JP3894685B2 - Method for producing oxide garnet single crystal film - Google Patents
Method for producing oxide garnet single crystal film Download PDFInfo
- Publication number
- JP3894685B2 JP3894685B2 JP16817199A JP16817199A JP3894685B2 JP 3894685 B2 JP3894685 B2 JP 3894685B2 JP 16817199 A JP16817199 A JP 16817199A JP 16817199 A JP16817199 A JP 16817199A JP 3894685 B2 JP3894685 B2 JP 3894685B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- film
- substrate
- growth
- lattice constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光アイソレータや光スイッチなどの磁気光学素子に用いられる酸化物ガーネット単結晶膜の製造方法に関する。
【0002】
【従来の技術】
従来、液相エピタキシャル法で、膜厚が30μm以上の磁性ガーネット膜を非磁性ガーネット単結晶基板上に成長させると、単結晶基板とガーネットエピタキシャル膜の格子定数が異なるために歪みを生じ、単結晶膜の育成中あるいは育成後の切断加工中にクラックを生じて破損することがあった。また、この歪みは磁性ガーネット膜に複屈折を生じることが知られている。
このような歪みの発生を避けるためにさまざまな提案がなされ、例えば、特開昭57-160105 号公報は、単結晶基板と磁性ガーネット膜との格子定数差Δaを0.001 Å以下とすることを提案している。
【0003】
特開昭62-143893 号公報は、液相エピタキシャル法でガーネット膜を非磁性ガーネット基板上に成長させると、融液の組成変化が生じ、それに伴って育成温度とエピタキシャル結晶の格子定数との関係が変化することから、エピタキシャル結晶の格子定数が基板の格子定数と等しくなるように、育成温度を変化させることを提案している。
しかし、こうしたガーネット膜を液相エピタキシャル法で育成すると、育成中にしばしば基板が破断してしまうという問題があった。
【0004】
こうした問題を解消するため、特公平7-69522 号公報は、ガーネット層を少なくとも第一と第二の層から形成し、第一の層は、この層の格子定数が第一の温度において基板の格子定数とほぼ等しく、かつ第一の温度より高い第二の温度において基板の格子定数より大きくなるように選択した第一の組成を有し、また第二の層は、この層の格子定数が第一の温度において基板の格子定数より小さく、かつ第二の温度において第一の層の格子定数より小さくなるように選択した第二の組成を有する磁気光学アイソレータ装置を提案している。
しかしこの提案では、直径2インチ以上の大口径基板上に、膜厚が 200μm以上のガーネット磁性厚膜の育成中に、基板が破断することなく育成することは困難である。また、第一、第二のガーネット層を複数設けた場合、ガーネット磁性膜に複屈折が生じ、このガーネット膜を磁気光学素子として用いたときに消光比が低下するという問題があった。
【0005】
一方、特開平4-139093号公報には、液相エピタキシャル法によるビスマス(Bi)置換希土類鉄ガーネット単結晶膜の育成において、単結晶膜の成長方向の格子定数の変動を、育成開始時の格子定数を基準として±0.003 Å以下に制御するよう、単結晶膜の育成中に育成膜を形成する融液温度を降下させながら膜育成を行うビスマス置換希土類鉄ガーネット単結晶膜の製造方法が開示されている。
【0006】
また、特開平5-330993号公報には、液相エピタキシャル法で育成された膜厚50μm以上のガーネット単結晶膜の格子定数と単結晶基板の格子定数との差Δaの値に着目して、ガーネット単結晶膜内外の全ての点で、 -0.004 Å<Δa< -0.001 Åであるガーネット単結晶膜が開示されている。
さらに、特開平6-92796 号公報には、エピタキシャル成長によって得られる単結晶膜において、基板側から成長方向に向かって、格子定数のずれを増大させた単結晶膜が開示されている。
【0007】
しかしこれらの方法は、単結晶基板とガーネット磁性膜の熱膨張係数が異なるため、ガーネットエピタキシャル膜育成中に膜と基板に歪みが生じる。基板の両面にエピタキシャル膜を形成した場合、エピタキシャル膜成膜後の冷却過程で歪みが解放されることなくエピタキシャル膜内に応力が残存し、複屈折を生じるか、もしくはエピタキシャル膜にクラックが入ることで歪みは解放される。
【0008】
また、エピタキシャル膜を単結晶基板の両面に育成後、磁気光学素子として切り出すには、単結晶基板を横方向からスライスするように切断(以下、スライス切断という)し、分割する必要がある。通常、このスライス切断には内周刃切断機が用いられるが、エピタキシャル膜成膜後の冷却過程で歪みが解放されることなくエピタキシャル膜内に応力が残存していると、切断が進むにつれて内周刃により切断物が微妙に振動して次第に応力が大きくなり、基板の両側に形成されたガーネット膜にクラックが発生する。
【0009】
【発明が解決しようとする課題】
本発明の目的は、直径2インチ以上の大口径単結晶基板の両面に、基板が破断することなく、膜厚が 200μm以上の酸化物ガーネット単結晶膜を育成し、両面にエピタキシャル膜が形成された単結晶基板をスライス切断することなく容易に剥離分割することができ、磁気光学素子用チップの歩留り向上に寄与する酸化物ガーネット単結晶膜の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記問題点に鑑み、鋭意検討した結果、育成温度から冷却すると室温付近で、単結晶基板とガーネット単結晶膜との間の格子定数の差△aにより、単結晶基板とガーネット単結晶膜とに応力が蓄積される。蓄積された応力は、単結晶基板を境に基板の両面に育成されたガーネット単結晶膜に向けて対象に分布するため、ガーネット単結晶膜の成長とともに△a値を適切に変化させることにより、基板が破断することなく育成し、基板を横方向に引き裂くように剪断応力が働く条件を見いだし、本発明を完成させた。
【0011】
すなわち、本発明の酸化物ガーネット単結晶膜の製造方法は、液相エピタキシャル法で単結晶基板の両面に膜厚 200μm以上の酸化物ガーネット単結晶膜を育成するにあたり、育成開始時におけるガーネット単結晶膜の格子定数をaf1、育成につれて該単結晶膜の格子定数が徐々に大きくなる育成初期における該単結晶膜の格子定数の最大値をaf2、育成終了時の単結晶膜の格子定数をaf3とし、単結晶基板の格子定数をaS とすると、
-0.017Å≦af1−aS < -0.006Å、
-0.014Å<a f2 −a S ≦-0.003Å、
-0.014Å≦a f3 −a S < -0.003Å
となるように、液相エピタキシャル条件を制御することを特徴としている。また、af2,af3が、 -0.001Å<af2−af3< 0.002Åを満足する範囲とするのが好ましい。
【0012】
酸化物ガーネットエピタキシャル膜の育成に際しては、エピタキシャル膜のaf1、af2、af3が上記の範囲となるように融液温度、降温速度などのエピタキシャル条件を適宜制御すればよい。
上記エピタキシャル膜と基板との格子定数の差af1−aS 、af2−aS 、af3−aS は、以下、それぞれ順に△a1 、△a2 、△a3 とし、af2−af3を△a23と記す。なお、これらの格子定数は室温での測定値である。
【0013】
【発明の実施の形態】
以下に、これをさらに詳述する。本発明の製造方法により得られる酸化物ガーネット単結晶膜は、主として、育成開始時のエピタキシャル膜と基板との格子定数差△a1 が、-0.017Å〜 -0.006 Åと大きな第一層と、育成初期のエピタキシャル膜と基板との格子定数差△a 2 、育成初期〜育成終了までのエピタキシャル膜と基板との格子定数差△a2 、△a3 がそれぞれ、△a 2 が -0.014 Åより大きく -0.003 Å以下、△a 3 が -0.014 Å以上〜 -0.003 Åより小さい範囲の第二層との二層構造を有している。エピタキシャル膜の熱膨張係数は、育成温度では基板の熱膨張係数より大きくなるが、第一層の△a1 が大きいため、第一層育成中は基板にかかる引っ張り応力が減じられ、基板が破断することはない。また、第二層についても大きな△a2 、△a3 を有するため、 200μmを超える膜厚の第二層育成中においても基板が破断することはない。一方、第二層の△a2 、△a3 が上記値よりも小さい場合は、 200μm以下の膜厚では基板は破断しないが、 200μmを超える厚膜を育成する場合には、育成中に基板が破断する。
【0014】
さらに、膜厚 200μm以上に成長させたエピタキシャル膜を育成温度から冷却すると、第一層が第二層に比べ、|△a|が遥かに大きいので、室温付近で基板は圧縮応力、エピタキシャル膜の第一層は強い引張り応力、第二層は弱い圧縮応力を受け、基板を横方向に引き裂くように剪断応力が働き、それぞれ基板の付いた2枚のエピタキシャル膜に分割される。このとき、基板をこの側面で保持している爪からクラックが基板内に向かって伸びると、一気に基板の側面から横方向にクラックが伝搬して、基板は剥離されたように横割れし、その結果、剪断応力は解放される。横割れした基板付きのエピタキシャル膜は大きな|△a|を有しているので、やや凹状に変形することにより応力が緩和されるため、エピタキシャル膜自身にクラックが発生することは少ない。
また、このようにして基板に働く剪断応力により、基板が横方向に自然に剥離されるので、エピタキシャル膜が形成された基板を、この側面からスライス切断する必要はない。
【0015】
上記格子定数の差△a1 の値は、基板に横割れを発生させるために、 -0.006Åよりも小さくすることが必要であり、また -0.017 Åよりも小さいと、基板とエピタキシャル膜の界面に細かなクラックの巣ができてしまい、加工時にこの細かなクラックがエピタキシャル膜中に伝搬してエピタキシャル膜が分解するため、 -0.017 Å以上であることが必要である。また上記△a2 、△a3 の値は、膜厚 40 μm程度の育成初期のエピタキシャル膜と結合して基板に横割れを発生させるため、およびエピタキシャル膜育成中の基板にクラックが発生しないようにするために、 -0.003 Å以下とすることが必要で、一方 -0.014 Åよりも小さいと、冷却中に基板が細かな領域に分かれて横割れし、エピタキシャルチップとしての歩留りが低くなるため、 -0.014 Å以上であることが必要である。特に、 -0.001 Å<△a23< 0.002 Åとすると、基板が横割れしたときのエピタキシャル膜に入るクラックが極めて少なく、加工中にエピタキシャル膜が割れることなく、磁気光学素子として使用可能なチップ数が飛躍的に増大するため、好ましい。
【0016】
冷却中、単結晶基板はエピタキシャル膜界面で発生する剪断応力を基板の両面から受けることになり、基板は側面から裂けるように横割れする。このとき育成中に生じた基板とエピタキシャル膜の格子定数の差に起因する応力は解放され、エピタキシャル膜層の歪みも消失する。
この結果、基板の両面に成長させた酸化物ガーネット単結晶膜を切り出すために、基板を横方向にスライス切断する工程は不要となる。
【0017】
出発材として使用される酸化物ガーネット基板は従来公知のものでよく、例えば、ガドリニウム・ガリウム・ガーネット(GGG) 、ネオジム・ガリウム・ガーネット(NGG) 、サマリウム・ガリウム・ガーネット(SGG) 、GGG の陽イオンの一部をCa、Mg、Zrで置換したNOG (信越化学工業社製、商品名)などが挙げられる。
これらの酸化物ガーネット基板上に液相エピタキシャル法で成長させる酸化物ガーネット単結晶膜は、産業上有益とされるものであればどのようなものでも良く、これには (BiEuTb)3(FeGa)5O12、(BiY)3Fe5O12等が例示されるが、これらのエピタキシャル膜の厚さは近赤外波長光で充分なファラデー回転角が得られる 200μm以上のものが好ましい。
【0018】
融液内での基板の深さ位置については、融液表面に近いところでは融液の温度が急激に変化するため、基板の上面と下面とで温度差が生じ、上面と下面とで異なる格子定数のエピタキシャル膜が成長することになって好ましくない。このため融液表面から少なくとも10mm以上離れた深さ位置でエピタキシャル膜を形成させるのがよく、これによって単結晶基板の上面と下面とに同じ格子定数と同じ膜厚を持つエピタキシャル膜を成長させることができる。
【0019】
【実施例】
次に、本発明の実施例、比較例を挙げる。なお、格子定数の測定は精密格子定数測定装置(ボンド法)による。
[実施例1]
単結晶基板として、直径2インチの格子定数が12.496Åの GGG単結晶の陽イオンの一部をCa、Mg、Zrで置換した単結晶 NOG(前出、商品名)の両面を研磨した1.2mm 厚のウエハーを用意した。
酸化物ガーネットエピタキシャル膜を形成させる金属酸化物として、Bi2O3 977.38g、 Eu2O3 31.489 g、Tb4O7 13.929g、 Fe2O3 122.86 g、Ga2O3 35.272gと、フラックス成分としての PbO 936.36 g、B2O3 341.72 gを秤取し、白金ルツボ中で加熱溶融させ、先に用意した単結晶基板を白金製のホルダにセットし、室温において基板格子定数に合致するエピタキシャル膜が成長する温度より15℃高い温度(約 750℃)にて、基板を融液の液面下20mmの位置に浸漬し、基板を回転させながらガーネット単結晶薄膜の育成を開始し、一定の降温速度で約7℃降温したのち、約7時間に付き1℃の降温速度で60時間にわたりエピタキシャル膜を成長させた。
これをエピタキシャル炉から取り出し冷却したところ、単結晶基板は蓄積された応力により横方向に剥れ、各基板上には膜厚 600μmのエピタキシャル膜が形成されていた。
【0020】
次いで、この単結晶基板を10%の硝酸液中で洗浄してエピタキシャル膜中のフラックス成分を洗い落とし、エピタキシャル膜を調べたところ、これは、 (BiEuTb)3(FeGa)5O12で示される酸化物ガーネットであった。エピタキシャル膜の格子定数を膜の成長方向に沿って詳細に調べ、基板の格子定数との差△a値(ミスマッチ)を調べたところ、エピタキシャル膜は両面ともに、図1に示す値を示した。
図1は、膜厚方向におけるミスマッチ量△aの変化を示すグラフである。図に示すように、育成開始時の△a1 は-0.009Åとミスマッチが大きく、育成につれミスマッチは徐々に小さくなり、膜厚40μm程度の育成初期において△a2 は-0.004Åとミスマッチは最小となり、育成終了膜厚に近付くにつれてミスマッチは再び大きくなり、育成終了時の△a3 (ミスマッチ)は -0.0045Åであった。このとき△a23は0.0005Åであった。
【0021】
次に、このエピタキシャル膜を育成させた単結晶基板をGC #600 のグリーンカーボンでラッピングして凹凸をなくし、コロイダルシリカとクロスを用いた研磨機で 425μm厚まで鏡面研磨して得られた酸化物ガーネットエピタキシャル膜を、ダイシングソーで2mm角に切断したところ、530 個の、光アイソレータ用として有用とされる磁気光学素子としてのファラデー回転子が得られた。
【0022】
(実施例2、比較例1〜3)
単結晶基板及びこの表面に育成するエピタキシャル膜の金属酸化物組成は実施例1と同じとした。
エピタキシャル膜の育成に際しては、融液温度、降温速度などのエピタキシャル条件を適宜制御して、エピタキシャル膜と基板との格子定数の差△aの異なるエピタキシャル膜を得た。これらの各エピタキシャル膜について、実施例2、比較例1〜3として以下に示す。
【0023】
[実施例2]
このエピタキシャル膜は (BiEuTb)3(FeGa)5O12で示される酸化物ガーネットであり、膜厚 620μmで、△aは図1と同様な傾向を示し、育成開始時のミスマッチは△a1 =-0.007Åと大きく、育成につれて徐々に小さくなり、膜厚40μm程度の育成初期ではミスマッチが最小の△a2 =-0.003Åとなり、育成終了膜厚に近付くにつれミスマッチは再び大きくなり、△a3 = -0.0053Åであった。このとき△a23=0.0023Åであった。
単結晶基板は横方向に剥れるものの、エピタキシャル膜にも多少クラックが入り、このクラックを境にエピタキシャル膜が複数個に分割されていた。この酸化物ガーネットエピタキシャル膜から、実施例1と同様にファラデー回転子を作製したところ、485 個が得られた。
【0024】
[比較例1]
このエピタキシャル膜は、膜厚 640μmで、(BiEuTb)3(FeGa)5O12 で示される酸化物ガーネットであり、△a値は図1と同様な傾向を示すが、育成開始時のミスマッチは最大の△a1 =-0.005Åで、育成につれ徐々に小さくなり、膜厚40μm程度の育成初期でのミスマッチは最小の△a2 =-0.001Åとなり、育成終了膜厚に近付くにつれミスマッチは再び大きくなり、△a3 = -0.0025Åであった。この時の△a23=0.0015Åであった。
この単結晶基板には横方向の剥れは見られず、この酸化物ガーネットエピタキシャル膜は加工中にぼろぼろに砕けてしまい、実施例1のようなファラデー回転子は得られなかった。
【0025】
[比較例2]
このエピタキシャル膜は、膜厚 630μmで、(BiEuTb)3(FeGa)5O12 で示される酸化物ガーネットであり、△a値は図1と同様な傾向を示すが、育成開始時のミスマッチは最大の△a1 = -0.0055Åで、育成につれ徐々に小さくなり、膜厚40μm程度の育成初期でのミスマッチは最小の△a2 =-0.002Åとなり、育成終了膜厚に近付くにつれミスマッチは再び大きくなり、△a3 =-0.005Åであった。このとき△a23=0.003 Åであった。
この単結晶基板には横方向の剥れは見られなかった。内周刃切断機を用いて単結晶基板を横方向からスライス切断、分割したところ、エピタキシャル膜にクラックが生じ、これから実施例1と同様にしてファラデー回転子を作製したところ、250 個しか得られなかった。
【0026】
[比較例3]
このエピタキシャル膜は (BiEuTb)3(FeGa)5O12で示される酸化物ガーネットであり、膜厚 600μmで、△a値は図1と同様な傾向を示すが、育成開始時のミスマッチは最大の△a1 = -0.019 Åで、育成につれ徐々に小さくなり、膜厚40μm程度の育成初期でのミスマッチは最小の△a2 =-0.014Åとなり、育成終了膜厚に近付くにつれてミスマッチは再び大きくなり、△a3 = -0.0145Åであった。このとき△a23=0.0005Åであった。
この単結晶基板は横方向に剥れているものの、エピタキシャル膜にもクラックが入っており、このクラックを境に細かくエピタキシャル膜が分割されていた。この酸化物ガーネットエピタキシャル膜から、実施例1と同様にファラデー回転子を作製したところ、50個しか得られなかった。
【0027】
【発明の効果】
本発明の酸化物ガーネット単結晶膜の製造方法は、直径2インチ以上の大口径単結晶基板の両面に、育成中基板が破断することなく、膜厚が 200μm以上の酸化物ガーネット単結晶膜を育成することができ、育成温度から室温に冷却すると、基板は横方向から剪断応力により引き裂かれ、基板部分での機械的なスライス切断は不要であり、磁気光学素子用チップの歩留りが飛躍的に向上した。
【図面の簡単な説明】
【図1】 エピタキシャル膜の膜厚方向に対する格子定数差(△a)の変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an oxide garnet single crystal film used in magneto-optical elements such as optical isolators and optical switches.
[0002]
[Prior art]
Conventionally, when a magnetic garnet film with a film thickness of 30 μm or more is grown on a non-magnetic garnet single crystal substrate by liquid phase epitaxy, distortion occurs due to the difference in lattice constant between the single crystal substrate and the garnet epitaxial film. During the growth of the film or during the cutting process after the growth, there was a case where a crack was generated and the film was damaged. This strain is known to cause birefringence in the magnetic garnet film.
Various proposals have been made to avoid the occurrence of such distortion. For example, Japanese Patent Laid-Open No. 57-160105 proposes that the lattice constant difference Δa between the single crystal substrate and the magnetic garnet film be 0.001 mm or less. is doing.
[0003]
JP-A-62-143893 discloses that when a garnet film is grown on a non-magnetic garnet substrate by a liquid phase epitaxial method, a composition change of the melt occurs, and accordingly, the relationship between the growth temperature and the lattice constant of the epitaxial crystal. Therefore, it has been proposed to change the growth temperature so that the lattice constant of the epitaxial crystal becomes equal to the lattice constant of the substrate.
However, when such a garnet film is grown by the liquid phase epitaxial method, there is a problem that the substrate is often broken during the growth.
[0004]
In order to solve these problems, Japanese Patent Publication No. 7-69522 discloses that a garnet layer is formed of at least a first layer and a second layer, and the first layer has a lattice constant of this layer at a first temperature of the substrate. Having a first composition selected to be approximately equal to the lattice constant and greater than the lattice constant of the substrate at a second temperature higher than the first temperature, and the second layer has a lattice constant of the layer A magneto-optic isolator device having a second composition selected to be smaller than the lattice constant of the substrate at the first temperature and smaller than the lattice constant of the first layer at the second temperature is proposed.
However, in this proposal, it is difficult to grow the substrate without breaking during the growth of the garnet magnetic thick film having a thickness of 200 μm or more on the large-diameter substrate having a diameter of 2 inches or more. Further, when a plurality of first and second garnet layers are provided, birefringence occurs in the garnet magnetic film, and there is a problem that the extinction ratio decreases when this garnet film is used as a magneto-optical element.
[0005]
On the other hand, in Japanese Patent Laid-Open No. 4-139093, in the growth of a bismuth (Bi) -substituted rare earth iron garnet single crystal film by a liquid phase epitaxial method, the fluctuation of the lattice constant in the growth direction of the single crystal film is indicated as Disclosed is a method for producing a bismuth-substituted rare earth iron garnet single crystal film that grows the film while lowering the melt temperature during the growth of the single crystal film so that the constant is controlled to ± 0.003 mm or less. ing.
[0006]
Further, in JP-A-5-330993, paying attention to the value of the difference Δa between the lattice constant of a garnet single crystal film having a thickness of 50 μm or more grown by a liquid phase epitaxial method and the lattice constant of a single crystal substrate, A garnet single crystal film in which −0.004 Å <Δa <−0.001 Å is disclosed at all points inside and outside the garnet single crystal film.
Further, Japanese Patent Laid-Open No. 6-92796 discloses a single crystal film obtained by increasing the lattice constant deviation from the substrate side toward the growth direction in a single crystal film obtained by epitaxial growth.
[0007]
However, in these methods, since the thermal expansion coefficients of the single crystal substrate and the garnet magnetic film are different, the film and the substrate are distorted during the growth of the garnet epitaxial film. When epitaxial films are formed on both sides of the substrate, stress remains in the epitaxial film without releasing strain during the cooling process after the epitaxial film is formed, causing birefringence or cracking in the epitaxial film. The distortion is released.
[0008]
Further, in order to cut out the epitaxial film on both sides of the single crystal substrate and then cut it out as a magneto-optical element, it is necessary to cut the single crystal substrate to be sliced from the lateral direction (hereinafter referred to as slice cutting) and to divide it. Normally, an inner peripheral cutting machine is used for this slice cutting, but if the stress remains in the epitaxial film without releasing the strain in the cooling process after the epitaxial film is formed, the internal cutting is performed as the cutting proceeds. The cut object is vibrated slightly by the peripheral blade, and the stress gradually increases, and a crack is generated in the garnet film formed on both sides of the substrate.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to grow an oxide garnet single crystal film having a thickness of 200 μm or more on both sides of a large-diameter single crystal substrate having a diameter of 2 inches or more without breaking the substrate, and an epitaxial film is formed on both sides. Another object of the present invention is to provide a method of manufacturing an oxide garnet single crystal film that can be easily separated and divided without slicing and cutting the single crystal substrate and contributes to an improvement in the yield of magneto-optic chip.
[0010]
[Means for Solving the Problems]
As a result of intensive investigations in view of the above problems, the present inventors have found that when cooled from the growth temperature, near the room temperature, due to the difference in lattice constant Δa between the single crystal substrate and the garnet single crystal film, Stress is accumulated in the garnet single crystal film. Since the accumulated stress is distributed to the target toward the garnet single crystal film grown on both sides of the substrate with the single crystal substrate as a boundary, by appropriately changing the Δa value with the growth of the garnet single crystal film, The substrate was grown without breaking, and the conditions under which shear stress was applied to tear the substrate in the lateral direction were found, and the present invention was completed.
[0011]
That is, the method for producing an oxide garnet single crystal film according to the present invention is a liquid phase epitaxial method in which an oxide garnet single crystal film having a thickness of 200 μm or more is grown on both surfaces of a single crystal substrate. The lattice constant of the film is a f1 , the lattice constant of the single crystal film gradually increases as it grows, the maximum value of the lattice constant of the single crystal film at the initial stage of growth is a f2 , and the lattice constant of the single crystal film at the end of growth is If a f3 and the lattice constant of the single crystal substrate is a S ,
−0.017Å ≦ a f1 −a S <−0.006Å,
-0.014 Å <a f2 -a S ≦ -0.003 Å,
-0.014 Å ≦ a f3 −a S < -0.003 Å
It is characterized by controlling the liquid phase epitaxial conditions. Further, it is preferable that a f2 and a f3 are in a range satisfying −0.001Å <a f2 −a f3 <0.002Å.
[0012]
In growing the oxide garnet epitaxial film, the epitaxial conditions such as the melt temperature and the temperature lowering rate may be appropriately controlled so that a f1 , a f2 , and a f3 of the epitaxial film are in the above ranges.
Differences in lattice constants a f1 −a S , a f2 −a S , and a f3 −a S between the epitaxial film and the substrate are respectively expressed as Δa 1 , Δa 2 , and Δa 3 in this order, and a f2 − a f3 is denoted as Δa 23 . These lattice constants are measured values at room temperature.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
This will be described in further detail below. The oxide garnet single crystal film obtained by the production method of the present invention mainly has a first layer having a large lattice constant difference Δa 1 between the epitaxial film and the substrate at the start of growth of -0.017 to -0.006 Lattice constant difference Δa 2 between the epitaxial film and the substrate at the initial growth stage , Difference in lattice constant between the epitaxial film and the substrate to foster early-growing ends △ a 2, △ a 3, respectively, △ a 2 But greater than -0.014 Å -0.003 Å or less, △ a 3 There has a two-layer structure of the second layer of ~ -0.003 Å smaller ranges -0.014 Å or more. The thermal expansion coefficient of the epitaxial film is larger than the thermal expansion coefficient of the substrate at the growth temperature. However, since Δa 1 of the first layer is large, the tensile stress applied to the substrate is reduced during the first layer growth, and the substrate is broken. Never do. Further, since the second layer also has large Δa 2 and Δa 3 , the substrate does not break even during the growth of the second layer having a film thickness exceeding 200 μm. On the other hand, when Δa 2 and Δa 3 of the second layer are smaller than the above values, the substrate does not break at a film thickness of 200 μm or less, but when a thick film exceeding 200 μm is grown, the substrate is grown during the growth. Breaks.
[0014]
Furthermore, when the epitaxial film grown to a thickness of 200 μm or more is cooled from the growth temperature, the first layer has a much larger | Δa | than the second layer. The first layer receives a strong tensile stress, the second layer receives a weak compressive stress, and a shear stress acts so as to tear the substrate in the lateral direction, and the substrate is divided into two epitaxial films each having a substrate. At this time, when the crack extends from the nail holding the substrate on the side surface toward the inside of the substrate, the crack propagates in a lateral direction from the side surface of the substrate, and the substrate is laterally cracked as if it was peeled off. As a result, the shear stress is released. Since the laterally cracked epitaxial film with a substrate has a large | Δa |, since the stress is relieved by deformation to a slightly concave shape, the epitaxial film itself is less likely to crack.
Further, since the substrate is naturally peeled in the lateral direction due to the shear stress acting on the substrate in this way, it is not necessary to slice and cut the substrate on which the epitaxial film is formed from this side surface.
[0015]
The value of the difference △ a 1 in the lattice constant, in order to generate transverse cracks in the substrate, it is necessary to lower than -0.006A, also when smaller than -0.017 Å, interface between the substrate and the epitaxial film Therefore, it is necessary that the thickness be −0.017 mm or more because a fine crack nest is formed and this fine crack propagates into the epitaxial film during processing and the epitaxial film is decomposed. The values of Δa 2 and Δa 3 are combined with the initial epitaxial film having a film thickness of about 40 μm to cause lateral cracks in the substrate, and so that no cracks are generated in the substrate during epitaxial film growth. Therefore, if it is smaller than -0.014 mm, on the other hand, the substrate is divided into fine regions during cooling and lateral cracking occurs, and the yield as an epitaxial chip is lowered. -0.014 Å or more is necessary. In particular, if -0.001 Å <△ a 23 <0.002 Å, the number of chips that can be used as a magneto-optical element without cracking the epitaxial film during processing is extremely small when the substrate is laterally cracked. Is preferable because it greatly increases.
[0016]
During cooling, the single crystal substrate receives the shear stress generated at the epitaxial film interface from both sides of the substrate, and the substrate is laterally cracked so as to tear from the side. At this time, the stress caused by the difference between the lattice constants of the substrate and the epitaxial film generated during the growth is released, and the distortion of the epitaxial film layer disappears.
As a result, in order to cut out the oxide garnet single crystal film grown on both surfaces of the substrate, the step of slicing the substrate in the lateral direction is not necessary.
[0017]
The oxide garnet substrate used as a starting material may be a conventionally known one, such as gadolinium gallium garnet (GGG), neodymium gallium garnet (NGG), samarium gallium garnet (SGG), NOG (made by Shin-Etsu Chemical Co., Ltd., trade name) in which a part of the ion is replaced with Ca, Mg, Zr, and the like.
The oxide garnet single crystal film grown on these oxide garnet substrates by liquid phase epitaxy may be any industrially useful one, including (BiEuTb) 3 (FeGa) 5 O 12 , (BiY) 3 Fe 5 O 12 and the like are exemplified, but the thickness of these epitaxial films is preferably 200 μm or more, which can provide a sufficient Faraday rotation angle with near-infrared wavelength light.
[0018]
As for the depth position of the substrate in the melt, the temperature of the melt changes abruptly near the melt surface, so that a temperature difference occurs between the upper surface and the lower surface of the substrate, and the lattice differs between the upper surface and the lower surface. A constant epitaxial film grows, which is not preferable. For this reason, it is better to form an epitaxial film at a depth of at least 10 mm away from the melt surface, thereby growing an epitaxial film having the same lattice constant and the same film thickness on the upper and lower surfaces of the single crystal substrate. Can do.
[0019]
【Example】
Next, examples of the present invention and comparative examples will be given. The lattice constant is measured by a precision lattice constant measuring apparatus (bond method).
[Example 1]
As a single crystal substrate, 1.2 mm polished both sides of single crystal NOG (previously trade name) in which a portion of the cation of a GGG single crystal with a 2 inch diameter lattice constant of 12.496 mm is replaced with Ca, Mg, Zr A thick wafer was prepared.
As the metal oxide to form an oxide garnet epitaxial film, and Bi 2 O 3 977.38g, Eu 2 O 3 31.489 g, Tb 4 O 7 13.929g, Fe 2 O 3 122.86 g, Ga 2 O 3 35.272g, flux Weigh 936.36 g of PbO and 341.72 g of B 2 O 3 as ingredients, heat and melt them in a platinum crucible, set the previously prepared single crystal substrate in a platinum holder, and match the substrate lattice constant at room temperature. At a temperature 15 ° C higher than the temperature at which the epitaxial film grows (approx. 750 ° C), the substrate is immersed in a position 20 mm below the melt surface, and growth of the garnet single crystal thin film is started while rotating the substrate. After the temperature was lowered by about 7 ° C., an epitaxial film was grown for 60 hours at a temperature lowering rate of 1 ° C. over about 7 hours.
When this was taken out of the epitaxial furnace and cooled, the single crystal substrate was peeled laterally by the accumulated stress, and an epitaxial film having a thickness of 600 μm was formed on each substrate.
[0020]
Next, this single crystal substrate was washed in a 10% nitric acid solution to wash off the flux components in the epitaxial film, and the epitaxial film was examined. As a result, the oxidation was represented by (BiEuTb) 3 (FeGa) 5 O 12 It was a garnet. When the lattice constant of the epitaxial film was examined in detail along the growth direction of the film and the difference Δa value (mismatch) with the lattice constant of the substrate was examined, both surfaces of the epitaxial film showed the values shown in FIG.
FIG. 1 is a graph showing a change in mismatch amount Δa in the film thickness direction. As shown in the figure, Δa 1 at the start of growth is large at −0.009 mm, and the mismatch gradually decreases with growth, and Δa 2 is −0.004 mm at the initial stage of growth with a film thickness of about 40 μm. As the film thickness approaches the growth end film thickness, the mismatch increased again, and Δa 3 (mismatch) at the end of the growth period was -0.0045 mm. At this time, Δa 23 was 0.0005%.
[0021]
Next, the oxide obtained by lapping the single crystal substrate on which this epitaxial film was grown with
[0022]
(Example 2, Comparative Examples 1-3)
The metal oxide composition of the single crystal substrate and the epitaxial film grown on this surface was the same as in Example 1.
In growing the epitaxial film, epitaxial conditions such as the melt temperature and the cooling rate were appropriately controlled to obtain epitaxial films having different lattice constant differences Δa between the epitaxial film and the substrate. About each of these epitaxial films, it shows below as Example 2 and Comparative Examples 1-3.
[0023]
[Example 2]
This epitaxial film is an oxide garnet represented by (BiEuTb) 3 (FeGa) 5 O 12 and has a film thickness of 620 μm. Δa shows the same tendency as in FIG. 1, and the mismatch at the start of growth is Δa 1 = large as -0.007A, gradually decreases as development, mismatches in the early stages of growth film thickness of about 40μm minimal △ a 2 = -0.003Å next, as close to the growing ends thickness mismatches increases again, △ a 3 = -0.0053cm. At this time, Δa 23 = 0.0023cm.
Although the single crystal substrate peeled off in the lateral direction, some cracks were also formed in the epitaxial film, and the epitaxial film was divided into a plurality of pieces with this crack as a boundary. When Faraday rotators were produced from this oxide garnet epitaxial film in the same manner as in Example 1, 485 pieces were obtained.
[0024]
[Comparative Example 1]
This epitaxial film has a thickness of 640 μm and is an oxide garnet represented by (BiEuTb) 3 (FeGa) 5 O 12 , and the Δa value shows the same tendency as in FIG. 1, but the mismatch at the start of growth is maximum. △ a 1 = -0.005 mm, gradually decreases with growth, and the mismatch at the initial stage of growth with a film thickness of about 40 μm is the minimum Δa 2 = -0.001 mm, and the mismatch increases again as the film thickness approaches the end of growth. Δa 3 = −0.0025 Å. Δa 23 at this time was 0.0015 mm.
No peeling in the lateral direction was observed on this single crystal substrate, and this oxide garnet epitaxial film was broken into pieces during processing, and the Faraday rotator as in Example 1 was not obtained.
[0025]
[Comparative Example 2]
This epitaxial film has a thickness of 630 μm and is an oxide garnet represented by (BiEuTb) 3 (FeGa) 5 O 12 , and the Δa value shows the same tendency as in FIG. 1, but the mismatch at the start of growth is maximum. △ a 1 = -0.0055 mm, it gradually decreases as it grows, and the mismatch at the initial stage of film growth of about 40 μm becomes the minimum Δa 2 = -0.002 mm, and the mismatch increases again as it approaches the film thickness at which growth ends. Δa 3 = −0.005cm. At this time, Δa 23 = 0.003 Å.
No lateral peeling was observed on this single crystal substrate. When the single crystal substrate was sliced and divided from the lateral direction using an inner peripheral cutting machine, a crack was generated in the epitaxial film, and when a Faraday rotator was produced in the same manner as in Example 1, only 250 pieces were obtained. There wasn't.
[0026]
[Comparative Example 3]
This epitaxial film is an oxide garnet represented by (BiEuTb) 3 (FeGa) 5 O 12. The film thickness is 600 μm, and the Δa value shows the same tendency as in FIG. 1, but the mismatch at the start of growth is the largest. △ a 1 = -0.019 Å, it gradually decreases with growth, and the mismatch at the initial stage of growth of about 40 μm is the smallest △ a 2 = -0.014 、, and the mismatch becomes larger again as the growth finishes near the film thickness. Δa 3 = −0.0145 Å. At this time, Δa 23 = 0.0005cm.
Although this single crystal substrate was peeled off in the lateral direction, the epitaxial film was also cracked, and the epitaxial film was finely divided with this crack as a boundary. When Faraday rotators were produced from this oxide garnet epitaxial film in the same manner as in Example 1, only 50 pieces were obtained.
[0027]
【The invention's effect】
The method for producing an oxide garnet single crystal film according to the present invention comprises forming an oxide garnet single crystal film having a thickness of 200 μm or more on both sides of a large-diameter single crystal substrate having a diameter of 2 inches or more without breaking the substrate during growth. When the substrate is cooled from the growth temperature to room temperature, the substrate is torn by the shear stress from the lateral direction, and mechanical slice cutting at the substrate portion is unnecessary, and the yield of the chip for the magneto-optic element is drastically increased. Improved.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in lattice constant difference (Δa) with respect to the film thickness direction of an epitaxial film.
Claims (2)
-0.017Å≦af1−aS < -0.006Å、
-0.014Å<a f2 −a S ≦-0.003Å、
-0.014Å≦a f3 −a S < -0.003Å
となるように、液相エピタキシャル条件を制御することを特徴とする酸化物ガーネット単結晶膜の製造方法。When growing an oxide garnet single crystal film having a film thickness of 200 μm or more on both sides of a single crystal substrate by liquid phase epitaxy, the lattice constant of the garnet single crystal film at the start of the growth is a f1 , and the lattice of the single crystal film as it grows The maximum value of the lattice constant of the single crystal film at the initial stage of growth when the constant gradually increases is a f2 , the lattice constant of the single crystal film at the end of the growth is a f3, and the lattice constant of the single crystal substrate is a S Then
−0.017Å ≦ a f1 −a S <−0.006Å,
-0.014 Å <a f2 -a S ≦ -0.003 Å,
-0.014 Å ≦ a f3 −a S < -0.003 Å
The manufacturing method of the oxide garnet single crystal film characterized by controlling liquid phase epitaxial conditions so that it may become.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16817199A JP3894685B2 (en) | 1999-06-15 | 1999-06-15 | Method for producing oxide garnet single crystal film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16817199A JP3894685B2 (en) | 1999-06-15 | 1999-06-15 | Method for producing oxide garnet single crystal film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001002493A JP2001002493A (en) | 2001-01-09 |
JP3894685B2 true JP3894685B2 (en) | 2007-03-22 |
Family
ID=15863127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16817199A Expired - Lifetime JP3894685B2 (en) | 1999-06-15 | 1999-06-15 | Method for producing oxide garnet single crystal film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3894685B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7327148B2 (en) * | 2019-12-20 | 2023-08-16 | 住友金属鉱山株式会社 | Liquid phase epitaxial growth method for bismuth-substituted rare earth-iron garnet films |
-
1999
- 1999-06-15 JP JP16817199A patent/JP3894685B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001002493A (en) | 2001-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3753920B2 (en) | Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same | |
JPWO2004067813A1 (en) | Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same | |
JPS6194318A (en) | Semiconductor substrate and manufacture thereof | |
US4410395A (en) | Method of removing bulk impurities from semiconductor wafers | |
JP2004269305A (en) | Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method | |
JP3894685B2 (en) | Method for producing oxide garnet single crystal film | |
JP2007008759A (en) | Bismuth-substituted magnetic garnet film and its production method | |
US8303745B2 (en) | Process for transferring films | |
JPWO2004070091A1 (en) | Magnetic garnet single crystal film forming substrate, manufacturing method thereof, optical element and manufacturing method thereof | |
JP4218448B2 (en) | Garnet single crystal, its growth method, and garnet substrate for liquid phase epitaxial growth method using the same | |
JP4348539B2 (en) | Nonmagnetic garnet substrate manufacturing method, nonmagnetic garnet substrate, and bismuth-substituted magnetic garnet film obtained using the substrate | |
CN115418711B (en) | Method for improving wafer fragmentation in liquid phase epitaxy growth process of magnetic garnet | |
JPH1072296A (en) | Production of bismuth substituted rare earth metal-iron garnet single crystal film | |
JP3624918B2 (en) | Production method of bismuth-substituted rare earth iron garnet single crystals for short wavelengths | |
JP3119795B2 (en) | Method for producing magnetic garnet single crystal by LPE method | |
JP2004269283A (en) | Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method | |
JP4736622B2 (en) | Single crystal growth substrate | |
JP2006290643A (en) | Method for manufacturing bismuth-substituted magnetic garnet film | |
JP4572810B2 (en) | Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same | |
JP2507997B2 (en) | Single crystal growth method | |
JP2005089216A (en) | Method for manufacturing faraday rotor | |
JP6443282B2 (en) | Nonmagnetic garnet single crystal substrate manufacturing method, magnetic garnet single crystal film manufacturing method | |
JP2005314135A (en) | Method for producing bismuth-substitution type magnetic garnet membrane, and membrane | |
JP2007302517A (en) | Manufacturing process of bismuth-substituted garnet film | |
JPS6227732B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3894685 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151222 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |