JPS6035387B2 - Conductive paint for solid electrolytic capacitors - Google Patents

Conductive paint for solid electrolytic capacitors

Info

Publication number
JPS6035387B2
JPS6035387B2 JP15267181A JP15267181A JPS6035387B2 JP S6035387 B2 JPS6035387 B2 JP S6035387B2 JP 15267181 A JP15267181 A JP 15267181A JP 15267181 A JP15267181 A JP 15267181A JP S6035387 B2 JPS6035387 B2 JP S6035387B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
metal
conductive paint
powder
electrolytic capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15267181A
Other languages
Japanese (ja)
Other versions
JPS5853965A (en
Inventor
國晴 別所
盛児 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15267181A priority Critical patent/JPS6035387B2/en
Publication of JPS5853965A publication Critical patent/JPS5853965A/en
Publication of JPS6035387B2 publication Critical patent/JPS6035387B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は価格低減を実現した固体電解コンデンサ用導電
塗料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive paint for solid electrolytic capacitors that achieves cost reduction.

固体電解コンデンサはタンタル(Ta)、アルミニウム
(Aそ)などの弁作用金属を陽極材料として素子が形成
されている。
The element of a solid electrolytic capacitor is formed using a valve metal such as tantalum (Ta) or aluminum (A) as an anode material.

第1図はか)る固体電解コンデンサの構成図であって、
陽極金属1は焼結体或はエッチング体のように単位体積
当り表面積を極度に拡大した形状で形成されており、こ
の表面は電解酸化処理により必要な耐圧をもつ酸化被膜
層2に変えられている。
Figure 1 is a block diagram of a solid electrolytic capacitor,
The anode metal 1 is formed in a shape with an extremely enlarged surface area per unit volume, such as a sintered or etched body, and this surface is converted into an oxide film layer 2 having the necessary withstand voltage by electrolytic oxidation treatment. There is.

次にこの上に絶縁と耐圧を高めるために酸化性半導体3
を形成後この上に陰極としてグラフアィト層4をまた拡
がり抵抗を減少し陰極リード線5をとり出すために導電
性塗膜6が施されてコンデンサ素子が形成されている。
Next, 3 oxide semiconductors are added on top of this to increase insulation and breakdown voltage.
After forming a graphite layer 4 as a cathode, a conductive coating film 6 is applied thereon to reduce resistance and to take out a cathode lead wire 5, thereby forming a capacitor element.

なお陰極リード線5は半田7により導電性塗膜6に接着
される。こ)で導電性塗腰は非酸化性の金属で且つ抵抗
率の少く半田づけ性のよいことが必要条件である。すな
わち陰極として作用するグラフアィト層の抵抗率は1〜
100弧と金属に較べて超かに高く、そのため充放電々
流の拡がり抵抗を減少するためと陰極端子を設けるため
に抵抗率が低く安定で半田づけ可能な金属からなる導電
性塗料の中にコンデンサ素子を浸潰しグラフアィト層に
含浸後焼付け処理することにより導電性塗膜が作られて
いる。
Note that the cathode lead wire 5 is bonded to the conductive coating film 6 by solder 7. In this case, the conductive coating must be a non-oxidizing metal, have low resistivity, and have good solderability. In other words, the resistivity of the graphite layer that acts as a cathode is 1~
100 arc, which is extremely high compared to metal, so in order to reduce the spreading resistance of charging and discharging currents and to provide a cathode terminal, conductive paint made of metal with low resistivity, stable and solderable is used. A conductive coating is made by soaking a capacitor element and impregnating it with a graphite layer and then baking it.

こ)で導電性塗料は平均粒径0.5仏m程度の金属粉と
有機ポリマーおよび有機溶媒によって形成されており金
属粉の材料として金(Au)、銀(Ag)鋼(Cu)な
どが知られているが抵抗率、価格および経時安定性の点
から銀塗料の使用が一般的である。
The conductive paint is made of metal powder with an average particle size of about 0.5 mm, an organic polymer, and an organic solvent.The materials for the metal powder include gold (Au), silver (Ag), steel (Cu), etc. However, silver paint is commonly used from the viewpoint of resistivity, price, and stability over time.

さて固体電解コンデンサの量産は金属バーに陽極素子の
リード線端を定間隔を保って多数溶援した形のものを作
業単位とし、これを複数個集合したもので1ロットを構
成してコンデンサの製作が行われているが、導電性塗膜
形成工程で消費される塗膜は莫大な量であり、そのため
この節減および低価格化が望まれていた。
Now, in the mass production of solid electrolytic capacitors, the work unit is a metal bar in which the lead wire ends of anode elements are welded in large numbers at regular intervals. However, a huge amount of coating film is consumed in the process of forming a conductive coating film, and therefore, there has been a desire to reduce this amount and reduce the cost.

本発明の目的は導電性塗料について低価格化を実現する
にあり、その方法として銀塗料の中に150メッシュ以
上の半田粉を固体コンデンサの特性に殆んど影響を及ぼ
さない程度すなわち銀との混合重量比が1;3までの範
囲に加えるもので以下図面によりこの添加の影響につい
て説明する。
The purpose of the present invention is to reduce the cost of conductive paint, and as a method to achieve this, solder powder of 150 mesh or more is added to silver paint to an extent that hardly affects the characteristics of solid capacitors, that is, to reduce the price of conductive paint. This is added when the mixing weight ratio is up to 1:3, and the effects of this addition will be explained below with reference to the drawings.

銀の抵抗率は20ooにおいて1.62×10‐60弧
と金属中では最も低く一方、半田は錫(Sn)と鉛(P
b)との組成比によって異るが抵抗率はこの一桁以上高
す、そのため銀粉に対し半田粉の添加量を増す場合はコ
ンデンサの等価直列抵抗の増加となって現われる。本発
明は塗料を構成する有機ポリマーの含有量を固定し、銀
粉に対する半田粉の混合比を変えたもので具体的な組成
比を挙げると金属粉6の重量%、エチルセルローズ5.
5重量%、変成アルキッド樹脂15.5重量%、テレビ
ン油7重量%、セロソルプla重量%からなり、金属粉
6の重量%中の銀粉に対する半田粉の混合比を0(60
:0)より1:5(10:50)まで6段階に変えて導
電性塗料を作つた。
The resistivity of silver is the lowest among metals at 1.62
Although it varies depending on the composition ratio with (b), the resistivity increases by more than one order of magnitude. Therefore, when the amount of solder powder added to silver powder is increased, the equivalent series resistance of the capacitor increases. In the present invention, the content of the organic polymer constituting the paint is fixed, and the mixing ratio of solder powder to silver powder is changed.The specific composition ratio is 6% by weight of metal powder, 5% by weight of ethyl cellulose.
5% by weight, modified alkyd resin 15.5% by weight, turpentine oil 7% by weight, and cellosol pla by weight.
:0) to 1:5 (10:50) in six steps to make conductive paints.

第2図および第3図はかかる導電性塗料を用いて試作し
たアルミニウム固体電解コンデンサ素子の特性図であり
、試作コンデンサの定格は1仏F,25WVである。
FIGS. 2 and 3 are characteristic diagrams of an aluminum solid electrolytic capacitor element prototyped using such a conductive paint, and the rating of the prototype capacitor is 1 French F, 25 WV.

こ〉で第2図Aは混合重量比に対するIKHZにおける
誘電正援値をまた同図Bは10MHZで測定したESR
(等価直列抵抗値)との関係図であり、半田粉の添加量
が増すに従って損失が増加してゆくこと力ミ半Uる。
Figure 2A shows the dielectric support value at IKHZ with respect to the mixing weight ratio, and Figure 2B shows the ESR measured at 10MHZ.
(equivalent series resistance value), showing that the loss increases as the amount of solder powder added increases.

こ)で本発明は混合重量比として1:3までのものを使
用するものでこの範囲では誘電正俊への影響は殆んどな
い。
In this case, the present invention uses a mixing weight ratio of up to 1:3, and within this range there is almost no effect on the dielectric strength.

一方ESRは混合比が増すに従って増加してゆくが、測
定周波数10MH2での規格値は1.50であり、混合
重量比が1:3の場合の最悪値でも0.80を越えるこ
とはなく、そのため請求範囲内の混合比ではコンデンサ
の特性への影響は僅かである。一方第3図は混合重量比
に対するリード線の引張り強度の関係であり、混合比が
増すに従って引張り強度は減少する。
On the other hand, ESR increases as the mixing ratio increases, but the standard value at a measurement frequency of 10 MH2 is 1.50, and even the worst value when the mixing weight ratio is 1:3 does not exceed 0.80. Therefore, the mixing ratio within the claimed range has only a slight effect on the characteristics of the capacitor. On the other hand, FIG. 3 shows the relationship between the tensile strength of the lead wire and the mixing weight ratio, and as the mixing ratio increases, the tensile strength decreases.

なおこの試験は陽極および陰極リード線の先端部を固定
しこれを相互に反対方向に引張った際の値であり、断線
は第1図で陰極リード線5を半田付けした導電性塗膜が
剥離することにより生じている。
Note that this test is based on the values obtained when the tips of the anode and cathode lead wires are fixed and pulled in opposite directions, and breakage occurs when the conductive coating to which the cathode lead wire 5 is soldered peels off as shown in Figure 1. This is caused by

こ)で本特許請求の範囲の最大混合比の1:3において
引張り強度の最小値は約100夕であるが、実質的にモ
ールド外装によりリード線引出し部は充分に強化保護さ
れており、実装に際してリード線端子の強さが不足する
ことはない。
In this case, the minimum value of the tensile strength is about 100 mm at the maximum mixing ratio of 1:3 as claimed in this patent, but the lead wire extraction part is substantially reinforced and protected by the molded exterior, and the mounting The strength of the lead wire terminal will not be insufficient in this case.

本発明は導電性塗料の価格低下を目的としてなされたも
のであり、導電性塗膜が半田付け可能なことが必要条件
であることから塗料添加金属として150メッシュ以上
の半田粉を選定したもので、このもの)銀粉に対する重
量混合比が1:3以内においては固体電解コンデンサの
電解的および機械的特性には殆んど影響を与えることな
く材料コストを大幅に下げることができた。
The present invention was made with the aim of reducing the price of conductive paint, and since it is a necessary condition for the conductive paint to be solderable, solder powder with a mesh size of 150 mesh or more was selected as the metal added to the paint. , this one) When the weight mixing ratio to silver powder was within 1:3, the material cost could be significantly lowered with almost no effect on the electrolytic and mechanical properties of the solid electrolytic capacitor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固体電解コンデンサの構成図、第2図Aは混合
重量比に対するコンデンサの誘電正接、また同図Bは等
価直列抵抗値との関係図、また第3図は混合重量比に対
するリード線引張り強度との関係図である。 図において、1は陽極金属、4はグラフアィト層、5は
陰極リード線、6は導電性塗膜、7は半田。 充’図 希z図 第3図
Figure 1 is a configuration diagram of a solid electrolytic capacitor, Figure 2 A is the dielectric loss tangent of the capacitor with respect to the mixture weight ratio, Figure B is a relationship diagram with the equivalent series resistance value, and Figure 3 is a lead wire diagram with respect to the mixture weight ratio. It is a relationship diagram with tensile strength. In the figure, 1 is an anode metal, 4 is a graphite layer, 5 is a cathode lead wire, 6 is a conductive coating film, and 7 is solder. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム、タンタルなどの弁作用金属を陽極と
し、電解酸化により生じた該金属の酸化物層を誘電体と
し酸化性半導体層およびグラフアイト層を陰極として構
成され、該グラフアイト上に塗布された導電塗膜を通じ
て陰極リード線との半田接続が行われている固体電解コ
ンデンサ素子において導電塗料の構成金属が150メツ
シユ以上の銀粉末および半田粉末の混合物で、重量比が
1:3までの金属粉により構成されていることを特徴と
する固体電解コンデンサ用導電塗料。
1 A valve metal such as aluminum or tantalum is used as an anode, an oxide layer of the metal produced by electrolytic oxidation is used as a dielectric, and an oxidizing semiconductor layer and a graphite layer are used as a cathode, and is coated on the graphite. In a solid electrolytic capacitor element in which a solder connection is made to a cathode lead wire through a conductive coating, the constituent metal of the conductive coating is a mixture of 150 mesh or more of silver powder and solder powder, and the metal powder has a weight ratio of up to 1:3. A conductive paint for solid electrolytic capacitors characterized by comprising:
JP15267181A 1981-09-26 1981-09-26 Conductive paint for solid electrolytic capacitors Expired JPS6035387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15267181A JPS6035387B2 (en) 1981-09-26 1981-09-26 Conductive paint for solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15267181A JPS6035387B2 (en) 1981-09-26 1981-09-26 Conductive paint for solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPS5853965A JPS5853965A (en) 1983-03-30
JPS6035387B2 true JPS6035387B2 (en) 1985-08-14

Family

ID=15545549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15267181A Expired JPS6035387B2 (en) 1981-09-26 1981-09-26 Conductive paint for solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JPS6035387B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137273U (en) * 1989-04-21 1990-11-15
CN102906836A (en) * 2010-05-26 2013-01-30 凯米特电子公司 Electronic component termination and assembly by means of transient liquid phase sintering and polymer solder pastes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597367B2 (en) * 1987-09-08 1997-04-02 日本リライアンス 株式会社 Method and control device for optimally changing acceleration / deceleration rate of rotary cutter
US7644724B2 (en) * 2000-05-17 2010-01-12 Robert Chaffee Valve with electromechanical device for actuating the valve
DE60211696T2 (en) 2001-07-10 2007-05-16 Robert B. Boston Chaffee CONFIGURABLE INFLATABLE SUPPORT DEVICE
CN102448348B (en) 2009-04-02 2016-01-20 罗伯特·B·查飞 There is the inflatable apparatus of fluid control and self-sealing valve
US8896986B2 (en) * 2010-05-26 2014-11-25 Kemet Electronics Corporation Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137273U (en) * 1989-04-21 1990-11-15
CN102906836A (en) * 2010-05-26 2013-01-30 凯米特电子公司 Electronic component termination and assembly by means of transient liquid phase sintering and polymer solder pastes

Also Published As

Publication number Publication date
JPS5853965A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
KR0165998B1 (en) Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
JP3080922B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4914769B2 (en) Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
JP4655689B2 (en) Solid electrolytic capacitor and its use
WO2000036617A1 (en) Niobium capacitor and method of manufacture thereof
US7283350B2 (en) Surface mount chip capacitor
JPS6035387B2 (en) Conductive paint for solid electrolytic capacitors
JP2009071300A (en) Solid-state electrolytic capacitor
JP2950670B2 (en) Solid electrolytic capacitors
JP5350564B1 (en) Solid electrolytic capacitor
JPH0213808B2 (en)
JP2790100B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2001035752A (en) Solid electrolytic capacitor
JP2783000B2 (en) Tantalum solid electrolytic capacitor
JP5041483B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003168633A (en) Solid electrolytic capacitor, its manufacturing method, conductive composite material, and its manufacturing method
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP3536951B2 (en) Tantalum solid electrolytic capacitor
JP2001338847A (en) Solid electrolytic capacitor
JPS6132807B2 (en)
US20120147520A1 (en) Capacitor structure and manufacturing method thereof
JPH10242000A (en) Tantalum solid electrolytic capacitor element and tantalum solid electrolytic capacitor
JP2523399B2 (en) Tantalum solid electrolytic capacitor
JP4934788B2 (en) Capacitor, capacitor element and manufacturing method thereof
JPH11274009A (en) Solid electrolytic capacitor and manufacture thereof