JP4736622B2 - Single crystal growth substrate - Google Patents

Single crystal growth substrate Download PDF

Info

Publication number
JP4736622B2
JP4736622B2 JP2005239651A JP2005239651A JP4736622B2 JP 4736622 B2 JP4736622 B2 JP 4736622B2 JP 2005239651 A JP2005239651 A JP 2005239651A JP 2005239651 A JP2005239651 A JP 2005239651A JP 4736622 B2 JP4736622 B2 JP 4736622B2
Authority
JP
Japan
Prior art keywords
single crystal
substrate
inches
growth
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005239651A
Other languages
Japanese (ja)
Other versions
JP2007055818A (en
Inventor
克己 川嵜
敦 大井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005239651A priority Critical patent/JP4736622B2/en
Publication of JP2007055818A publication Critical patent/JP2007055818A/en
Application granted granted Critical
Publication of JP4736622B2 publication Critical patent/JP4736622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は単結晶育成用基板に関し、特に液相エピタキシャル法を用いて磁性ガーネット単結晶膜を育成する際に用いられる単結晶育成用基板に関する。   The present invention relates to a single crystal growth substrate, and more particularly to a single crystal growth substrate used when a magnetic garnet single crystal film is grown using a liquid phase epitaxial method.

磁性ガーネット単結晶膜は、光アイソレータ等に用いられるファラデー回転子として光通信システムに多く用いられている。磁性ガーネット単結晶膜は、液相エピタキシャル(LPE)法により単結晶基板上に育成される。   Magnetic garnet single crystal films are often used in optical communication systems as Faraday rotators used in optical isolators and the like. The magnetic garnet single crystal film is grown on a single crystal substrate by a liquid phase epitaxial (LPE) method.

図5は、LPE法により磁性ガーネット単結晶膜を育成する工程の一部を示している。図5に示すように、単結晶育成用の単結晶基板10は基板固定用治具2により保持される。基板固定用治具2は、単結晶基板10を3点で支持する3本の線状支持部と、単結晶基板10を保持するために各線状支持部の一端側で折り曲げられた基板保持部とを有している。各線状支持部の他端側は、一つにまとめられてセラミック製の支持棒7に接続固定されている。単結晶膜を育成する際には、支持棒7が所定距離だけ貴金属製の坩堝(るつぼ)4内に搬入され、単結晶基板10の少なくとも片面が坩堝4内の原料融液8中に浸される。支持棒7がその中心軸回りに回転すると、単結晶基板10も基板固定用治具2と共に回転する。これにより、単結晶基板10片面には磁性ガーネット単結晶膜12がエピタキシャル成長する。育成した磁性ガーネット単結晶膜12に研磨や切断などの加工を施して単結晶片を作製し、単結晶片の表面に無反射膜を成膜してファラデー回転子が作製される。   FIG. 5 shows a part of the process of growing the magnetic garnet single crystal film by the LPE method. As shown in FIG. 5, a single crystal substrate 10 for growing a single crystal is held by a substrate fixing jig 2. The substrate fixing jig 2 includes three linear support portions that support the single crystal substrate 10 at three points, and a substrate holding portion that is bent at one end of each linear support portion in order to hold the single crystal substrate 10. And have. The other end side of each linear support part is put together and connected and fixed to a ceramic support rod 7. When growing the single crystal film, the support rod 7 is carried into a noble metal crucible 4 by a predetermined distance, and at least one surface of the single crystal substrate 10 is immersed in the raw material melt 8 in the crucible 4. The When the support bar 7 rotates about its central axis, the single crystal substrate 10 also rotates with the substrate fixing jig 2. Thereby, the magnetic garnet single crystal film 12 is epitaxially grown on one surface of the single crystal substrate 10. The grown magnetic garnet single crystal film 12 is subjected to processing such as polishing and cutting to produce a single crystal piece, and an antireflective film is formed on the surface of the single crystal piece to produce a Faraday rotator.

近年、1枚の単結晶基板10から得られるファラデー回転子の個数を増やして低コスト化を図るために、従来の2インチの単結晶基板10に代えて、よりサイズの大きい3インチの単結晶基板10が用いられている。   In recent years, in order to reduce the cost by increasing the number of Faraday rotators obtained from one single crystal substrate 10, a larger 3 inch single crystal is used instead of the conventional 2 inch single crystal substrate 10. A substrate 10 is used.

一般に、単結晶を加工する工程での割れを防止するために、加工が行われる室温において単結晶に内在する応力をできる限り小さくするのが望ましい。このためには、単結晶基板と磁性ガーネット単結晶膜とを含む単結晶全体の格子定数が室温で一致していればよい。ところが、単結晶基板と磁性ガーネット単結晶膜とは互いに異なる線膨張係数を有しているため、室温で格子定数が一致していても700〜900℃の育成温度では格子定数が互いに異なってしまう。したがって、育成中の単結晶内には応力が発生し、単結晶が割れてしまう場合がある。   Generally, in order to prevent cracking in the process of processing a single crystal, it is desirable to reduce the stress inherent in the single crystal as much as possible at the room temperature at which the processing is performed. For this purpose, the lattice constants of the entire single crystal including the single crystal substrate and the magnetic garnet single crystal film need only coincide at room temperature. However, since the single crystal substrate and the magnetic garnet single crystal film have different linear expansion coefficients, even if the lattice constants coincide with each other at room temperature, the lattice constants differ from each other at a growth temperature of 700 to 900 ° C. . Therefore, stress is generated in the growing single crystal, and the single crystal may break.

図6は、育成中の単結晶基板に生じるクラック(割れ目)を示している。基板厚の比較的厚い単結晶基板では、図6(a)に破線で示すような劈開クラックが生じ易く、逆に基板厚の比較的薄い単結晶基板では、図6(b)に破線で示すような同心円クラックが生じ易い。いずれのクラックも、発生する応力の大きい単結晶基板外周部に生じ易い。単結晶基板に割れが生じてしまうと、得られる単結晶片の個数が減少して歩留りが低下してしまう。ここで、歩留りとは、1枚の単結晶基板を用いた1回の育成工程を経て実際に作製できた単結晶片の平均個数を、当該単結晶基板から幾何学的に取り得る単結晶片の個数で除した値とする。   FIG. 6 shows cracks (cracks) generated in the growing single crystal substrate. In a single crystal substrate having a relatively thick substrate, cleavage cracks as shown by broken lines in FIG. 6A are likely to occur, and conversely, in a single crystal substrate having a relatively thin substrate thickness, shown by broken lines in FIG. 6B. Such concentric cracks are likely to occur. Any cracks are likely to occur on the outer periphery of the single crystal substrate where the generated stress is large. If the single crystal substrate is cracked, the number of single crystal pieces obtained is reduced, resulting in a decrease in yield. Here, the yield is a single crystal piece that can geometrically take the average number of single crystal pieces actually produced through one growth process using one single crystal substrate from the single crystal substrate. The value divided by the number of.

さらに、図5に示したように単結晶基板10は外周部の3点で基板固定用治具2に支持されるため、外周部の1箇所に割れが生じるだけでも単結晶が原料融液8内に落下してしまう場合がある。特に、基板サイズが大きくなると単結晶内の外周部に生じる応力が大きくなるため、単結晶が割れる頻度が増加してしまう。したがって、単結晶基板10のサイズを大きくしても単結晶片の歩留りが低下するため、得られるファラデー回転子の平均の個数は十分に増えない。このため、単結晶基板10のサイズを単に大きくしても、ファラデー回転子の製造コストを十分に削減できないという問題が生じている。   Furthermore, since the single crystal substrate 10 is supported by the substrate fixing jig 2 at three points on the outer peripheral portion as shown in FIG. It may fall into the inside. In particular, when the substrate size is increased, the stress generated in the outer peripheral portion in the single crystal is increased, so that the frequency at which the single crystal is broken increases. Therefore, even if the size of the single crystal substrate 10 is increased, the yield of the single crystal pieces is lowered, so that the average number of Faraday rotators obtained is not sufficiently increased. For this reason, there is a problem that even if the size of the single crystal substrate 10 is simply increased, the manufacturing cost of the Faraday rotator cannot be sufficiently reduced.

特許第3197383号公報Japanese Patent No. 3197383

本発明の目的は、ファラデー回転子の製造コストを削減できる単結晶育成用基板を提供することにある。   An object of the present invention is to provide a substrate for growing a single crystal that can reduce the manufacturing cost of a Faraday rotator.

上記目的は、基板直径が2.5インチ以上2.7インチ以下であることを特徴とする単結晶育成用基板によって達成される。   The above object is achieved by a single crystal growth substrate characterized in that the substrate diameter is 2.5 inches or more and 2.7 inches or less.

上記本発明の単結晶育成用基板であって、前記基板直径は約2.6インチであることを特徴とする。   The substrate for growing a single crystal according to the present invention is characterized in that the substrate diameter is about 2.6 inches.

上記本発明の単結晶育成用基板であって、基板厚が500μm以上800μm以下であることを特徴とする。   The single crystal growth substrate of the present invention is characterized in that the substrate thickness is not less than 500 μm and not more than 800 μm.

上記本発明の単結晶育成用基板であって、酸化物を用いて作製されていることを特徴とする。   A substrate for growing a single crystal according to the present invention, which is manufactured using an oxide.

上記本発明の単結晶育成用基板であって、結晶構造がガーネット構造であることを特徴とする。   The substrate for growing a single crystal according to the present invention is characterized in that the crystal structure is a garnet structure.

上記本発明の単結晶育成用基板であって、磁性ガーネット単結晶膜の育成に用いられることを特徴とする。   The single crystal growth substrate of the present invention is characterized in that it is used for growing a magnetic garnet single crystal film.

上記本発明の単結晶育成用基板であって、膜厚200μm以上600μm以下の単結晶膜の育成に用いられることを特徴とする。   The substrate for growing a single crystal according to the present invention is characterized in that it is used for growing a single crystal film having a thickness of 200 μm or more and 600 μm or less.

本発明によれば、ファラデー回転子の製造コストを削減できる単結晶育成用基板を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for single crystal growth which can reduce the manufacturing cost of a Faraday rotator is realizable.

本発明の一実施の形態による単結晶育成用基板について図1乃至図4を用いて説明する。図1は、本実施の形態による単結晶育成用の単結晶基板20の構成を示す斜視図である。図1に示すように、単結晶基板20は略円板状の形状を有している。単結晶基板20の基板直径はdであり基板厚はtである。単結晶基板20はCaMgZr置換GGG単結晶等の酸化物単結晶を用いて作製され、その結晶構造はガーネット構造である。単結晶基板20は、例えばLPE法を用いて膜厚200μm以上600μm以下の磁性ガーネット単結晶膜を育成する際に用いられる。   A single crystal growth substrate according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a configuration of a single crystal substrate 20 for growing a single crystal according to the present embodiment. As shown in FIG. 1, the single crystal substrate 20 has a substantially disc shape. The single crystal substrate 20 has a substrate diameter d and a substrate thickness t. The single crystal substrate 20 is manufactured using an oxide single crystal such as a CaMgZr-substituted GGG single crystal, and the crystal structure thereof is a garnet structure. The single crystal substrate 20 is used when growing a magnetic garnet single crystal film having a film thickness of 200 μm or more and 600 μm or less using, for example, the LPE method.

図2は、単結晶基板20の基板直径dと基板厚tとの関係を示すグラフである。グラフの横軸は基板直径d(インチ)を表し、縦軸は基板厚t(μm)を表している。本実施の形態の前提として、LPE法を用いて単結晶膜を育成する際に、基板厚tの比較的薄い単結晶基板20を用いると同心円クラックが生じ易いため、基板厚tがt≧500(μm)(図2の線a及びそれより上)を満たす単結晶基板20を用いるのが好ましい。一方、基板厚tの比較的厚い単結晶基板20を用いると劈開クラックが生じ易いため、基板厚t(μm)と基板直径d(インチ)とがt≦−400d+2000(図2の線b及びそれより下)の関係を満たす単結晶基板20を用いるのが好ましい。これらの条件に加えて本実施の形態では、基板直径dが2.5インチ(約63.5mm)以上2.7インチ(約68.6mm)以下である単結晶基板20が用いられる。また単結晶基板20の基板厚tは、500μm以上800μm以下であることが望ましい。すなわち、単結晶基板20の基板直径dと基板厚tとの関係が図2のグラフ中の領域A内に含まれる場合に、単結晶基板20を用いた育成1回当たりに得られる単結晶片の個数が特に増加し、ファラデー回転子の製造コストがより削減される。
以下、本実施の形態による単結晶育成用基板について、実施例及び比較例を用いてより具体的に説明する。
FIG. 2 is a graph showing the relationship between the substrate diameter d of the single crystal substrate 20 and the substrate thickness t. The horizontal axis of the graph represents the substrate diameter d (inch), and the vertical axis represents the substrate thickness t (μm). As a premise of the present embodiment, when a single crystal substrate 20 having a relatively thin substrate thickness t is used when a single crystal film is grown using the LPE method, concentric cracks are likely to occur. It is preferable to use a single crystal substrate 20 that satisfies (μm) (line a in FIG. 2 and above). On the other hand, if a single crystal substrate 20 having a relatively thick substrate thickness t is used, cleavage cracks are likely to occur. It is preferable to use a single crystal substrate 20 that satisfies the relationship (below). In addition to these conditions, the present embodiment uses a single crystal substrate 20 having a substrate diameter d of 2.5 inches (about 63.5 mm) or more and 2.7 inches (about 68.6 mm) or less. The substrate thickness t of the single crystal substrate 20 is desirably 500 μm or more and 800 μm or less. That is, when the relationship between the substrate diameter d of the single crystal substrate 20 and the substrate thickness t is included in the region A in the graph of FIG. 2, the single crystal piece obtained per growth using the single crystal substrate 20 In particular, the number of the Faraday rotators is further reduced and the manufacturing cost of the Faraday rotator is further reduced.
Hereinafter, the substrate for single crystal growth according to the present embodiment will be described more specifically with reference to Examples and Comparative Examples.

(実施例1)
CaMgZr置換GGG単結晶を引き上げ法により育成した。X線回折により単結晶の方位出しを行い、円筒研削及びワイヤーソー切断を行って、育成面が(111)面となる円板状基板を作製した。円板状基板の基板直径は2.5インチ、2.6インチ及び2.7インチの3種類とし、基板厚はいずれも500μmとした。これらの円板状基板の側面に端面丸め加工を施し、砥粒にコロイダルシリカを用いた最終研磨などの鏡面研磨加工を育成面に対して行った。さらに、約80℃でリン酸及び硫酸の混酸によるエッチングを行って加工変質層を除去し、3種類の基板直径dを有するエピタキシャル成長用の単結晶基板20を作製した。
Example 1
A CaMgZr substituted GGG single crystal was grown by a pulling method. A single crystal was oriented by X-ray diffraction, and subjected to cylindrical grinding and wire saw cutting to produce a disc-shaped substrate having a (111) plane as a growth surface. The substrate diameter of the disk-shaped substrate was three types of 2.5 inches, 2.6 inches, and 2.7 inches, and the substrate thicknesses were all 500 μm. The side surfaces of these disk-shaped substrates were subjected to end face rounding, and mirror polishing such as final polishing using colloidal silica as abrasive grains was performed on the growth surface. Further, etching with a mixed acid of phosphoric acid and sulfuric acid was performed at about 80 ° C. to remove the work-affected layer, and a single crystal substrate 20 for epitaxial growth having three types of substrate diameters d was produced.

白金製の坩堝にGd、Yb、Fe、Ge、B、Bi、PbOを充填した。次に、前工程で作製した単結晶基板20を用いてLPE法により、組成がBi1.20Gd0.60Yb0.58Pb0.02Fe4.98Ge0.01Pt0.0112である単結晶膜を約500μmの厚さに育成した。育成した単結晶膜を研磨及び切断して、10mm四方の板状の磁性ガーネット単結晶片を作製した。単結晶膜に割れが生じていなければ、単結晶片の個数は、1枚の単結晶基板20から幾何学的に取り得る10mm四方の単結晶片の個数に一致する。3種類の基板直径dを有する単結晶基板20に対して育成をそれぞれ10回ずつ繰り返し、育成後の単結晶膜から実際に得られた単結晶片の平均個数を評価した。基板直径dがそれぞれ2.5インチ、2.6インチ、2.7インチである単結晶基板20を用いた場合、幾何学的に取り得る単結晶片の個数Aがそれぞれ21個、24個、26個であるのに対し、実際に得られた単結晶片の平均個数Bはそれぞれ20.6個、23.0個、22.6個であった。 A platinum crucible was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ge 2 O 3 , B 2 O 3 , Bi 2 O 3 and PbO. Next, the composition of Bi 1.20 Gd 0.60 Yb 0.58 Pb 0.02 Fe 4.98 Ge 0.01 Pt 0.01 O is obtained by LPE using the single crystal substrate 20 produced in the previous step. 12 was grown to a thickness of about 500 μm. The grown single crystal film was polished and cut to produce a 10 mm square plate-like magnetic garnet single crystal piece. If the single crystal film is not cracked, the number of single crystal pieces corresponds to the number of 10 mm square single crystal pieces that can be geometrically taken from one single crystal substrate 20. The growth was repeated 10 times for each single crystal substrate 20 having three types of substrate diameters d, and the average number of single crystal pieces actually obtained from the grown single crystal film was evaluated. When the single crystal substrate 20 having a substrate diameter d of 2.5 inches, 2.6 inches, and 2.7 inches is used, the geometrically possible number of single crystal pieces A is 21 and 24, respectively. The average number B of actually obtained single crystal pieces was 20.6, 23.0, and 22.6, respectively.

(比較例1)
CaMgZr置換GGG単結晶を引き上げ法により育成した。X線回折により単結晶の方位出しを行い、円筒研削及びワイヤーソー切断を行って、育成面が(111)面となる円板状基板を作製した。円板状基板の基板直径は2.0インチ、2.4インチ、2.8インチ及び3.0インチの4種類とし、基板厚はいずれも500μmとした。これらの円板状基板の側面に端面丸め加工を施し、砥粒にコロイダルシリカを用いた最終研磨などの鏡面研磨加工を育成面に対して行った。さらに、約80℃でリン酸及び硫酸の混酸によるエッチングを行って加工変質層を除去し、4種類の基板直径dを有するエピタキシャル成長用の単結晶基板20を作製した。
(Comparative Example 1)
A CaMgZr substituted GGG single crystal was grown by a pulling method. A single crystal was oriented by X-ray diffraction, and subjected to cylindrical grinding and wire saw cutting to produce a disc-shaped substrate having a (111) plane as a growth surface. The substrate diameter of the disk-shaped substrate was set to four types of 2.0 inches, 2.4 inches, 2.8 inches, and 3.0 inches, and the substrate thicknesses were all 500 μm. The side surfaces of these disk-shaped substrates were subjected to end face rounding, and mirror polishing such as final polishing using colloidal silica as abrasive grains was performed on the growth surface. Further, etching with a mixed acid of phosphoric acid and sulfuric acid was performed at about 80 ° C. to remove the work-affected layer, and a single crystal substrate 20 for epitaxial growth having four types of substrate diameters d was produced.

白金製の坩堝にGd、Yb、Fe、Ge、B、Bi、PbOを充填した。次に、前工程で作製した単結晶基板20を用いてLPE法により、組成がBi1.20Gd0.60Yb0.58Pb0.02Fe4.98Ge0.01Pt0.0112である単結晶膜を約500μmの厚さに育成した。育成した単結晶膜を研磨及び切断して、10mm四方の板状の磁性ガーネット単結晶片を作製した。4種類の単結晶基板20に対して育成をそれぞれ10回ずつ繰り返し、育成後の単結晶膜から実際に得られた単結晶片の平均個数を評価した。基板直径dがそれぞれ2.0インチ、2.4インチ、2.8インチ、3.0インチである単結晶基板20を用いた場合、幾何学的に取り得る単結晶片の個数Aがそれぞれ12個、20個、28個、32個であるのに対し、実際に得られた単結晶片の平均個数Bはそれぞれ11.8個、19.6個、19.6個、19.2個であった。 A platinum crucible was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ge 2 O 3 , B 2 O 3 , Bi 2 O 3 and PbO. Next, the composition of Bi 1.20 Gd 0.60 Yb 0.58 Pb 0.02 Fe 4.98 Ge 0.01 Pt 0.01 O is obtained by LPE using the single crystal substrate 20 produced in the previous step. 12 was grown to a thickness of about 500 μm. The grown single crystal film was polished and cut to produce a 10 mm square plate-like magnetic garnet single crystal piece. The growth was repeated 10 times for each of the four types of single crystal substrates 20, and the average number of single crystal pieces actually obtained from the grown single crystal film was evaluated. When the single crystal substrates 20 having the substrate diameters d of 2.0 inches, 2.4 inches, 2.8 inches, and 3.0 inches are used, the geometrically possible number of single crystal pieces A is 12 respectively. The average number B of actually obtained single crystal pieces is 11.8, 19.6, 19.6, and 19.2, respectively. there were.

表1は、実施例1及び比較例1をまとめて示している。また図3は、実施例1及び比較例における単結晶基板20の基板直径dと、実際に得られた単結晶片の平均個数B及び歩留りとの関係を示すグラフである。グラフの横軸は単結晶基板20の基板直径dを表し、縦軸は単結晶片の平均個数B及び歩留りを表している。表1に示すように、基板直径dが大きくなるとともに幾何学的に取り得る単結晶片の個数Aは増加する。しかしながら、表1及び図3に示すように、基板直径dが大きくなると歩留り(B/A)が低下するため、実際に得られる単結晶片の平均個数Bは基板直径dに依存して単調増加するわけではない。平均個数Bは、基板直径dが約2.6インチのときに極大値をとる。また、基板直径dが2.0インチ又は3.0インチである単結晶基板20を用いたときと比較すると、基板直径dが2.5インチ以上2.7インチ以下である単結晶基板20を用いることによって、実際に得られる単結晶片の平均個数Bは明らかに多くなる。   Table 1 collectively shows Example 1 and Comparative Example 1. FIG. 3 is a graph showing the relationship between the substrate diameter d of the single crystal substrate 20 in Example 1 and the comparative example, the average number B of actually obtained single crystal pieces, and the yield. The horizontal axis of the graph represents the substrate diameter d of the single crystal substrate 20, and the vertical axis represents the average number B of single crystal pieces and the yield. As shown in Table 1, the number A of single crystal pieces that can be geometrically taken increases as the substrate diameter d increases. However, as shown in Table 1 and FIG. 3, since the yield (B / A) decreases as the substrate diameter d increases, the average number B of single crystal pieces actually obtained increases monotonously depending on the substrate diameter d. Not to do. The average number B takes a maximum value when the substrate diameter d is about 2.6 inches. Further, compared with the case where the single crystal substrate 20 having the substrate diameter d of 2.0 inches or 3.0 inches is used, the single crystal substrate 20 having the substrate diameter d of 2.5 inches or more and 2.7 inches or less is obtained. By using it, the average number B of single crystal pieces actually obtained is obviously increased.

Figure 0004736622
Figure 0004736622

このように、基板直径dが2.5インチ以上2.7インチ以下、好ましくは約2.6インチの単結晶基板20を用いることによって、育成1回当たりに得られる単結晶片の個数が増加し、ファラデー回転子の製造コストが削減される。   Thus, by using the single crystal substrate 20 having a substrate diameter d of 2.5 inches or more and 2.7 inches or less, preferably about 2.6 inches, the number of single crystal pieces obtained per growth is increased. In addition, the manufacturing cost of the Faraday rotator is reduced.

(実施例2)
CaMgZr置換GGG単結晶を引き上げ法により育成した。X線回折により単結晶の方位出しを行い、円筒研削及びワイヤーソー切断を行って、育成面が(111)面となる円板状基板を作製した。このとき、基板直径を2.5インチ及び2.7インチの2種類とし、基板厚を500μm及び750μmの2種類として、計4種類の円板状基板が作製された。これらの円板状基板の側面に端面丸め加工を施し、砥粒にコロイダルシリカを用いた最終研磨などの鏡面研磨加工を育成面に対して行った。さらに、約80℃でリン酸および硫酸の混酸によるエッチングを行って加工変質層を除去し、2種類の基板直径dと2種類の基板厚tとを組み合わせた4種類のエピタキシャル成長用の単結晶基板20を作製した。
(Example 2)
A CaMgZr substituted GGG single crystal was grown by a pulling method. A single crystal was oriented by X-ray diffraction, and subjected to cylindrical grinding and wire saw cutting to produce a disc-shaped substrate having a (111) plane as a growth surface. At this time, a total of four types of disk-shaped substrates were prepared with two types of substrate diameters of 2.5 inches and 2.7 inches and two types of substrate thicknesses of 500 μm and 750 μm. The side surfaces of these disk-shaped substrates were subjected to end face rounding, and mirror polishing such as final polishing using colloidal silica as abrasive grains was performed on the growth surface. Furthermore, etching with a mixed acid of phosphoric acid and sulfuric acid is performed at about 80 ° C. to remove the work-affected layer, and four types of single crystal substrates for epitaxial growth in which two types of substrate diameters d and two types of substrate thickness t are combined. 20 was produced.

白金製の坩堝にGd、Yb、Fe、Ge、B、Bi、PbOを充填した。次に、前工程で作製した単結晶基板20を用いてLPE法により、組成がBi1.20Gd0.60Yb0.58Pb0.02Fe4.98Ge0.01Pt0.0112である単結晶膜を約500μmの厚さに育成した。育成した単結晶膜を研磨及び切断して、10mm四方の板状の磁性ガーネット単結晶片を作製した。4種類の単結晶基板20に対して育成をそれぞれ10回ずつ繰り返し、育成後の単結晶膜から実際に得られた単結晶片の平均個数を評価した。基板直径dが2.5インチである単結晶基板20を用いた場合、幾何学的に取り得る単結晶片の個数Aが21個であるのに対して、実際に得られた単結晶片の平均個数Bは、基板厚tが500μmのとき20.6個であり、基板厚tが750μmのとき20.4個であった。また、基板直径dが2.7インチである単結晶基板20を用いた場合、幾何学的に取り得る単結晶片の個数Aが26個であるのに対して、実際に得られた単結晶片の平均個数Bは、基板厚tが500μmのとき22.6個であり、基板厚tが750μmのとき19.8個であった。 A platinum crucible was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ge 2 O 3 , B 2 O 3 , Bi 2 O 3 and PbO. Next, the composition of Bi 1.20 Gd 0.60 Yb 0.58 Pb 0.02 Fe 4.98 Ge 0.01 Pt 0.01 O is obtained by LPE using the single crystal substrate 20 produced in the previous step. 12 was grown to a thickness of about 500 μm. The grown single crystal film was polished and cut to produce a 10 mm square plate-like magnetic garnet single crystal piece. The growth was repeated 10 times for each of the four types of single crystal substrates 20, and the average number of single crystal pieces actually obtained from the grown single crystal film was evaluated. When the single crystal substrate 20 having a substrate diameter d of 2.5 inches is used, the number of single crystal pieces A that can be geometrically taken is 21, whereas the number of single crystal pieces actually obtained is 21. The average number B was 20.6 when the substrate thickness t was 500 μm, and 20.4 when the substrate thickness t was 750 μm. When the single crystal substrate 20 having a substrate diameter d of 2.7 inches is used, the number of single crystal pieces A that can be geometrically taken is 26, whereas the actually obtained single crystal The average number B of the pieces was 22.6 when the substrate thickness t was 500 μm, and 19.8 when the substrate thickness t was 750 μm.

(比較例2)
CaMgZr置換GGG単結晶を引き上げ法により育成した。X線回折により単結晶の方位出しを行い、円筒研削及びワイヤーソー切断を行って、育成面が(111)面となる円板状基板を作製した。円板状基板の基板直径は2.5インチ及び2.7インチの2種類とし、基板厚はいずれも1000μmとした。これらの円板状基板の側面に端面丸め加工を施し、砥粒にコロイダルシリカを用いた最終研磨などの鏡面研磨加工を育成面に対して行った。さらに約80℃でリン酸および硫酸の混酸によるエッチングを行って加工変質層を除去し、2種類の基板直径dを有するエピタキシャル成長用の単結晶基板20を作製した。
(Comparative Example 2)
A CaMgZr substituted GGG single crystal was grown by a pulling method. A single crystal was oriented by X-ray diffraction, and subjected to cylindrical grinding and wire saw cutting to produce a disc-shaped substrate having a (111) plane as a growth surface. The substrate diameter of the disk-shaped substrate was 2.5 inches and 2.7 inches, and the substrate thickness was 1000 μm. The side surfaces of these disk-shaped substrates were subjected to end face rounding, and mirror polishing such as final polishing using colloidal silica as abrasive grains was performed on the growth surface. Further, etching with a mixed acid of phosphoric acid and sulfuric acid was performed at about 80 ° C. to remove the work-affected layer, and a single crystal substrate 20 for epitaxial growth having two types of substrate diameters d was produced.

白金製の坩堝にGd、Yb、Fe、Ge、B、Bi、PbOを充填した。次に、前工程で作製した単結晶基板20を用いてLPE法により、組成がBi1.20Gd0.60Yb0.58Pb0.02Fe4.98Ge0.01Pt0.0112である単結晶膜を約500μmの厚さに育成した。育成した単結晶膜を研磨及び切断して、10mm四方の板状の磁性ガーネット単結晶片を作製した。2種類の単結晶基板20に対して育成をそれぞれ10回ずつ繰り返し、育成後の単結晶膜から実際に得られた単結晶片の平均個数を評価した。基板直径dがそれぞれ2.5インチ及び2.7インチである単結晶基板20を用いた場合、幾何学的に取り得る単結晶片の個数Aがそれぞれ21個及び26個であるのに対し、実際に得られた単結晶片の平均個数Bはそれぞれ19.0個及び16.8個であった。 A platinum crucible was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ge 2 O 3 , B 2 O 3 , Bi 2 O 3 and PbO. Next, the composition of Bi 1.20 Gd 0.60 Yb 0.58 Pb 0.02 Fe 4.98 Ge 0.01 Pt 0.01 O is obtained by LPE using the single crystal substrate 20 produced in the previous step. 12 was grown to a thickness of about 500 μm. The grown single crystal film was polished and cut to produce a 10 mm square plate-like magnetic garnet single crystal piece. The growth was repeated 10 times for each of the two types of single crystal substrates 20, and the average number of single crystal pieces actually obtained from the single crystal film after the growth was evaluated. When the single crystal substrate 20 having a substrate diameter d of 2.5 inches and 2.7 inches is used, the geometrically possible number of single crystal pieces A is 21 and 26, respectively. The average number B of actually obtained single crystal pieces was 19.0 and 16.8, respectively.

表2は、実施例2及び比較例2をまとめて示している。また図4は、実施例2及び比較例2における単結晶基板20の基板厚tと、実際に得られた単結晶片の平均個数Bとの関係を示すグラフである。グラフの横軸は単結晶基板20の基板厚t(μm)を表し、縦軸は単結晶片の平均個数Bを表している。表2及び図4に示すように、基板直径dが同一であっても基板厚tが1000μm程度に厚くなると、実際に得られる単結晶片の平均個数Bは減少する傾向にある。したがって、ファラデー回転子の製造コストを削減するためには、基板厚tが500μm以上800μm以下である単結晶基板20を用いるのが有効であることが分かった。   Table 2 collectively shows Example 2 and Comparative Example 2. FIG. 4 is a graph showing the relationship between the substrate thickness t of the single crystal substrate 20 in Example 2 and Comparative Example 2 and the average number B of actually obtained single crystal pieces. The horizontal axis of the graph represents the substrate thickness t (μm) of the single crystal substrate 20, and the vertical axis represents the average number B of single crystal pieces. As shown in Table 2 and FIG. 4, even when the substrate diameter d is the same, when the substrate thickness t is increased to about 1000 μm, the average number B of actually obtained single crystal pieces tends to decrease. Accordingly, it has been found effective to use the single crystal substrate 20 having a substrate thickness t of 500 μm or more and 800 μm or less in order to reduce the manufacturing cost of the Faraday rotator.

Figure 0004736622
Figure 0004736622

以上説明したように、本実施の形態によれば、単結晶基板20の基板直径d及び/又は基板厚tの範囲を選択することにより、育成中の単結晶に生じる割れが抑制され、ファラデー回転子の製造コストが削減される。   As described above, according to the present embodiment, by selecting the range of the substrate diameter d and / or the substrate thickness t of the single crystal substrate 20, cracks generated in the growing single crystal are suppressed, and Faraday rotation is performed. Child manufacturing costs are reduced.

本発明の一実施の形態による単結晶育成用基板の構成を示す斜視図である。It is a perspective view which shows the structure of the board | substrate for single crystal growth by one embodiment of this invention. 単結晶基板の基板直径dと基板厚tとの関係を示すグラフである。It is a graph which shows the relationship between the substrate diameter d and the substrate thickness t of a single crystal substrate. 単結晶基板の基板直径dと、実際に得られた単結晶片の平均個数B及び歩留りとの関係を示すグラフである。It is a graph which shows the relationship between the board | substrate diameter d of a single crystal substrate, the average number B of the single crystal piece actually obtained, and the yield. 単結晶基板の基板厚tと、実際に得られた単結晶片の平均個数Bとの関係を示すグラフである。It is a graph which shows the relationship between the board | substrate thickness t of a single crystal substrate, and the average number B of the single crystal piece actually obtained. LPE法により磁性ガーネット単結晶膜を育成する工程を示す図である。It is a figure which shows the process of growing a magnetic garnet single crystal film by LPE method. 育成中の単結晶基板に生じるクラックを示す図である。It is a figure which shows the crack which arises in the single crystal substrate under the growth.

符号の説明Explanation of symbols

2 基板固定用治具
4 坩堝
7 支持棒
8 原料融液
10、20 単結晶基板
12 磁性ガーネット単結晶膜
2 substrate fixing jig 4 crucible 7 support rod 8 raw material melt 10, 20 single crystal substrate 12 magnetic garnet single crystal film

Claims (3)

CaMgZr置換GGG単結晶を用いて作製され、結晶構造がガーネット構造であり、
磁性ガーネット単結晶膜の育成に用いられる単結晶育成用基板であって、
基板直径が2.5インチ以上2.7インチ以下であり、
基板厚が500μm以上800μm以下であること
を特徴とする単結晶育成用基板。
Produced using a CaMgZr-substituted GGG single crystal, the crystal structure is a garnet structure,
A substrate for growing a single crystal used for growing a magnetic garnet single crystal film,
Substrate diameter Ri der less 2.7 inches to 2.5 inches,
A substrate for single crystal growth, wherein the substrate thickness is 500 μm or more and 800 μm or less .
請求項1記載の単結晶育成用基板であって、
前記基板直径は約2.6インチであること
を特徴とする単結晶育成用基板。
The single crystal growth substrate according to claim 1,
The substrate for single crystal growth, wherein the substrate diameter is about 2.6 inches.
請求項1又は2に記載の単結晶育成用基板であって、
膜厚200μm以上600μm以下の単結晶膜の育成に用いられること
を特徴とする単結晶育成用基板。
The single crystal growth substrate according to claim 1 or 2 ,
A single crystal growth substrate characterized by being used for growing a single crystal film having a thickness of 200 μm or more and 600 μm or less.
JP2005239651A 2005-08-22 2005-08-22 Single crystal growth substrate Expired - Fee Related JP4736622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239651A JP4736622B2 (en) 2005-08-22 2005-08-22 Single crystal growth substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239651A JP4736622B2 (en) 2005-08-22 2005-08-22 Single crystal growth substrate

Publications (2)

Publication Number Publication Date
JP2007055818A JP2007055818A (en) 2007-03-08
JP4736622B2 true JP4736622B2 (en) 2011-07-27

Family

ID=37919624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239651A Expired - Fee Related JP4736622B2 (en) 2005-08-22 2005-08-22 Single crystal growth substrate

Country Status (1)

Country Link
JP (1) JP4736622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190279A (en) * 2016-04-15 2017-10-19 住友金属鉱山株式会社 Manufacturing method of non-magnetic garnet substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002792A (en) * 2001-06-20 2003-01-08 Murata Mfg Co Ltd Method for producing magnetic garnet single crystal film
JP2003089598A (en) * 2001-09-14 2003-03-28 Tdk Corp Method for growing garnet single crystal and garnet single crystal substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002792A (en) * 2001-06-20 2003-01-08 Murata Mfg Co Ltd Method for producing magnetic garnet single crystal film
JP2003089598A (en) * 2001-09-14 2003-03-28 Tdk Corp Method for growing garnet single crystal and garnet single crystal substrate

Also Published As

Publication number Publication date
JP2007055818A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP5014737B2 (en) Method for manufacturing SiC single crystal substrate
JP5747110B1 (en) Ga2O3 single crystal substrate
JP5836999B2 (en) Method for growing β-Ga 2 O 3 single crystal and method for producing β-Ga 2 O 3 single crystal substrate
JP5865867B2 (en) Method for growing β-Ga 2 O 3 single crystal and method for producing β-Ga 2 O 3 single crystal substrate
EP1533402B1 (en) Epitaxial wafer and its manufacturing method
JP2015225902A (en) Sapphire substrate and manufacturing method of the same
JP4736622B2 (en) Single crystal growth substrate
CN113492343A (en) Semiconductor substrate and method for manufacturing the same
JP6701417B1 (en) Indium phosphide substrate and method for manufacturing indium phosphide substrate
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP2014040339A (en) Method for manufacturing piezoelectric oxide single crystal wafer
WO2016002707A1 (en) Gallium oxide substrate and production method therefor
JP4539053B2 (en) Single crystal substrate and manufacturing method thereof
JP2019182744A (en) Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP6567865B2 (en) Ga2O3 single crystal substrate
JP2009051678A (en) Manufacturing method of sapphire substrate
JP2009265376A (en) Layered body for optical isolator and optical isolator
KR102508006B1 (en) Substrate for surface acoustic wave device and manufacturing method thereof
JP4348539B2 (en) Nonmagnetic garnet substrate manufacturing method, nonmagnetic garnet substrate, and bismuth-substituted magnetic garnet film obtained using the substrate
JP4415630B2 (en) Magnetic garnet single crystal film growth substrate and method for producing magnetic garnet single crystal film using the same
JP2014224041A (en) β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
WO2015182280A1 (en) Sapphire substrate and production method for sapphire substrate
JP6443282B2 (en) Nonmagnetic garnet single crystal substrate manufacturing method, magnetic garnet single crystal film manufacturing method
JP6439639B2 (en) Non-magnetic garnet single crystal substrate, magnetic garnet single crystal film
JP3894685B2 (en) Method for producing oxide garnet single crystal film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees