φ25mmからφ35mmまでの上記「直径傾き」が、従来法による上記ロットの6.9mmから1.8mmまで小さくなり、この部分に発生する転位を抑制することが可能となった。   Therefore, when SGGG single crystal was grown in a situation where “natural convection” was strengthened, the above-mentioned “diameter inclination” from a crystal diameter of φ25 mm to φ35 mm was 6.9 mm to 1.8 mm of the lot according to the conventional method. The dislocation generated in this portion can be suppressed.

次に、上記条件下において、肩スクラップ重量を小さくさせるため手動から自動(ADC)に切り替える直径制御のタイミングを結晶の直径がφ30mmのときにしたところ、ADC開始の後に結晶直径の変動が大きくなり、この位置に転位が発生してSGGG単結晶インゴットの直胴部に伝播していた。従来法において結晶の直径φ25mmからφ35mmまで結晶が急激に成長していた(「直径傾き」が6.9mm)ことから、この範囲の原料融液中における坩堝半径方向の温度勾配が小さいと推測された。尚、この部分の温度を測定することは、育成炉の構造から実際には困難である。   Next, under the above-mentioned conditions, when the diameter control timing for switching from manual to automatic (ADC) to reduce the shoulder scrap weight is when the crystal diameter is 30 mm, the crystal diameter fluctuates greatly after the ADC starts. Dislocation occurred at this position and propagated to the straight body of the SGGG single crystal ingot. In the conventional method, the crystal grew rapidly from φ25 mm to φ35 mm (the “diameter slope” was 6.9 mm), so it was estimated that the temperature gradient in the crucible radial direction in this range of raw material melt was small. It was. Note that it is actually difficult to measure the temperature of this portion because of the structure of the growth furnace.

そこで、以下に述べる実施例で確認された各条件に基づき、育成する結晶の直径がφ33mm未満までは手動による直径制御とする方法を見出すに至った。   Therefore, based on the conditions confirmed in the examples described below, the inventors have found a method of manually controlling the diameter until the diameter of the crystal to be grown is less than 33 mm.

具体的には、育成中の結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加量を2.7mm(すなわち「直径傾き」2.7mm)以下とし、かつ、手動から自動に切り替える直径制御のタイミングを結晶の直径がφ33mm以上とすることにより転位密度が規格内であるSGGG単結晶を得ることが可能となった。   Specifically, the diameter increase during the crystal pulling distance of 1 mm when the diameter of the growing crystal is between φ25 mm and φ35 mm is 2.7 mm (that is, “diameter slope” 2.7 mm) or less, and from manual to automatic By making the diameter control timing for switching the crystal diameter φ33 mm or more, an SGGG single crystal having a dislocation density within the standard can be obtained.

尚、手動から自動に切り替える直径制御のタイミング(すなわち、ADCを開始するタイミング)の結晶の直径をいたずらに大きくすることは、肩スクラップの重量が増して原料コストの増加となるため好ましくない。そこで、ADCを開始するタイミングの結晶直径は上述したようにφ33mm以上とし、かつ、原料コストの増加を抑制するためできるだけ小さい直径に設定することが好ましい。   In addition, it is not preferable to increase the diameter of the crystal at the timing of diameter control switching from manual to automatic (that is, the timing to start ADC) because the weight of the shoulder scrap increases and the raw material cost increases. Therefore, it is preferable that the crystal diameter at the timing of starting the ADC is set to φ33 mm or more as described above, and as small as possible in order to suppress an increase in raw material cost.

以下、本発明の実施例について比較例を挙げて具体的に説明する。   Examples of the present invention will be specifically described below with reference to comparative examples.

[実施例1]
直径150mm、高さ150mmのイリジウム製坩堝内に、予め混合したGd23、Ga23、MgO、ZrO2,CaCO3を所定量仕込み、高周波加熱炉で1750℃まで加熱溶融して原料融液を得た後、種結晶を1分間に5回転させながら1時間に3mmの速度で引き上げて、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Example 1]
A predetermined amount of premixed Gd 2 O 3 , Ga 2 O 3 , MgO, ZrO 2 , and CaCO 3 is charged into an iridium crucible having a diameter of 150 mm and a height of 150 mm, and is heated and melted to 1750 ° C. in a high-frequency heating furnace. After obtaining the melt, the seed crystal is pulled up at a speed of 3 mm per hour while rotating the seed crystal 5 times per minute, and the gadolinium whose diameter is φ80 mm, which is the diameter of the straight body part, is the shoulder part and the subsequent part is gadolinium・ Gallium garnet single crystals were grown.

尚、表1に示すように結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)は2.7mm、ADC開始直径(mm)は33.0mmであった。   As shown in Table 1, when the crystal diameter was between 25 mm and 35 mm, the increase in diameter per mm of crystal pulling distance (mm) was 2.7 mm, and the ADC starting diameter (mm) was 33.0 mm.

得られた単結晶を内周刃でウエハー状に切り出し、かつ、コロイダルシリカ等の研磨液を用いて鏡面に仕上げてSGGG基板を得た後、該SGGG基板の転位密度を測定した。   The obtained single crystal was cut into a wafer shape with an inner peripheral blade and finished to a mirror surface using a polishing liquid such as colloidal silica to obtain an SGGG substrate, and then the dislocation density of the SGGG substrate was measured.

尚、転位密度の測定は、倍率50倍の微分干渉顕微鏡を用い、図1に示すSGGG基板の面積6.3mm2当たりの105視野に対する平均転位個数を観察する方法により行った。 The dislocation density was measured by a method of observing the average number of dislocations with respect to 105 visual fields per area of 6.3 mm 2 of the SGGG substrate shown in FIG.

測定の結果、表1に示すように平均転位個数は0.06個(/6.3mm2)であり、育成5回全ての転位密度は規格内となった(図2〜図3参照)。 As a result of the measurement, as shown in Table 1, the average number of dislocations was 0.06 (/6.3 mm 2 ), and the dislocation density of all five growths was within the standard (see FIGS. 2 to 3).

[実施例2]
表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が実施例1と同様に2.7mmとし、ADC開始直径(mm)のみが34.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Example 2]
The diameter increase (mm) per 1 mm of the crystal pulling distance between the crystal diameters of φ25 mm and φ35 mm shown in Table 1 is 2.7 mm as in Example 1, and only the ADC starting diameter (mm) is 34.0 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which was the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.08個(/6.3mm2)であり、育成5回全ての転位密度は規格内となった(図2〜図3参照)。 Then, as in Example 1, the dislocation density of the obtained GGG substrate was measured. As shown in Table 1, the average number of dislocations was 0.08 (/6.3 mm 2 ), and all five growths were performed. The dislocation density was within specifications (see FIGS. 2 to 3).

[実施例3]
原料融液中における「自然対流」の強度が変わるようにワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が2.4mm、ADC開始直径(mm)が35.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Example 3]
The position of the work coil is finely adjusted so that the strength of “natural convection” in the raw material melt changes, and the crystal diameter shown in Table 1 is between 25 mm and 35 mm and the increase in diameter per mm of crystal pulling distance (mm) is In the same manner as in Example 1 except that 2.4 mm and the ADC starting diameter (mm) is 35.0 mm, the shoulder portion is up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter. A single gadolinium gallium garnet single crystal was grown.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.02個(/6.3mm2)であり、育成5回全ての転位密度は規格内となった(図2〜図3参照)。 And as in Example 1, when the dislocation density of the obtained GGG substrate was measured, as shown in Table 1, the average number of dislocations was 0.02 (/6.3 mm 2 ), and all five growth times The dislocation density was within specifications (see FIGS. 2 to 3).

[実施例4]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が2.0mm、ADC開始直径(mm)が35.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Example 4]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between φ25 mm and φ35 mm, the increase in diameter per mm of crystal pulling distance (mm) is 2.0 mm, and the ADC starting diameter (mm) is 35.0 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0個(/6.3mm2)であり、育成5回全ての転位密度は規格内となった(図2〜図3参照)。 Then, the dislocation density of the obtained GGG substrate was measured in the same manner as in Example 1. As shown in Table 1, the average number of dislocations was 0 (/6.3 mm 2 ), and the dislocation density for all five growths was Was within the standard (see FIGS. 2 to 3).

[実施例5]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が2.0mm、ADC開始直径(mm)が37.8mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Example 5]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between φ25 mm and φ35 mm, the increase in diameter per mm of crystal pulling distance (mm) is 2.0 mm, and the ADC starting diameter (mm) is 37.8 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.05個(/6.3mm2)であり、育成5回全ての転位密度は規格内となった(図2〜図3参照)。 Then, as in Example 1, when the dislocation density of the obtained GGG substrate was measured, as shown in Table 1, the average number of dislocations was 0.05 (/6.3 mm 2 ), and all five growth times were performed. The dislocation density was within specifications (see FIGS. 2 to 3).

[実施例6]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が1.9mm、ADC開始直径(mm)が36.2mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Example 6]
By finely adjusting the position of the work coil, the crystal diameter shown in Table 1 is 1.9 mm and the ADC starting diameter (mm) is 36.2 mm per crystal pulling distance 1 mm between φ25 mm and φ35 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.01個(/6.3mm2)であり、育成5回全ての転位密度は規格内となった(図2〜図3参照)。 Then, as in Example 1, the dislocation density of the obtained GGG substrate was measured. As shown in Table 1, the average number of dislocations was 0.01 (/6.3 mm 2 ), and all five growth times The dislocation density was within specifications (see FIGS. 2 to 3).

[実施例7]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が1.8mm、ADC開始直径(mm)が36.8mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Example 7]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between φ25 mm and φ35 mm, the increase in diameter per mm of crystal pulling distance (mm) is 1.8 mm, and the ADC starting diameter (mm) is 36.8 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0個(/6.3mm2)であり、育成5回全ての転位密度は規格内となった(図2〜図3参照)。 Then, the dislocation density of the obtained GGG substrate was measured in the same manner as in Example 1. As shown in Table 1, the average number of dislocations was 0 (/6.3 mm 2 ), and the dislocation density for all five growths was Was within the standard (see FIGS. 2 to 3).

[比較例1]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が1.9mm、ADC開始直径(mm)が25.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 1]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is 1.9 mm and the ADC starting diameter (mm) is 25.0 mm per 1 mm of crystal pulling distance between φ25 mm and φ35 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は1.1個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図3参照)。 Then, as in Example 1, the dislocation density of the obtained GGG substrate was measured. As shown in Table 1, the average number of dislocations was 1.1 (/6.3 mm 2 ), and all three growths were performed. The dislocation density was out of specification (see FIG. 3).

[比較例2]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が2.1mm、ADC開始直径(mm)が28.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 2]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between φ25 mm and φ35 mm, the increase in diameter per mm of crystal pulling distance (mm) is 2.1 mm, and the ADC starting diameter (mm) is 28.0 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.8個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図3参照)。 Then, when the dislocation density of the obtained GGG substrate was measured in the same manner as in Example 1, the average number of dislocations was 0.8 (/6.3 mm 2 ) as shown in Table 1. The dislocation density was out of specification (see FIG. 3).

[比較例3]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が5.0mm、ADC開始直径(mm)が30.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 3]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between 25 mm and 35 mm, the increase in diameter per mm of crystal pulling distance (mm) is 5.0 mm, and the ADC starting diameter (mm) is 30.0 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.9個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった。 And as in Example 1, when the dislocation density of the obtained GGG substrate was measured, as shown in Table 1, the average number of dislocations was 0.9 (/6.3 mm 2 ), and all three growth times The dislocation density was out of specification.

[比較例4]
表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が実施例1と同様に2.7mmとし、ADC開始直径(mm)のみが32.1mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 4]
The diameter increase (mm) per 1 mm of the crystal pulling distance between the crystal diameters of 25 mm and 35 mm shown in Table 1 is 2.7 mm as in Example 1, and only the ADC starting diameter (mm) is 32.1 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which was the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.3個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図3参照)。 Then, as in Example 1, the dislocation density of the obtained GGG substrate was measured. As shown in Table 1, the average number of dislocations was 0.3 (/6.3 mm 2 ), and all three growth times were observed. The dislocation density was out of specification (see FIG. 3).

[比較例5]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が2.8mm、ADC開始直径(mm)が32.1mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 5]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between Φ25 mm and Φ35 mm, the increase in diameter per mm of crystal pulling distance (mm) is 2.8 mm, and the ADC starting diameter (mm) is 32.1 mm A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.4個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった。 Then, when the dislocation density of the obtained GGG substrate was measured in the same manner as in Example 1, the average number of dislocations was 0.4 (/6.3 mm 2 ) as shown in Table 1. The dislocation density was out of specification.

[比較例6]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が2.6mm、ADC開始直径(mm)が32.5mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 6]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is 2.6 mm and the ADC starting diameter (mm) is 32.5 mm per crystal pulling distance 1 mm between φ25 mm and φ35 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.3個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図3参照)。 Then, as in Example 1, the dislocation density of the obtained GGG substrate was measured. As shown in Table 1, the average number of dislocations was 0.3 (/6.3 mm 2 ), and all three growth times were observed. The dislocation density was out of specification (see FIG. 3).

[比較例7]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が3.6mm、ADC開始直径(mm)が33.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 7]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between φ25 mm and φ35 mm, the increase in diameter per mm of crystal pulling distance (mm) is 3.6 mm, and the ADC starting diameter (mm) is 33.0 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.4個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図2参照)。 Then, when the dislocation density of the obtained GGG substrate was measured in the same manner as in Example 1, the average number of dislocations was 0.4 (/6.3 mm 2 ) as shown in Table 1. The dislocation density was out of specification (see FIG. 2).

[比較例8]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が3.6mm、ADC開始直径(mm)が34.0mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 8]
By finely adjusting the position of the work coil, the crystal diameter shown in Table 1 is between φ25 mm and φ35 mm, the diameter increase per mm of crystal pulling distance (mm) is 3.6 mm, and the ADC starting diameter (mm) is 34.0 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.4個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図2参照)。 Then, when the dislocation density of the obtained GGG substrate was measured in the same manner as in Example 1, the average number of dislocations was 0.4 (/6.3 mm 2 ) as shown in Table 1. The dislocation density was out of specification (see FIG. 2).

[比較例9]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が5.4mm、ADC開始直径(mm)が36.8mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 9]
The position of the work coil is finely adjusted, and the crystal diameter shown in Table 1 is between Φ25 mm and Φ35 mm. The increase in diameter per mm of crystal pulling distance (mm) is 5.4 mm, and the ADC starting diameter (mm) is 36.8 mm A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.7個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図2参照)。 Then, as in Example 1, the dislocation density of the obtained GGG substrate was measured. As shown in Table 1, the average number of dislocations was 0.7 (/6.3 mm 2 ), and all three growths were performed. The dislocation density was out of specification (see FIG. 2).

[比較例10]
ワークコイルの位置を微調整して表1に示す結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加(mm)が6.9mm、ADC開始直径(mm)が38.3mmとなるようにした以外は実施例1と同様にして、直胴部の結晶直径であるφ80mmまでが肩部およびそれ以降が直胴部であるガドリニウム・ガリウム・ガーネット単結晶を育成した。
[Comparative Example 10]
By finely adjusting the position of the work coil, the crystal diameter shown in Table 1 is 6.9 mm and the ADC starting diameter (mm) is 38.3 mm per 1 mm of crystal pulling distance between φ25 mm and φ35 mm. A gadolinium / gallium / garnet single crystal was grown in the same manner as in Example 1 except that the shoulder diameter was obtained up to φ80 mm, which is the crystal diameter of the straight body portion, and the straight body portion thereafter.

そして、実施例1と同様、得られたGGG基板の転位密度を測定したところ、表1に示すように平均転位個数は0.4個(/6.3mm2)であり、育成3回全ての転位密度が規格外となった(図2参照)。 Then, when the dislocation density of the obtained GGG substrate was measured in the same manner as in Example 1, the average number of dislocations was 0.4 (/6.3 mm 2 ) as shown in Table 1. The dislocation density was out of specification (see FIG. 2).

Figure 0006369453
Figure 0006369453

『確 認』
1.結晶直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加量(mm)の要件
以下の表2と表2に基づく図2に示されたデータから、育成中の結晶直径がφ25mmからφ35mm間の結晶引上距離1mm当たりの直径増加量が「2.7mm以下」とする要件を満たさない比較例7〜10においては平均転位個数が0.1個(/6.3mm2)以下の規格を満たさないこと(すなわち不合格「×」)が確認される。
"Confirmation"
1. Requirements for diameter increase (mm) per 1 mm of crystal pulling distance when the crystal diameter is between φ25 mm and φ35 mm From the data shown in FIG. 2 based on Table 2 and Table 2 below, the crystal diameter during growth is from φ25 mm In Comparative Examples 7 to 10 not satisfying the requirement that the diameter increase per 1 mm of the crystal pulling distance between φ35 mm is “2.7 mm or less”, the average number of dislocations is 0.1 (/6.3 mm 2 ) or less. It is confirmed that the standard is not satisfied (that is, a failure “x”).

2.手動から自動に切り替える直径制御のタイミングの要件
以下の表3と表3に基づく図3に示されたデータから、手動から自動に切り替える直径制御のタイミングを結晶直径が「φ33mm以上」のときとする要件を満たさない比較例1〜2、4、6においても平均転位個数が0.1個(/6.3mm2)以下の規格を満たさないこと(すなわち不合格「×」)が確認される。
2. Requirements for timing of diameter control to switch from manual to automatic From the data shown in FIG. 3 based on the following Table 3 and Table 3, the timing of diameter control to switch from manual to automatic is when the crystal diameter is “φ33 mm or more” In Comparative Examples 1-2, 4, and 6 that do not satisfy the requirements, it is confirmed that the average number of dislocations does not satisfy the standard of 0.1 (/6.3 mm 2 ) or less (that is, the failure is “x”).

3.各要件を満たす実施例1〜7と少なくとも一方の要件を満たさない比較例1〜10
図4に示されたデータから、育成中の結晶直径がφ25mmからφ35mm間の結晶引上距離1mm当たりの直径増加量が「2.7mm以下」とする要件、および、手動から自動に切り替える直径制御のタイミングを結晶直径が「φ33mm以上」のときとする要件を共に満たす実施例1〜7においては平均転位個数が0.1個(/6.3mm2)以下の規格を満たすこと(すなわち合格「〇」)が確認され、上記要件の少なくとも一方を満たしていない比較例1〜10においては平均転位個数が0.1個(/6.3mm2)以下の規格を満たしていないこと(すなわち不合格「×」)が確認される。
3. Examples 1 to 7 satisfying each requirement and Comparative Examples 1 to 10 not satisfying at least one requirement
From the data shown in FIG. 4, the diameter increase during the crystal pulling distance of 1 mm or less between φ25 mm and φ35 mm during growth is required to be “2.7 mm or less”, and the diameter control is switched from manual to automatic. In Examples 1 to 7 that satisfy both the requirements for the crystal diameter of “φ33 mm or more”, the average number of dislocations satisfies the standard of 0.1 (/6.3 mm 2 ) or less (that is, “ O ”) was confirmed, and in Comparative Examples 1 to 10 that did not satisfy at least one of the above requirements, the average number of dislocations did not satisfy the standard of 0.1 (/6.3 mm 2 ) or less (ie, failed) “×”) is confirmed.

Figure 0006369453
Figure 0006369453

Figure 0006369453
Figure 0006369453

本発明に係る転位密度が規格内となる非磁性ガーネット単結晶から得られた非磁性ガーネット基板を用いた場合、該基板上に育成される磁性ガーネット単結晶膜は結晶欠陥等の無い良質な膜になるため、光アイソレータ等の光学素子用ファラデー回転子の材料として利用される産業上の利用可能性を有している。   When a nonmagnetic garnet substrate obtained from a nonmagnetic garnet single crystal having a dislocation density within the standard according to the present invention is used, the magnetic garnet single crystal film grown on the substrate is a high-quality film free from crystal defects Therefore, it has industrial applicability that is used as a material for Faraday rotators for optical elements such as optical isolators.

Claims (1)

回転引上げ法により(Gd3-xCax)(Ga5-x-2yZrx+yMgy)O12で表される非磁性ガーネット単結晶(x=0、y=0を含む)を育成する方法であって、結晶の直径制御を手動から自動に切り替えて行う非磁性ガーネット単結晶の育成方法において、
育成中における結晶の直径がφ25mmからφ35mmの間の結晶引上距離1mm当たりの直径増加量を2.7mm以下とし、かつ、手動から自動に切り替える直径制御のタイミングを結晶の直径がφ33mm以上のときとすることを特徴とする非磁性ガーネット単結晶の育成方法。
How to train by rotation pulling method (including x = 0, y = 0) (Gd 3-x Ca x) (Ga 5-x-2y Zr x + y Mg y) magnetic garnet single crystal represented by O 12 In the method of growing a non-magnetic garnet single crystal that is switched from manual to automatic diameter control of the crystal,
When the crystal diameter during growth is between φ25 mm and φ35 mm, the increase in diameter per mm of crystal pulling distance is 2.7 mm or less, and the timing of diameter control for switching from manual to automatic is greater than φ33 mm A method for growing a non-magnetic garnet single crystal.
JP2015243037A 2015-12-14 2015-12-14 Nonmagnetic garnet single crystal growth method Expired - Fee Related JP6369453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243037A JP6369453B2 (en) 2015-12-14 2015-12-14 Nonmagnetic garnet single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243037A JP6369453B2 (en) 2015-12-14 2015-12-14 Nonmagnetic garnet single crystal growth method

Publications (2)

Publication Number Publication Date
JP2017109878A JP2017109878A (en) 2017-06-22
JP6369453B2 true JP6369453B2 (en) 2018-08-08

Family

ID=59080005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243037A Expired - Fee Related JP6369453B2 (en) 2015-12-14 2015-12-14 Nonmagnetic garnet single crystal growth method

Country Status (1)

Country Link
JP (1) JP6369453B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529438B2 (en) * 1973-01-16 1977-03-16
JPS57196791A (en) * 1981-05-25 1982-12-02 Hitachi Metals Ltd Production of single crystal
JPS6330394A (en) * 1986-07-24 1988-02-09 Nec Corp Method for growing single crystal
JPH01208391A (en) * 1988-02-16 1989-08-22 Nec Corp Growth of single crystal

Also Published As

Publication number Publication date
JP2017109878A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
TWI639736B (en) Silicon wafer with homogeneous radial oxygen variation
JP5601273B2 (en) Method for producing oxide single crystal
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP4193610B2 (en) Single crystal manufacturing method
JP6065810B2 (en) Method for producing non-magnetic garnet single crystal substrate
JP6610417B2 (en) Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP2007008759A (en) Bismuth-substituted magnetic garnet film and its production method
JP6369453B2 (en) Nonmagnetic garnet single crystal growth method
JP5299395B2 (en) Oxide single crystal growth method
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP2015514674A (en) Ingot growth method and ingot
JP4218448B2 (en) Garnet single crystal, its growth method, and garnet substrate for liquid phase epitaxial growth method using the same
JP2019182682A (en) Method for manufacturing nonmagnetic garnet single crystal
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP5944639B2 (en) Seeding method for TGG single crystal growth
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP6922521B2 (en) How to grow non-magnetic garnet single crystal
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP2019026496A5 (en)
JP2018030758A (en) Non-magnetic garnet single crystal, and production method thereof
JP2016056055A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP2003089598A (en) Method for growing garnet single crystal and garnet single crystal substrate
JP2019014630A (en) Method for growing nonmagnetic garnet single crystal
JP2007302517A (en) Manufacturing process of bismuth-substituted garnet film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees