JP2783000B2 - Tantalum solid electrolytic capacitor - Google Patents

Tantalum solid electrolytic capacitor

Info

Publication number
JP2783000B2
JP2783000B2 JP3223402A JP22340291A JP2783000B2 JP 2783000 B2 JP2783000 B2 JP 2783000B2 JP 3223402 A JP3223402 A JP 3223402A JP 22340291 A JP22340291 A JP 22340291A JP 2783000 B2 JP2783000 B2 JP 2783000B2
Authority
JP
Japan
Prior art keywords
copper powder
layer
solder
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3223402A
Other languages
Japanese (ja)
Other versions
JPH0547610A (en
Inventor
浩介 中村
政治 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP3223402A priority Critical patent/JP2783000B2/en
Publication of JPH0547610A publication Critical patent/JPH0547610A/en
Application granted granted Critical
Publication of JP2783000B2 publication Critical patent/JP2783000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、タンタル固体電解コン
デンサに用いる導電性ペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste used for a tantalum solid electrolytic capacitor.

【0002】[0002]

【従来の技術】従来のタンタル固体電解コンデンサは、
タンタル粉末を成形後真空焼結して焼結体を作製する。
その後陽極酸化皮膜層、酸化マンガン層、カーボン皮膜
層、銀ペースト層を形成し、端子を取り付け外装してコ
ンデンサを製造している。
2. Description of the Related Art Conventional tantalum solid electrolytic capacitors are:
After molding the tantalum powder, vacuum sintering is performed to produce a sintered body.
Thereafter, an anodic oxide film layer, a manganese oxide layer, a carbon film layer, and a silver paste layer are formed, and terminals are attached and packaged to manufacture a capacitor.

【0003】このコンデンサーはリード線を取付けた金
属ケース内に銀ペースト層をはんだを介して固定させ、
リード線をケースにハーメチックシールする構成、リー
ド線をコンデンサ素子とともにはんだに浸して引上げ後
樹脂皮膜するディップ形コンデンサがある。又リードフ
レームにコンデンサ素子の陰極部をはんだ付け或いは導
電性ペーストで固着した後、樹脂モールドを行うチップ
形コンデンサと単に陰極部をはんだ浴中に浸漬してはん
だ層を形成する裸チップ形コンデンサがある。
In this capacitor, a silver paste layer is fixed via solder in a metal case to which a lead wire is attached.
There is a configuration in which the lead wire is hermetically sealed to the case, and a dip-type capacitor in which the lead wire is dipped in solder together with the capacitor element, pulled up, and then resin-coated. Also, a chip-type capacitor that performs resin molding after soldering the cathode part of the capacitor element to the lead frame with a conductive paste or a bare chip-type capacitor that simply immerses the cathode part in a solder bath to form a solder layer. is there.

【0004】[0004]

【発明が解決しようとする課題】従来は、はんだ浴中に
浸漬するとき、銀ペーストの銀がはんだに溶解し易いた
め、作業条件を厳密に制御しないと、銀層が薄くなる
か、又は消滅してしまうことがある。この欠点を解決す
る手段として、陰極層として銅層を形成することも行わ
れているが、はんだ喰われは制御されるが、損失角の正
接やインピーダンス特性が銀ペーストを用いたときより
小さくならない問題があった。
Conventionally, when immersed in a solder bath, the silver of the silver paste easily dissolves in the solder, and unless the working conditions are strictly controlled, the silver layer becomes thin or disappears. May be done. As a means to solve this drawback, a copper layer is also formed as a cathode layer, but solder erosion is controlled, but the tangent of loss angle and impedance characteristics do not become smaller than when silver paste is used. There was a problem.

【0005】[0005]

【課題を解決するための手段】本発明は、はんだ喰われ
を抑制し、電気的特性の優れたタンタル固体電解コンデ
ンサを提供することである。従来の銅ペーストを用いた
場合、インピーダンスが大きくなる原因を検討した結
果、銅粉の形状を特定化することで改善できることが判
明した。それは、アスペクト比(厚さと最長粒径の比)
が1/10〜1/20で、より好ましくは平均粒径が
1〜20μmの鱗片状銅粉を用いることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a tantalum solid electrolytic capacitor which suppresses solder erosion and has excellent electrical characteristics. As a result of examining the cause of the increase in the impedance when the conventional copper paste was used, it was found that it could be improved by specifying the shape of the copper powder. It is the aspect ratio (the ratio of thickness to longest particle size)
There in 1 / 10-1 / 1 20, more preferably an average particle size used scaly copper powder 1 to 20 [mu] m.

【0006】銅粉はその製法により形状が異なり、大別
すると溶融銅を噴霧してできる球状銅粉、電解銅を破砕
してできる樹枝状銅粉、粒状銅をスタンプしてできる鱗
片状銅粉がある。鱗片状銅粉の平均粒径、アスペクト比
は磨砕条件や粉砕助剤の添加条件によって制御できる。
[0006] Copper powders differ in shape depending on the manufacturing method, and are roughly classified into spherical copper powder formed by spraying molten copper, dendritic copper powder formed by crushing electrolytic copper, and flaky copper powder formed by stamping granular copper. There is. The average particle size and aspect ratio of the flaky copper powder can be controlled by grinding conditions and conditions for adding a grinding aid.

【0007】鱗片状銅粉の粒径は小さ過ぎるとペースト
化したとき、粘度が大きくなり、塗布作業が困難になる
とともに素子のインピーダンスも大きくなる。これは平
均粒径が小さくなるとアスペクト比も小さくなり、鱗片
状の効果も減少するからである。また平均粒径は必要以
上に大きくなるとインピーダンスが大きくなる。平均粒
径は1〜20μmの範囲がよい。
[0007] If the particle size of the flaky copper powder is too small, when it is made into a paste, the viscosity becomes large, making the coating operation difficult and increasing the impedance of the element. This is because the smaller the average particle size, the smaller the aspect ratio, and the smaller the scaly effect. Further, when the average particle size becomes larger than necessary, the impedance becomes larger. The average particle size is preferably in the range of 1 to 20 μm.

【0008】鱗片状銅粒子のアスペクト比は、小さくな
ると樹枝状銅粒子を用いた場合と同様にインピーダンス
が大きくなる。アスペクト比が大きくなるとより鱗片状
になりよい結果が得られる。しかし過度になると鱗片粒
子内に穴明きが生じ、インピーダンスが大きくなる。
[0008] As the aspect ratio of the flaky copper particles decreases, the impedance increases as in the case of using dendritic copper particles. As the aspect ratio increases, the shape becomes more scaly and good results can be obtained. However, when it becomes excessive, a hole is formed in the scale particles, and the impedance increases.

【0009】導電性ペースト中の金属粒子は全てが鱗片
状銅粉でなくても効果が得られ、球状銅粉、樹枝状銅
粉、銀微粉を混合したり、鱗片状銅粉の表面に銀を被覆
したものを用いた結果、鱗片状銅粉量が70〜95重量
%が好ましく、少ないと素子のインピーダンスのばらつ
きが大きくなる。
The effect can be obtained even if not all of the metal particles in the conductive paste are flaky copper powder, and spherical copper powder, dendritic copper powder, silver fine powder can be mixed, or silver can be added to the surface of the flake copper powder. As a result of using a material coated with, the amount of flaky copper powder is preferably 70 to 95% by weight, and if the amount is small, the variation in impedance of the element becomes large.

【0010】全て鱗片状銅粉を用いたものは、ペースト
中の銅粉の酸化防止を十分に行えば問題ないが、取扱い
が不十分だとはんだとの濡れ性が悪くなり実用性を失
う。酸化を防止するため、ペースト中に銀微粉を混合す
るが、鱗片状銅粉の表面に銀の層を薄く形成する必要が
ある。その量が多過ぎるとはんだ喰われで接触抵抗増大
になり、インピーダンスが大きくなりやすく、15重量
%以下が適当である。
In the case of using all of the flaky copper powder, there is no problem if the copper powder in the paste is sufficiently prevented from being oxidized, but if the handling is insufficient, the wettability with the solder is deteriorated and the practicality is lost. Although silver fine powder is mixed into the paste to prevent oxidation, it is necessary to form a thin silver layer on the surface of the flaky copper powder. If the amount is too large, the contact resistance increases due to solder erosion, and the impedance is likely to increase.

【0011】また、ペースト固化体中の金属粉の総量が
93重量%以下、すなわち、金属粉の接触を保持してい
る上でエポキシ等の樹脂分が多くなると金属粉同志の接
触が少く、抵抗率大きく、実用に供し得なくなる。
When the total amount of the metal powder in the solidified paste is 93% by weight or less, that is, when the amount of the resin such as epoxy is increased while maintaining the contact of the metal powder, the contact between the metal powders is reduced and the resistance is reduced. It is too large to be put to practical use.

【0012】[0012]

【作用】タンタル固体電解コンデンサの各種外装形態に
おける素子陰極層において、はんだと接触する表面部
に、鱗片状銅粉を主体とする導電性ペースト層を形成す
ることにより、はんだ接合時のはんだ喰われを防止する
と同時に、従来困難であった接合部の接触抵抗を小さく
でき、従来品よりインピーダンスの小なるコンデンサを
得ることができる。
[Function] In a device cathode layer in various exterior forms of a tantalum solid electrolytic capacitor, a conductive paste layer mainly composed of flaky copper powder is formed on a surface portion which comes into contact with solder, so that solder is eroded during solder bonding. At the same time, it is possible to reduce the contact resistance of the junction, which has been difficult in the past, and to obtain a capacitor having a lower impedance than the conventional product.

【0013】これは銅粒子同志、または銅粒子と他の金
属粒子との接触抵抗に支配される。従来の銅ペーストで
は粒子が点と点、点と線、面と線との接触であったのに
対し、本発明では面と面、面と点、面と線的な接触が多
くなるので、低インピーダンスが得られ、また、素子の
はんだ付け作業が容易となること、特性値のばらつきが
小さくなる特徴を有する。
This is governed by the contact resistance between the copper particles or between the copper particles and other metal particles. In the conventional copper paste, the particles were point-to-point, point-to-line, and surface-to-line contact, whereas in the present invention, surface-to-surface, surface-to-point, and surface-to-line contact increased, It has characteristics that low impedance can be obtained, soldering work of the element is easy, and variation in characteristic values is small.

【0014】[0014]

【実施例】【Example】

(比較例1) タンタル粉末を圧縮成形し、同時に直径
0.25mmのタンタル線を埋植する。これを焼結し、1.02×
1.82×1.45mmの焼結体を製作する。ついで誘電体となる
酸化皮膜層、酸化マンガン層、カーボン皮膜層、導電性
銀ペースト層を形成してコンデンサ素子1をうる。この
コンデンサ素子1を用い、タンタル線2には陽極リード
線5を接続し、導電ペースト層には陰極リード線5を接
合し、外装樹脂7を形成するディップ型タンタル固体電
解をうる。
(Comparative Example 1) Compression molding of tantalum powder and simultaneous diameter
Implant 0.25mm tantalum wire. Sinter this to 1.02x
A sintered body of 1.82 × 1.45mm is manufactured. Next, an oxide film layer, a manganese oxide layer, a carbon film layer, and a conductive silver paste layer which are to be dielectrics are formed to obtain the capacitor element 1. Using this capacitor element 1, an anode lead wire 5 is connected to the tantalum wire 2, a cathode lead wire 5 is joined to the conductive paste layer, and a dip-type tantalum solid electrolyte for forming an exterior resin 7 is obtained.

【0015】(実施例1) 比較例1の素子1に、平均
粒径15μm、アスペクト比1/20の鱗片状銅粉、及
び平均粒径15μmの球状銅粉、樹枝状銅粉を夫々94
重量部とエポキシ樹脂6重量部とからなる導電性ペース
トを塗布し、加熱硬化して導電ペースト層3を形成す
る。この上にはんだ層4を形成し、陰極リード5を接合
し、外装樹脂7を被覆する。このコンデンサは定格電圧
10V、容量10μFのもので、100KHZでインピ
ーダンスの測定を行った結果を第1表に示す。鱗片状銅
ペーストを用いたものが優れていることがわかる。
Example 1 A flaky copper powder having an average particle size of 15 μm and an aspect ratio of 1/20, a spherical copper powder having an average particle size of 15 μm, and a dendritic copper powder were added to the device 1 of Comparative Example 1 for 94 times.
A conductive paste consisting of parts by weight and 6 parts by weight of an epoxy resin is applied and cured by heating to form a conductive paste layer 3. The solder layer 4 is formed thereon, the cathode lead 5 is joined, and the exterior resin 7 is covered. This capacitor has a rated voltage of 10 V and a capacity of 10 μF, and the results of impedance measurement at 100 KHZ are shown in Table 1. It can be seen that the one using the flaky copper paste is excellent.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例2) 比較例1の素子1上に、平
均粒径の異なる鱗片状銅粉(94重量部)とエポキシ樹
脂(6重量部)を混練して導電ペースト層3を形成し、
実施例1と同様のコンデンサ素子を製作する。インピー
ダンスの測定は100KHZで行った。その結果を表2
に示す。平均粒径1〜20μm、アスペクト比1/10
〜1/120が適当であることがわかる。
Example 2 A conductive paste layer 3 was formed on the element 1 of Comparative Example 1 by kneading flaky copper powder (94 parts by weight) and epoxy resin (6 parts by weight) having different average particle sizes. ,
A capacitor element similar to that of the first embodiment is manufactured. The impedance was measured at 100 KHZ. Table 2 shows the results.
Shown in Average particle size 1-20 μm, aspect ratio 1/10
It turns out that 1/1/120 is appropriate.

【0018】[0018]

【表2】 [Table 2]

【0019】(実施例3) 平均粒径15μm、アスペ
クト比1/20の鱗片状銅粉に表3に示す金属粉を用
い、ペーストを混練し、コンデンサ素子を製作した。1
00KHZにおけるインピーダンスは3Ω以下が好まし
いため、試料NO.31,40,41は除外する。
(Example 3) A paste was kneaded with the metal powder shown in Table 3 for flaky copper powder having an average particle size of 15 µm and an aspect ratio of 1/20, and a capacitor element was manufactured. 1
Since the impedance at 00 KHZ is preferably 3Ω or less, the sample NO. 31, 40 and 41 are excluded.

【0020】[0020]

【表3】 [Table 3]

【0021】(実施例4) 平均粒径15μm、アスペ
クト比1/20の鱗片状銅粉と平均粒径0.8μmの銀
粉、更に平均粒径15μm、アスペクト比1/20の鱗
片状銅粉に銀を被覆(5%)したものを用いコンデンサ
素子を製作した。この結果を表4に示す。なお、NO.
51は銅ペーストの硬化を窒素雰囲気中でNO.52〜
58は大気中で行った。NO.52,57,58を除き
他は良かった。即ち、NO.52から明らかな通り、銀
粉が全く含まれない場合には、鱗片状銅粉の酸化のため
にはんだとの濡れ性が悪くなり、コンデンサ素子のイン
ピーダンスが増大する。また、NO.57及び58から
明らかな通り、銀粉の含有割合が15重量部より多くて
も、銀のはんだ喰われのためインピーダンスが増加す
る。従って、銀粉の含有割合は0重量部より多く、15
重量部以下が望ましい。
Example 4 A flaky copper powder having an average particle size of 15 μm and an aspect ratio of 1/20 and a silver powder having an average particle size of 0.8 μm, and further a flaky copper powder having an average particle size of 15 μm and an aspect ratio of 1/20. A capacitor element was manufactured using silver coated (5%). Table 4 shows the results. Note that NO.
No. 51 hardens the copper paste in a nitrogen atmosphere with NO. 52 ~
58 was performed in air. NO. Others were good except 52, 57, 58. That is, NO. As is clear from 52, silver
If no powder is contained, the scale-like copper powder is oxidized
The wettability with the solder deteriorates,
The impedance increases. In addition, NO. From 57 and 58
Obviously, the content of silver powder is more than 15 parts by weight.
Also increase impedance due to silver solder erosion
You. Therefore, the content ratio of silver powder is more than 0 parts by weight,
It is desirable to use not more than part by weight.

【0022】[0022]

【表4】 [Table 4]

【0023】(実施例5) 本発明の試料NO.1,
3,4及び53の素子を、公知の金属ケースに収納した
ケース入りコンデンサ、樹脂モールドしたチップ型コン
デンサ、はんだ外装した裸チップコンデンサの構造のも
のを製作しインピーダンス特性を実測した。その結果、
どの外装構造でも問題ないことがわかった。
Example 5 Sample No. 1 of the present invention 1,
The capacitors 3, 4, and 53 were housed in a well-known metal case, and were manufactured in the form of a cased capacitor, a resin-molded chip capacitor, and a bare chip capacitor with a solder sheath, and the impedance characteristics were measured. as a result,
It turns out that there is no problem with any exterior structure.

【0024】[0024]

【発明の効果】以上に説明した如く、本発明によればタ
ンタル固体電解コンデンサの素子上にはんだ層を接合す
る際、陰極層のはんだ喰われ性が改善されているためイ
ンピーダンスの増大がなく、素子にリード端子をはんだ
付け接合する作業において、はんだ付け時の温度、時
間、繰返し回数等の作業管理が大幅に改善でき、歩留り
向上、製品の特性安定化に寄与する発明である。
As described above, according to the present invention, when a solder layer is joined on a device of a tantalum solid electrolytic capacitor, the solder erosion of the cathode layer is improved, so that there is no increase in impedance. In the work of soldering and joining the lead terminals to the element, work management such as temperature, time, and number of repetitions at the time of soldering can be greatly improved, which contributes to improvement in yield and stabilization of product characteristics.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の断面図FIG. 1 is a sectional view of the present invention.

【符号の説明】[Explanation of symbols]

1…コンデンサ素子、 3…導電性ペースト層、 4…
はんだ層。
1 ... capacitor element 3 ... conductive paste layer 4 ...
Solder layer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01G 9/04──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01G 9/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タンタル焼結体の上に酸化皮膜層、酸化
マンガン層、カーボン被膜層を順次被覆し、この上に
スペクト比が1/10〜1/120の鱗片状銅粉を主体
とする導電性ペースト層を設け、さらにはんだ層を被覆
することを特徴とするタンタル固体電解コンデンサ。
1. An oxide film layer, a manganese oxide layer, and a carbon film layer are sequentially coated on a tantalum sintered body, and an
A tantalum solid electrolytic capacitor comprising a conductive paste layer mainly composed of flaky copper powder having a spectrum ratio of 1/10 to 1/120 , and further covering a solder layer.
【請求項2】 請求項1の導電性ペーストにおいて、鱗
片状銅粉の大きさが平均粒径1〜20μm、ペースト
固化体中の鱗片状銅粉量が70〜5重量%であるタン
タル固体電解コンデンサ。
2. A according to claim 1 conductive paste, the size average particle size 1~20μm of the scaly copper powder, scaly copper powder amount of the paste solidified body in is 70-9 5 wt% tantalum Solid electrolytic capacitor.
JP3223402A 1991-08-08 1991-08-08 Tantalum solid electrolytic capacitor Expired - Lifetime JP2783000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223402A JP2783000B2 (en) 1991-08-08 1991-08-08 Tantalum solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223402A JP2783000B2 (en) 1991-08-08 1991-08-08 Tantalum solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0547610A JPH0547610A (en) 1993-02-26
JP2783000B2 true JP2783000B2 (en) 1998-08-06

Family

ID=16797587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223402A Expired - Lifetime JP2783000B2 (en) 1991-08-08 1991-08-08 Tantalum solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2783000B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019902B2 (en) 2002-11-13 2007-12-12 松下電器産業株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP6103404B1 (en) * 2016-03-11 2017-03-29 福田金属箔粉工業株式会社 Conductive paste

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323307A (en) * 1986-07-16 1988-01-30 昭和電工株式会社 Solid electrolytic capacitor
JPS6347917A (en) * 1986-08-18 1988-02-29 昭和電工株式会社 Solid electrolytic capacitor
JPS63268241A (en) * 1987-04-27 1988-11-04 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JPH01268015A (en) * 1988-04-19 1989-10-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2523399B2 (en) * 1990-07-30 1996-08-07 日立エーアイシー株式会社 Tantalum solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0547610A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
US8075640B2 (en) Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
JPH0697010A (en) Solid tantalum capacitor and its manufacture
CA1192039A (en) Base metal conductor cathode coating for tantalum capacitors
GB2436211A (en) Capacitor Assembly Combining Electrolytic and Ceramic Capacitors
GB2445673A (en) A Fused Electrolytic Capacitor
JP4655689B2 (en) Solid electrolytic capacitor and its use
JP2783000B2 (en) Tantalum solid electrolytic capacitor
JPS6035387B2 (en) Conductive paint for solid electrolytic capacitors
JP5350564B1 (en) Solid electrolytic capacitor
JP2885101B2 (en) Manufacturing method of electrolytic capacitor
JP2850823B2 (en) Manufacturing method of chip type solid electrolytic capacitor
US4160284A (en) Capacitors and process for making same
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP2631010B2 (en) Thick film copper paste
US5958597A (en) Ceramic electronic part
WO2006027767A1 (en) Porous anode body for solid electrolyte capacitor and method for manufacturing the same
JP2002025864A (en) Niobium powder for capacitor, sintered compact using the same and capacitor using the compact
JP2523399B2 (en) Tantalum solid electrolytic capacitor
JP2833341B2 (en) Chip-shaped solid electrolytic capacitor
JP2004289139A (en) Chip type solid electrolytic capacitor
JP2000286154A (en) Manufacture of solid-state electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP3348642B2 (en) Manufacturing method of ceramic electronic components
JPS6325697B2 (en)