JP2003002792A - Method for producing magnetic garnet single crystal film - Google Patents

Method for producing magnetic garnet single crystal film

Info

Publication number
JP2003002792A
JP2003002792A JP2001187260A JP2001187260A JP2003002792A JP 2003002792 A JP2003002792 A JP 2003002792A JP 2001187260 A JP2001187260 A JP 2001187260A JP 2001187260 A JP2001187260 A JP 2001187260A JP 2003002792 A JP2003002792 A JP 2003002792A
Authority
JP
Japan
Prior art keywords
single crystal
ggg
magnetic garnet
substrate
crystal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001187260A
Other languages
Japanese (ja)
Inventor
Takashi Takagi
隆 高木
Masaru Fujino
優 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001187260A priority Critical patent/JP2003002792A/en
Publication of JP2003002792A publication Critical patent/JP2003002792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing magnetic garnet single crystal films by which a plurality of magnetic garnet single crystal films having a film thickness of >=30 μm can simultaneously be produced, and the cracking of substrates can be prevented in the process of working. SOLUTION: A plurality of YIG (yittrium-iron-garnet) single crystal films having a film thickness of >=30 ×m are simultaneously produced on a plurality of GGG (gadolinium-gallium-garnet) substrates arranged parallel at intervals in a thickness direction by an epitaxial process. In this case, provided that the diameter of the GGG substrates is defined as D (mm), the distance among the GGG substrates as d (mm), and the film thickness of the magnetic garnet single crystal films to be produced as t (μm), d>=(D/10)+0.025t-0.75 is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は磁性ガーネット単
結晶膜の製造方法に関し、特に液相エピタキシャル法
(以下「LPE法」という。)によって膜厚30μm以
上の複数の磁性ガーネット単結晶膜を同時に製造する、
磁性ガーネット単結晶膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic garnet single crystal film, and in particular, it simultaneously produces a plurality of magnetic garnet single crystal films having a thickness of 30 μm or more by a liquid phase epitaxial method (hereinafter referred to as “LPE method”). To do
The present invention relates to a method for manufacturing a magnetic garnet single crystal film.

【0002】[0002]

【従来の技術】現在、磁性ガーネット単結晶膜は、LP
E法によって製造され、光アイソレータ、静磁波素子、
マイクロ波素子、磁気光学素子などに用いられている。
LPE法による磁性ガーネット単結晶膜の製造では、磁
性ガーネット単結晶膜成分を溶融した原料融液を過飽和
状態にし、これに非磁性ガーネット基板を接触させ非磁
性ガーネット基板上に磁性ガーネット単結晶膜を成長さ
せた後、非磁性ガーネット基板を原料融液から分離させ
るというものである。製造される磁性ガーネット単結晶
膜の膜厚はその用途により数μm〜数百μmの範囲で選
択されているが、マイクロ波素子では膜厚30〜100
μmの磁性ガーネット単結晶膜が使用され、光アイソレ
ータ、磁気光学素子では膜厚200〜500μmの磁性
ガーネット単結晶膜が使用されている。従来の技術で
は、主に非磁性ガーネット基板を1枚づつ原料融液に接
触させて磁性ガーネット単結晶膜を製造しているが、膜
厚10μm前後と比較的膜厚の薄い磁性ガーネット単結
晶膜を製造する際には、製造コストを低減するために、
上下方向に複数の基板を平行に配置して原料融液に接触
させることによって、複数の磁性ガ―ネット単結晶膜を
同時に製造することも行われている(Journal of Cryst
al Growth 31(1975) 358-365)。ここで、複数の磁性
ガーネット単結晶膜を同時に製造する際の基板の間隔に
関しては検討されていない。
2. Description of the Related Art Currently, magnetic garnet single crystal films are
Manufactured by the E method, an optical isolator, a magnetostatic wave device,
It is used in microwave devices and magneto-optical devices.
In the production of a magnetic garnet single crystal film by the LPE method, the raw material melt obtained by melting the components of the magnetic garnet single crystal film is made into a supersaturated state, and a non-magnetic garnet substrate is brought into contact with it to form a magnetic garnet single crystal film on the non-magnetic garnet substrate. After the growth, the non-magnetic garnet substrate is separated from the raw material melt. The thickness of the magnetic garnet single crystal film to be produced is selected in the range of several μm to several hundreds μm depending on its application.
A magnetic garnet single crystal film with a thickness of 200 μm to 500 μm is used for optical isolators and magneto-optical elements. In the conventional technique, a magnetic garnet single crystal film is manufactured by mainly contacting non-magnetic garnet substrates one by one with a raw material melt, but a magnetic garnet single crystal film having a relatively thin film thickness of around 10 μm. In order to reduce the manufacturing cost,
It is also possible to simultaneously produce multiple magnetic garnet single crystal films by arranging multiple substrates in parallel in the vertical direction and contacting them with the raw material melt (Journal of Cryst).
al Growth 31 (1975) 358-365). Here, no consideration has been given to the distance between the substrates when simultaneously producing a plurality of magnetic garnet single crystal films.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、たと
えば2枚の磁性ガーネット単結晶膜を同時に製造した際
に、上側の基板の下面と下側の基板の上面で磁性ガーネ
ット単結晶膜の膜厚に面内ばらつきが生じていた。この
ような膜厚の面内ばらつきは、製造される磁性ガーネッ
ト単結晶膜の膜厚が30μm以上になると、原料融液内
の磁性ガーネット単結晶成分の濃度ばらつきが急激に大
きくなるため、より一層顕著になっていた。また、磁性
ガーネット単結晶膜の膜厚が10μm前後と比較的膜厚
の薄い場合には大きな問題とならないが、マイクロ波素
子、光アイソレータ、磁気光学素子に使用される膜厚3
0μm以上の磁性ガーネット単結晶膜の場合には、加工
時に表裏面の膜厚のアンバランスに起因する応力によっ
て、基板が割れたり磁性ガーネット単結晶膜の品質が悪
化したりして、歩留まりが悪化するという問題があっ
た。ここで、膜厚の面内ばらつきとしては、加工時に基
板に割れが発生しない範囲内であればよいが、CV値
(標準偏差÷平均値)が2%以下であればデバイス作製
時の調整工程が大幅に簡略化できるためより好ましい。
In the prior art, for example, when two magnetic garnet single crystal films are simultaneously manufactured, a magnetic garnet single crystal film is formed on the lower surface of the upper substrate and the upper surface of the lower substrate. There was in-plane variation in thickness. Such an in-plane variation of the film thickness is further increased when the thickness of the manufactured magnetic garnet single crystal film is 30 μm or more, because the variation in the concentration of the magnetic garnet single crystal component in the raw material melt is drastically increased. It became noticeable. Further, when the thickness of the magnetic garnet single crystal film is about 10 μm, which is relatively small, this is not a big problem, but the thickness 3 used for the microwave element, the optical isolator, and the magneto-optical element is 3
In the case of a magnetic garnet single crystal film having a thickness of 0 μm or more, the yield is deteriorated because the substrate is cracked or the quality of the magnetic garnet single crystal film is deteriorated due to the stress caused by the imbalance of the film thickness on the front and back surfaces during processing. There was a problem of doing. Here, the in-plane variation of the film thickness may be within a range in which cracks do not occur in the substrate during processing, but if the CV value (standard deviation / average value) is 2% or less, the adjustment process during device fabrication Is more preferable because it can be greatly simplified.

【0004】それゆえに、この発明の主たる目的は、加
工中に基板の割れを防止することができる膜厚30μm
以上の複数の磁性ガーネット単結晶膜を同時に製造する
ことができる、磁性ガーネット単結晶膜の製造方法を提
供することである。
Therefore, the main object of the present invention is to provide a film thickness of 30 μm capable of preventing the cracking of the substrate during processing.
It is an object of the present invention to provide a method for producing a magnetic garnet single crystal film capable of producing a plurality of magnetic garnet single crystal films at the same time.

【0005】[0005]

【課題を解決するための手段】この発明にかかる磁性ガ
ーネット単結晶膜の製造方法は、厚み方向に間隔を隔て
て平行に配置した複数の基板にエピタキシャル法によっ
て膜厚30μm以上の複数の磁性ガーネット単結晶膜を
同時に製造する磁性ガーネット単結晶膜の製造方法であ
って、基板の直径をD(mm)とし、基板の間隔をd
(mm)とし、製造される磁性ガーネット単結晶膜の膜
厚をt(μm)としたとき、d≧(D/10)+0.0
25t−0.75を満足する、磁性ガーネット単結晶膜
の製造方法である。この発明にかかる磁性ガーネット単
結晶膜の製造方法では、d≧(D/10)+0.5t+
26を満足することがより好ましい。
A method of manufacturing a magnetic garnet single crystal film according to the present invention comprises a plurality of magnetic garnets having a film thickness of 30 μm or more formed by an epitaxial method on a plurality of substrates which are arranged in parallel at intervals in the thickness direction. A method of manufacturing a magnetic garnet single crystal film for simultaneously manufacturing a single crystal film, wherein a substrate diameter is D (mm) and a substrate interval is d.
(Mm) and the thickness of the magnetic garnet single crystal film produced is t (μm), d ≧ (D / 10) +0.0
A method for producing a magnetic garnet single crystal film satisfying 25t-0.75. In the method of manufacturing a magnetic garnet single crystal film according to the present invention, d ≧ (D / 10) + 0.5t +
It is more preferable to satisfy 26.

【0006】この発明の上述の目的、その他の目的、特
徴および利点は、図面を参照して行う以下の発明の実施
の形態の詳細な説明から一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments of the invention with reference to the drawings.

【0007】[0007]

【発明の実施の形態】(実施例1)LPE法によって鉄
イットリウムガーネット(Y3 Fe512:以下「YI
G」という。)単結晶膜を、直径75.6mmで厚さ
0.5mmのガドリニウムガリウムガーネット(Gd3
Ga512:以下「GGG」という。)基板上に製造し
た。この場合、まず、2枚のGGG基板を10mm間隔
でホルダーに取り付けて保持した。この保持状態のまま
2枚のGGG基板を100rpmで回転させながら、下
降速度150mm/分で下側のGGG基板が原料融液の
液面上約10mmにくるまで下降させた。この位置で2
枚のGGG基板を十分に予熱した後、2枚のGGG基板
を50rpmで回転させながら、下降速度50mm/分
で上側のGGG基板が原料融液の液面下40mmにくる
まで下降させ、過冷却状態にした原料融液に接触させ
た。その後、同様にして、2枚のGGG基板を50rp
mで回転させながら、240分間、2枚のYIG単結晶
膜を育成し製造した。製造された2枚のYIG単結晶膜
の膜厚を光学式膜厚測定装置を用いて測定した。この結
果を表1にまとめた。なお、実施例1では、GGG基板
の直径をD(mm)とし、GGG基板の間隔をd(m
m)とし、製造した磁性ガーネット単結晶膜の膜厚をt
(μm)としたとき、d≧(D/10)+0.025t
−0.75を満足する。
BEST MODE FOR CARRYING OUT THE INVENTION (Example 1) Iron yttrium garnet (Y 3 Fe 5 O 12 ) by the LPE method:
G ”. ) A gadolinium gallium garnet (Gd 3 ) having a diameter of 75.6 mm and a thickness of 0.5 mm is formed on the single crystal film.
Ga 5 O 12 : hereinafter referred to as “GGG”. ) Fabricated on a substrate. In this case, first, two GGG substrates were attached to and held by a holder at 10 mm intervals. While maintaining this holding state, the two GGG substrates were rotated at 100 rpm and were lowered at a lowering speed of 150 mm / min until the lower GGG substrate reached about 10 mm above the liquid surface of the raw material melt. 2 at this position
After preheating one GGG substrate sufficiently, while rotating the two GGG substrates at 50 rpm, lower it at a lowering speed of 50 mm / min until the upper GGG substrate reaches 40 mm below the liquid surface of the raw material melt, and supercool it. The melted raw material was brought into contact with the raw material melt. After that, in the same manner, the two GGG substrates are 50 rp.
Two YIG single crystal films were grown and manufactured for 240 minutes while rotating at m. The film thickness of the two produced YIG single crystal films was measured using an optical film thickness measuring device. The results are summarized in Table 1. In the first embodiment, the diameter of the GGG substrate is D (mm), and the gap between the GGG substrates is d (m).
m) and the thickness of the produced magnetic garnet single crystal film is t
(Μm), d ≧ (D / 10) + 0.025t
-0.75 is satisfied.

【0008】[0008]

【表1】 [Table 1]

【0009】実施例1では、表1に示すように、製造さ
れた2枚のYIG単結晶膜において上側のGGG基板の
下面と下側のGGG基板の上面とで膜厚のCV値が大き
な値であったが、これらのYIG単結晶膜より0.5m
m×0.5mm×0.2mmのチップを作製したところ
加工中にGGG基板に割れは発生しなかった。
In Example 1, as shown in Table 1, in the two manufactured YIG single crystal films, the CV value of the film thickness was large between the lower surface of the upper GGG substrate and the upper surface of the lower GGG substrate. Was 0.5 m from these YIG single crystal films.
When a chip measuring m × 0.5 mm × 0.2 mm was produced, no crack was generated on the GGG substrate during processing.

【0010】(比較例1)LPE法によってYIG単結
晶膜を、直径75.6mmで厚さ0.5mmのGGG基
板上に製造した。この場合、まず、2枚のGGG基板を
5mm間隔でホルダーに取り付けて保持した。この保持
状態のまま2枚のGGG基板を100rpmで回転させ
ながら、下降速度150mm/分で下側のGGG基板が
原料融液の液面上約10mmにくるまで下降させた。こ
の位置で2枚のGGG基板を十分に予熱した後、2枚の
GGG基板を50rpmで回転させながら、下降速度5
0mm/分で上側のGGG基板が原料融液の液面下40
mmにくるまで下降させ、過冷却状態にした原料融液に
接触させた。その後、同様にして、2枚のGGG基板を
50rpmで回転させながら、240分間、2枚のYI
G単結晶膜を育成し製造した。製造された2枚のYIG
単結晶膜の膜厚の測定結果を表2にまとめた。なお、比
較例1では、GGG基板の直径をD(mm)とし、GG
G基板の間隔をd(mm)とし、製造した磁性ガーネッ
ト単結晶膜の膜厚をt(μm)としたとき、d≧(D/
10)+0.025t−0.75を満足しない。
Comparative Example 1 A YIG single crystal film was manufactured by the LPE method on a GGG substrate having a diameter of 75.6 mm and a thickness of 0.5 mm. In this case, first, two GGG substrates were attached to and held by a holder at 5 mm intervals. While maintaining this holding state, the two GGG substrates were rotated at 100 rpm and were lowered at a lowering speed of 150 mm / min until the lower GGG substrate reached about 10 mm above the liquid surface of the raw material melt. After sufficiently preheating the two GGG substrates at this position, the two GGG substrates are rotated at 50 rpm while the descending speed is 5
At 0 mm / min, the upper GGG substrate is 40 below the surface of the raw material melt.
It was lowered to mm and brought into contact with the raw material melt in the supercooled state. Then, in the same manner, while rotating the two GGG substrates at 50 rpm, 240 minutes, two YI
A G single crystal film was grown and manufactured. Two manufactured YIG
The measurement results of the thickness of the single crystal film are summarized in Table 2. In Comparative Example 1, the diameter of the GGG substrate is D (mm), and
When the gap between the G substrates is d (mm) and the film thickness of the manufactured magnetic garnet single crystal film is t (μm), d ≧ (D /
10) + 0.025t-0.75 is not satisfied.

【0011】[0011]

【表2】 [Table 2]

【0012】比較例1では、表2に示すように、製造さ
れた2枚のYIG単結晶膜において上側のGGG基板の
下面と下側のGGG基板の上面とで膜厚のCV値が非常
に大きな値となり、これらのYIG単結晶膜より0.5
mm×0.5mm×0.2mmのチップ作製を試みたが
加工中にGGG基板が割れてしまい作製が困難であっ
た。
In Comparative Example 1, as shown in Table 2, in the two manufactured YIG single crystal films, the CV value of the film thickness was extremely high between the lower surface of the upper GGG substrate and the upper surface of the lower GGG substrate. It is a large value, 0.5 than those of these YIG single crystal films.
An attempt was made to manufacture a chip having a size of mm × 0.5 mm × 0.2 mm, but the GGG substrate was cracked during processing, which made it difficult to manufacture.

【0013】(実施例2)LPE法によってYIG単結
晶膜を、直径75.6mmで厚さ0.5mmのGGG基
板上に製造した。この場合、まず、2枚のGGG基板を
60mm間隔でホルダーに取り付けて保持した。この保
持状態のまま2枚のGGG基板を100rpmで回転さ
せながら、下降速度150mm/分で下側のGGG基板
が原料融液の液面上約10mmにくるまで下降させた。
この位置で2枚のGGG基板を十分に予熱した後、2枚
のGGG基板を50rpmで回転させながら、下降速度
50mm/分で上側のGGG基板が原料融液の液面下4
0mmにくるまで下降させ、過冷却状態にした原料融液
に接触させた。その後、同様にして、2枚のGGG基板
を50rpmで回転させながら、240分間、2枚のY
IG単結晶膜を育成し製造した。製造された2枚のYI
G単結晶膜の膜厚の測定結果を表3にまとめた。なお、
実施例2では、GGG基板の直径をD(mm)とし、G
GG基板の間隔をd(mm)とし、製造されるYIG単
結晶膜の膜厚をt(μm)としたとき、d≧(D/1
0)+0.5t+26を満足する。
(Example 2) A YIG single crystal film was produced by the LPE method on a GGG substrate having a diameter of 75.6 mm and a thickness of 0.5 mm. In this case, first, two GGG substrates were attached to and held by a holder at intervals of 60 mm. While maintaining this holding state, the two GGG substrates were rotated at 100 rpm and were lowered at a lowering speed of 150 mm / min until the lower GGG substrate reached about 10 mm above the liquid surface of the raw material melt.
After preheating the two GGG substrates sufficiently at this position, the two GGG substrates are rotated at 50 rpm, and the upper GGG substrate is at a descending speed of 50 mm / min, below the surface of the raw material melt.
It was lowered to 0 mm and brought into contact with the raw material melt in a supercooled state. Then, similarly, the two GGG substrates are rotated at 50 rpm for 240 minutes, and the two Y substrates are rotated.
An IG single crystal film was grown and manufactured. 2 YIs manufactured
Table 3 shows the measurement results of the film thickness of the G single crystal film. In addition,
In the second embodiment, the diameter of the GGG substrate is D (mm), and G
When the distance between the GG substrates is d (mm) and the thickness of the YIG single crystal film to be manufactured is t (μm), d ≧ (D / 1
0) + 0.5t + 26 is satisfied.

【0014】[0014]

【表3】 [Table 3]

【0015】実施例2では、表3に示すように、上下の
GGG基板の両面に膜厚がほぼ50μmで膜厚のCV値
が2%以下である膜厚の均一なYIG単結晶膜を製造す
ることができた。また、これらのYIG単結晶膜より
0.5mm×0.5mm×0.2mmのチップを作製し
たところ加工中にGGG基板に割れは発生しなかった。
In Example 2, as shown in Table 3, a uniform YIG single crystal film having a film thickness of approximately 50 μm and a CV value of 2% or less was manufactured on both surfaces of the upper and lower GGG substrates. We were able to. Further, when chips of 0.5 mm × 0.5 mm × 0.2 mm were produced from these YIG single crystal films, no crack was generated on the GGG substrate during processing.

【0016】(実施例3)まず、直径75.6mmで厚
さ0.5mmのGGG基板を用いた実施例1〜2と同様
の方法で、種々の膜厚のYIG単結晶膜をGGG基板の
間隔を変化させて製造したところ、膜厚が30μmより
薄いYIG単結晶膜では、GGG基板の間隔を狭くして
も、加工中にGGG基板に割れは発生しなかった。そこ
で、製造するYIG単結晶膜の膜厚を30μmとして、
GGG基板の直径を変化させたときに、GGG基板の直
径と加工中にGGG基板に割れの発生しないGGG基板
の間隔(最低基板間隔)との関係を調べたところ、図1
に示すグラフが得られた。また、同様にして、製造する
YIG単結晶膜の膜厚を70μmとして、GGG基板の
直径を変化させたときに、GGG基板の直径と加工中に
GGG基板に割れの発生しないGGG基板の間隔(最低
基板間隔)との関係を調べたところ、図2に示すグラフ
が得られた。以上より、GGG基板の直径をD(mm)
とし、GGG基板の間隔をd(mm)とし、製造される
磁性ガーネット単結晶膜の膜厚をt(μm)としたと
き、d≧(D/10)+0.025t−0.75を満足
すれば、加工中にGGG基板に割れを防止できることが
分かった。
(Embodiment 3) First, YIG single crystal films of various thicknesses were formed on a GGG substrate by the same method as in Embodiments 1 and 2 using a GGG substrate having a diameter of 75.6 mm and a thickness of 0.5 mm. When the YIG single crystal film having a film thickness smaller than 30 μm was manufactured by changing the distance, cracks did not occur in the GGG substrate during processing even if the distance between the GGG substrates was narrowed. Therefore, the thickness of the YIG single crystal film to be manufactured is set to 30 μm,
When the diameter of the GGG substrate was changed and the relationship between the diameter of the GGG substrate and the gap between the GGG substrates in which cracks did not occur in the GGG substrate during processing (minimum substrate gap) was found.
The graph shown in was obtained. Similarly, when the thickness of the YIG single crystal film to be manufactured is set to 70 μm and the diameter of the GGG substrate is changed, the diameter of the GGG substrate and the gap between the GGG substrates in which no crack is generated in the GGG substrate during processing ( When the relationship with the minimum substrate spacing) was investigated, the graph shown in FIG. 2 was obtained. From the above, the diameter of the GGG substrate is D (mm)
When the gap between the GGG substrates is d (mm) and the thickness of the magnetic garnet single crystal film produced is t (μm), d ≧ (D / 10) + 0.025t−0.75 is satisfied. It has been found that the GGG substrate can be prevented from cracking during processing.

【0017】(実施例4)直径75.6mmで厚さ0.
5mmのGGG基板を用いた実施例1〜2と同様の方法
で、GGG基板の間隔を変化させながら様々な膜厚のY
IG単結晶膜を製造した場合のGGG基板の間隔と上側
のGGG基板の下面における膜厚のCV値との関係を図
3のグラフに示す。この場合、GGG基板の間隔を2.
5mmとして膜厚50μm以上のYIG単結晶膜を製造
しようとした場合には、膜厚ばらつきに起因する応力に
より冷却中にGGG基板が割れてしまった。さらに、こ
の場合、GGG基板の間隔を10mmより小さくした場
合には、膜厚10μmのYIG単結晶膜以外は加工中に
GGG基板が割れてしまった。また、図3に示すグラフ
より膜厚と膜厚のCV値が2%以下とするために必要な
GGG基板の間隔との関係をグラフにしたところ、図4
のグラフに示すような直線になった。同様にして、GG
G基板の直径を52mm、100mmと変化させた場合
について、膜厚と膜厚のCV値が2%以下とするために
必要なGGG基板の間隔との関係をグラフにしたとこ
ろ、それぞれ図5、図6のグラフに示すような直線にな
った。図4、図5および図6に示すグラフより、GGG
基板の直径をD(mm)とし、GGG基板の間隔をd
(mm)とし、製造されるYIG単結晶膜の膜厚をt
(μm)としたとき、d≧(D/10)+0.5t+2
6を満足すれば、膜厚の均一なYIG単結晶膜を製造で
きることが分かった。
(Embodiment 4) Diameter 75.6 mm and thickness 0.
In the same manner as in Examples 1 and 2 using a 5 mm GGG substrate, Y with various film thicknesses was changed while changing the gap between the GGG substrates.
A graph of FIG. 3 shows the relationship between the gap between the GGG substrates and the CV value of the film thickness on the lower surface of the upper GGG substrate when the IG single crystal film is manufactured. In this case, the gap between the GGG substrates is 2.
When trying to manufacture a YIG single crystal film having a thickness of 5 mm and a film thickness of 50 μm or more, the GGG substrate was cracked during cooling due to the stress caused by the variation in the film thickness. Further, in this case, when the gap between the GGG substrates was set to be smaller than 10 mm, the GGG substrates were cracked during processing except for the YIG single crystal film having a film thickness of 10 μm. 4 is a graph showing the relationship between the film thickness and the gap between the GGG substrates, which is necessary for the CV value of the film thickness to be 2% or less from the graph shown in FIG.
It became a straight line as shown in the graph. Similarly, GG
When the diameter of the G substrate was changed to 52 mm and 100 mm, the relationship between the film thickness and the gap between the GGG substrates necessary for the CV value of the film thickness to be 2% or less was plotted. It became a straight line as shown in the graph of FIG. From the graphs shown in FIG. 4, FIG. 5 and FIG.
The diameter of the substrate is D (mm), and the gap between the GGG substrates is d.
(Mm) and the thickness of the YIG single crystal film produced is t
(Μm), d ≧ (D / 10) + 0.5t + 2
It was found that a YIG single crystal film having a uniform film thickness can be manufactured if 6 is satisfied.

【0018】なお、上述の実施例では、2枚のGGG基
板が用いられ、YIG単結晶膜が製造されているが、こ
の発明では、GGG基板以外の基板が用いられてもよ
く、3枚以上の基板が用いられてもよく、また、YIG
単結晶膜以外の磁性ガーネット単結晶膜が製造されても
よい。
In the above embodiment, two GGG substrates are used to manufacture the YIG single crystal film, but in the present invention, substrates other than the GGG substrate may be used, and three or more substrates may be used. Substrate may be used, and YIG
A magnetic garnet single crystal film other than the single crystal film may be manufactured.

【0019】[0019]

【発明の効果】この発明にかかる磁性ガーネット単結晶
膜の製造方法では、加工中に基板の割れを防止すること
ができる膜厚30μm以上の複数の磁性ガーネット単結
晶膜を同時に製造することができる。また、この発明に
かかる磁性ガーネット単結晶膜の製造方法では、基板の
直径をD(mm)とし、基板の間隔をd(mm)とし、
製造される磁性ガーネット単結晶膜の膜厚をt(μm)
としたとき、d≧(D/10)+0.5t+26を満足
すれば、膜厚の均一な磁性ガーネット単結晶膜を製造す
ることができる。
According to the method of manufacturing a magnetic garnet single crystal film according to the present invention, a plurality of magnetic garnet single crystal films having a film thickness of 30 μm or more capable of preventing the substrate from cracking during processing can be manufactured simultaneously. . In the method for producing a magnetic garnet single crystal film according to the present invention, the diameter of the substrate is D (mm), the distance between the substrates is d (mm),
The thickness of the magnetic garnet single crystal film produced is t (μm)
Then, if d ≧ (D / 10) + 0.5t + 26 is satisfied, a magnetic garnet single crystal film having a uniform film thickness can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】製造するYIG単結晶膜の膜厚を30μmとし
た場合の、GGG基板の直径と、割れの発生しない最低
基板間隔との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the diameter of a GGG substrate and the minimum substrate spacing at which cracks do not occur when the thickness of a YIG single crystal film to be manufactured is 30 μm.

【図2】製造するYIG単結晶膜の膜厚を70μmとし
た場合の、GGG基板の直径と、割れの発生しない最低
基板間隔との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the diameter of a GGG substrate and the minimum substrate distance where cracks do not occur when the thickness of a YIG single crystal film to be manufactured is 70 μm.

【図3】様々な膜厚のYIG単結晶膜を製造した場合
の、GGG基板の間隔と上側のGGG基板の下面におけ
る膜厚のCV値との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a gap between GGG substrates and a CV value of a film thickness on a lower surface of an upper GGG substrate when YIG single crystal films having various thicknesses are manufactured.

【図4】GGG基板の直径を75.6mmとした場合
の、上側のGGG基板の下面における膜厚と膜厚のCV
値が2%以下となるGGG基板の間隔との関係を示すグ
ラフである。
FIG. 4 shows the film thickness and the CV of the film thickness on the lower surface of the upper GGG substrate when the diameter of the GGG substrate is 75.6 mm.
It is a graph which shows the relationship with the space | interval of the GGG board | substrate whose value becomes 2% or less.

【図5】GGG基板の直径を52mmとした場合の、上
側のGGG基板の下面における膜厚と膜厚のCV値が2
%以下となるGGG基板の間隔との関係を示すグラフで
ある。
FIG. 5 shows the film thickness and the CV value of the film thickness on the lower surface of the upper GGG substrate when the diameter of the GGG substrate is 52 mm.
It is a graph which shows the relationship with the space | interval of the GGG board which becomes below%.

【図6】GGG基板の直径を100mmとした場合の、
上側のGGG基板の下面における膜厚と膜厚のCV値が
2%以下となるGGG基板の間隔との関係を示すグラフ
である。
FIG. 6 shows the case where the diameter of the GGG substrate is 100 mm,
It is a graph which shows the relationship between the film thickness on the lower surface of the upper GGG board | substrate, and the space | interval of the GGG board | substrate whose CV value of film thickness becomes 2% or less.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 厚み方向に間隔を隔てて平行に配置した
複数の基板にエピタキシャル法によって膜厚30μm以
上の複数の磁性ガーネット単結晶膜を同時に製造する磁
性ガーネット単結晶膜の製造方法であって、 前記基板の直径をD(mm)とし、前記基板の間隔をd
(mm)とし、製造される磁性ガーネット単結晶膜の膜
厚をt(μm)としたとき、d≧(D/10)+0.0
25t−0.75を満足する、磁性ガーネット単結晶膜
の製造方法。
1. A method for producing a magnetic garnet single crystal film, wherein a plurality of magnetic garnet single crystal films having a film thickness of 30 μm or more are simultaneously produced on a plurality of substrates arranged in parallel at intervals in the thickness direction by an epitaxial method. , The diameter of the substrate is D (mm), and the distance between the substrates is d.
(Mm) and the thickness of the magnetic garnet single crystal film produced is t (μm), d ≧ (D / 10) +0.0
A method for producing a magnetic garnet single crystal film, which satisfies 25t-0.75.
【請求項2】 d≧(D/10)+0.5t+26を満
足する、請求項1に記載の磁性ガーネット単結晶膜の製
造方法。
2. The method for producing a magnetic garnet single crystal film according to claim 1, wherein d ≧ (D / 10) + 0.5t + 26 is satisfied.
JP2001187260A 2001-06-20 2001-06-20 Method for producing magnetic garnet single crystal film Pending JP2003002792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187260A JP2003002792A (en) 2001-06-20 2001-06-20 Method for producing magnetic garnet single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187260A JP2003002792A (en) 2001-06-20 2001-06-20 Method for producing magnetic garnet single crystal film

Publications (1)

Publication Number Publication Date
JP2003002792A true JP2003002792A (en) 2003-01-08

Family

ID=19026574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187260A Pending JP2003002792A (en) 2001-06-20 2001-06-20 Method for producing magnetic garnet single crystal film

Country Status (1)

Country Link
JP (1) JP2003002792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055818A (en) * 2005-08-22 2007-03-08 Tdk Corp Substrate for single crystal growth
CN107190321A (en) * 2017-05-11 2017-09-22 电子科技大学 Nonreciprocal spin wave hetero-junctions waveguide material and its production and use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055818A (en) * 2005-08-22 2007-03-08 Tdk Corp Substrate for single crystal growth
JP4736622B2 (en) * 2005-08-22 2011-07-27 Tdk株式会社 Single crystal growth substrate
CN107190321A (en) * 2017-05-11 2017-09-22 电子科技大学 Nonreciprocal spin wave hetero-junctions waveguide material and its production and use

Similar Documents

Publication Publication Date Title
JPWO2002022920A1 (en) Rare earth-iron garnet single crystal and method for producing the same
JPWO2002022920A6 (en) Rare earth-iron garnet single crystal, method for producing the same, and device using rare earth-iron garnet single crystal
JP6065810B2 (en) Method for producing non-magnetic garnet single crystal substrate
US4200484A (en) Method of fabricating multiple layer composite
JP2007008759A (en) Bismuth-substituted magnetic garnet film and its production method
JP2003002792A (en) Method for producing magnetic garnet single crystal film
JP2013087015A (en) Liquid phase epitaxial growth method of bismuth substituted rare earth-iron-garnet film
Chaudhari Defects in garnets suitable for magnetic bubble domain devices
JP4348539B2 (en) Nonmagnetic garnet substrate manufacturing method, nonmagnetic garnet substrate, and bismuth-substituted magnetic garnet film obtained using the substrate
JP2018095486A (en) Bismuth-substituted type rare earth iron garnet crystal film, production method thereof, and optical isolator
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
JPS6199318A (en) Fabrication of magnetic garnet film
JP2002029893A (en) Method of producing microwave element
JPS5957990A (en) Method for growing liquid phase epitaxial thick film of garnet
JP2712306B2 (en) Method for producing thick liquid phase epitaxial magnetic garnet film
JP2003089598A (en) Method for growing garnet single crystal and garnet single crystal substrate
JP6439639B2 (en) Non-magnetic garnet single crystal substrate, magnetic garnet single crystal film
JP2784926B2 (en) Oxide garnet single crystal and method for producing the same
JP6443282B2 (en) Nonmagnetic garnet single crystal substrate manufacturing method, magnetic garnet single crystal film manufacturing method
JP3059332B2 (en) Microwave device material
JPH0549638B2 (en)
JPH0543678B2 (en)
JP2000357622A (en) Method for manufacturing magnetic garnet single crystal film, and the magnetic garnet single crystal film
JPH09208393A (en) Production of microwave element material
JP2007302517A (en) Manufacturing process of bismuth-substituted garnet film