JPH0213808B2 - - Google Patents

Info

Publication number
JPH0213808B2
JPH0213808B2 JP15928680A JP15928680A JPH0213808B2 JP H0213808 B2 JPH0213808 B2 JP H0213808B2 JP 15928680 A JP15928680 A JP 15928680A JP 15928680 A JP15928680 A JP 15928680A JP H0213808 B2 JPH0213808 B2 JP H0213808B2
Authority
JP
Japan
Prior art keywords
powder
conductive
fine powder
layer
conductive paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15928680A
Other languages
Japanese (ja)
Other versions
JPS5783022A (en
Inventor
Isao Irikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15928680A priority Critical patent/JPS5783022A/en
Publication of JPS5783022A publication Critical patent/JPS5783022A/en
Publication of JPH0213808B2 publication Critical patent/JPH0213808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は安価で特性の優れた固体電解コンデン
サを提供するものである。 現在、固体電解コンデンサの陰極導電層には、
Ag導電性塗料が電気電導性、半田付け性が優れ、
塗料化が容易であることから一般的に多く用いら
れている。 ところが、最近Ag,Auなどの貴金属の値上り
が著しく、1時は23万円/Kgにも高騰しており、
固体電解コンデンサにおいても製品の値上を余儀
なくされている。 一方、Ag導電性塗料は半田付け性に優れてい
る反面、高温,長時間の半田付け時に“銀くわ
れ”現象が生じ、その結果コンデンサのtanδが増
大したり、半田耐熱性が悪くなつてしまうという
欠点が生じていた。 従つて、最近ではAg導電性塗料に代わる導電
材料が要求されるようになつてきた。 本発明はこのような現状に鑑み成されたもので
あり、以下本発明の内容について説明する。 従来のAg導電性塗料に代わるものとして、ま
ずCuの導電性塗料があるが、このCu導電性塗料
は半田付けが不可能であり、半田付けを必要とす
る用途には用いることができない。このCu導電
性塗料の他に、比較的電気導電性の優れたNi粉,
Sn粉,Zn粉などを用いて導電性塗料としたが、
いずれも半田付けができなかつた。 そこで、Ag導電性塗料であれば半田付けがで
きることから、前記金属粉末にAg粉末を一部混
合することにより、半田付け性を付与できるので
はとの発想の基に、Ni粉にAg粉を添加して混合
し、導電性塗料とした結果、本発明の目的とする
結果が得られた。 図に本発明の一実施例による固体電解コンデン
サの要部を示しており、図において1はタンタル
線のような陽極導出線1aを備えた陽極体であ
り、この陽極体1はタンタル粉末の焼結体の表面
の誘電体性酸化皮膜1bを形成することにより構
成されている。2はこの陽極体1上に形成した半
導体層としての二酸化マンガン層、3はこの二酸
化マンガン層2上に形成したカーボン層、4はこ
のカーボン層3上に形成した陰極導電層であり、
この陰極導電層4は、Ag以外の導電性微粉末と
Ag微粉末とからなる導電性粉を含む導電性塗料
により構成されている。5はこの陰極導電層4上
に形成した半田層である。 次に、本発明における具体的実施例について説
明する。 約99.9%純度の粒径4〜7μのNi粉末をベース
として、これに粒子形状が球形状または偏平状
で、そして粒径が0.1〜1μ,1〜5μ,5〜20μ,20
〜50μ,50〜100μそれぞれの99.5%純度のAg粉末
を混合し、結合剤としてメタクリル樹脂、溶剤と
して酢酸ブチルを用いて導電性塗料を得た。 なお、混合方法は、前記Ni粉末を一定量秤取
し、これに各種条件のAg粉末を添加し、めのう
乳鉢の中でよく撹拌して混合し、そして十分に混
合できた状態で、予め酢酸ブチルにメタクリル樹
脂を溶解させておいた溶液を入れて混練した。ま
た、この時、結合剤の量は導電性粉全体重量に対
して10重量%とし、溶剤である酢酸ブチルは粘度
調整のために適当量添加した。 そして、このようにして得た導電性塗料が半田
付け性およびコンデンサの陰極導電層としての電
気抵抗を有するどうかを試験するために、予め用
意しておいた定格35V,1μFのコンデンサ素子
(図に示す構造)のカーボン層上に塗布し、100℃
で30分の乾燥を行なつた後、フラツクスを塗布
し、これを200℃の半田浴に浸漬して半田付け性
を調べた。また、導電性塗料の電気抵抗測定の代
用として、コンデンサの120Hzにおけるtanδを測
定した。この結果を表1に示す。
The present invention provides a solid electrolytic capacitor that is inexpensive and has excellent characteristics. Currently, the cathode conductive layer of solid electrolytic capacitors has
Ag conductive paint has excellent electrical conductivity and solderability.
It is commonly used because it is easy to make into paint. However, recently the price of precious metals such as Ag and Au has increased significantly, and at 1 o'clock, the price had soared to 230,000 yen/Kg.
Solid electrolytic capacitors are also being forced to raise product prices. On the other hand, although Ag conductive paint has excellent solderability, it causes a "silver crack" phenomenon when soldering at high temperatures and for long periods of time, resulting in an increase in tanδ of the capacitor and poor soldering heat resistance. There was a drawback that it was stored away. Therefore, recently there has been a demand for a conductive material to replace the Ag conductive paint. The present invention has been made in view of the current situation, and the content of the present invention will be explained below. As an alternative to the conventional Ag conductive paint, there is a Cu conductive paint, but this Cu conductive paint cannot be soldered and cannot be used in applications that require soldering. In addition to this Cu conductive paint, Ni powder, which has relatively good electrical conductivity,
Conductive paint was made using Sn powder, Zn powder, etc.
I couldn't solder any of them. Therefore, since soldering is possible with Ag conductive paint, we thought that by mixing some Ag powder with the metal powder, we could impart solderability. Based on this idea, we added Ag powder to Ni powder. As a result of adding and mixing to form a conductive paint, the desired results of the present invention were obtained. The figure shows the main parts of a solid electrolytic capacitor according to an embodiment of the present invention. In the figure, 1 is an anode body equipped with an anode lead wire 1a such as a tantalum wire, and this anode body 1 is made of sintered tantalum powder. It is constructed by forming a dielectric oxide film 1b on the surface of the body. 2 is a manganese dioxide layer as a semiconductor layer formed on this anode body 1, 3 is a carbon layer formed on this manganese dioxide layer 2, 4 is a cathode conductive layer formed on this carbon layer 3,
This cathode conductive layer 4 is made of conductive fine powder other than Ag.
It is composed of conductive paint containing conductive powder made of Ag fine powder. 5 is a solder layer formed on this cathode conductive layer 4. Next, specific examples of the present invention will be described. Based on approximately 99.9% pure Ni powder with a particle size of 4 to 7μ, this has a spherical or flattened particle shape and a particle size of 0.1 to 1μ, 1 to 5μ, 5 to 20μ, 20
~50μ and 50~100μ of 99.5% purity Ag powder were mixed, and a conductive paint was obtained using methacrylic resin as a binder and butyl acetate as a solvent. The mixing method is to weigh out a certain amount of the Ni powder, add Ag powder under various conditions to it, stir well in an agate mortar to mix, and then add acetic acid in advance to the well-mixed state. A solution of methacrylic resin dissolved in butyl was added and kneaded. At this time, the amount of binder was 10% by weight based on the total weight of the conductive powder, and an appropriate amount of butyl acetate as a solvent was added to adjust the viscosity. In order to test whether the conductive paint obtained in this way has solderability and electrical resistance as a cathode conductive layer of a capacitor, a capacitor element with a rating of 35 V and 1 μF (as shown in the figure) was prepared in advance. (Structure shown) coated on the carbon layer and heated at 100℃.
After drying for 30 minutes, flux was applied and the solderability was examined by immersing it in a 200°C solder bath. In addition, as a substitute for measuring the electrical resistance of conductive paint, we measured the tan δ of the capacitor at 120 Hz. The results are shown in Table 1.

【表】【table】

【表】 この表1から明らかなようにNi粉末に混合す
るAg粉末の形状としては球形状よりも偏平形状
の方が半田付け性の上で有効である。これは、球
形状の場合、Ag粉末全体の表面積が小さいため
であると考えられる。また、球形状でも粒径が大
きくなれば、部分的に半田を付着させることがで
きるが、実用できない。 また、偏平形状であつても、粒径が非常に小さ
いと、やはり半田付けができなく、適当な粒径に
する必要がある。さらに、tanδは従来のAg導電
性塗料、例えば米国デユポン社の#4922(商品名)
を用いたものに比べて若干大きくなつたが、一般
品においては問題ではない。 次に、粒径が5〜20μの偏平形状のAg粉末の
Ni粉末への混合量を変えた場合の半田付け性と
tanδとについて調べた。なお、試験に使用した試
料については、上記と同様な方法により得た。こ
の結果を表2に示している。
[Table] As is clear from Table 1, when it comes to the shape of the Ag powder mixed with the Ni powder, a flat shape is more effective in terms of solderability than a spherical shape. This is considered to be because the surface area of the entire Ag powder is small in the case of a spherical shape. Further, even if the particle is spherical, if the particle size becomes large, solder can be applied partially, but this is not practical. Furthermore, even if the particle is flat, if the particle size is very small, soldering will not be possible, so it is necessary to set the particle size to an appropriate value. Furthermore, tanδ is a conventional Ag conductive paint, such as #4922 (trade name) from DuPont, USA.
Although it was slightly larger than the one using , it is not a problem for general products. Next, flat Ag powder with a particle size of 5 to 20 μm was prepared.
Solderability when changing the amount of Ni powder mixed
I investigated tanδ. The samples used in the test were obtained in the same manner as above. The results are shown in Table 2.

【表】 この表2から明らかなようにAg粉末の混合量
を増やすことにより半田付け性およびtanδ特性が
良好となるが、Agの混合量が増えると、その分
だけ価格が高くなつてしまい、あまり効果がなく
なつてしまう。 これらの実験の結果を考えると、粒径が3〜
50μのAg粉末を15〜50重量%添加するのが、価
格,半田付け性,tanδ特性の上で良好である。 ここで、本発明においてはNi粉末以外にも、
Ti,Zr,Ta,Cu,Co,Cr,Sn,Pb,Zn,Be,
Mo,W,TaC,HfC,MoC,TiC,HfN,
TiN,ZrN,InN,SnO3においてもAg粉末と混
合して使用すれば、同様な効果が得られ、またそ
れらを1種だけでなく、2種以上Ag粉末と混合
しても同様な効果が得られる。 以上のように本発明によれば、従来のものに比
べて安価に得ることができるとともに、高温度の
半田付け、長時間かけての半田付けにより生じる
tanδの増大をなくすことができるのである。
[Table] As is clear from Table 2, solderability and tanδ characteristics improve by increasing the amount of Ag powder mixed, but as the amount of Ag mixed increases, the price increases accordingly. It becomes less effective. Considering the results of these experiments, it is clear that the particle size is 3~
Adding 15 to 50% by weight of 50μ Ag powder is good in terms of price, solderability, and tanδ characteristics. Here, in the present invention, in addition to Ni powder,
Ti, Zr, Ta, Cu, Co, Cr, Sn, Pb, Zn, Be,
Mo, W, TaC, HfC, MoC, TiC, HfN,
A similar effect can be obtained by mixing TiN, ZrN, InN, and SnO 3 with Ag powder, and a similar effect can be obtained by mixing not only one type but two or more of them with Ag powder. can get. As described above, according to the present invention, it is possible to obtain the product at a lower cost compared to the conventional products, and the problem that occurs due to high temperature soldering or long time soldering.
This makes it possible to eliminate the increase in tanδ.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例による固体電解コンデン
サの要部を示す断面図である。 1…陽極体、1a…陽極導出線、1b…誘電体
性酸化皮膜、2…二酸化マンガン層、3…カーボ
ン層、4…陰極導電層、5…半田層。
The figure is a sectional view showing essential parts of a solid electrolytic capacitor according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Anode body, 1a... Anode lead wire, 1b... Dielectric oxide film, 2... Manganese dioxide layer, 3... Carbon layer, 4... Cathode conductive layer, 5... Solder layer.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極導出線を備えかつ表面に誘電体性酸化皮
膜を形成した陽極体上に半導体層,カーボン層,
陰極導電層を順次積層形成してなる固体電解コン
デンサにおいて、Ti,Zr,Ta,Ni,Cu,Co,
Cr,Sn,Pb,Zn,Be,Mo,W,TaC,HfC,
MoC,TiC,HfN,TiN,ZrN,InN,SnO2
うちの少なくとも1種の導電性微粉末と粒径が3
〜50μの偏平形状のAg微粉末とからなる導電性粉
を含む導電性塗料により前記陰極導電層を形成
し、かつ導電性微粉末に対してAg微粉末を15〜
50重量%混合したことを特徴とする固体電解コン
デンサ。
1 A semiconductor layer, a carbon layer,
In solid electrolytic capacitors formed by sequentially laminating cathode conductive layers, Ti, Zr, Ta, Ni, Cu, Co,
Cr, Sn, Pb, Zn, Be, Mo, W, TaC, HfC,
Conductive fine powder of at least one of MoC, TiC, HfN, TiN, ZrN, InN, SnO 2 and a particle size of 3
The cathode conductive layer is formed with a conductive paint containing conductive powder consisting of ~50μ flat-shaped Ag fine powder, and 15~50 μm of Ag fine powder is added to the conductive fine powder.
A solid electrolytic capacitor characterized by a 50% mixture by weight.
JP15928680A 1980-11-11 1980-11-11 Solid electrolytic condenser Granted JPS5783022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15928680A JPS5783022A (en) 1980-11-11 1980-11-11 Solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15928680A JPS5783022A (en) 1980-11-11 1980-11-11 Solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS5783022A JPS5783022A (en) 1982-05-24
JPH0213808B2 true JPH0213808B2 (en) 1990-04-05

Family

ID=15690471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15928680A Granted JPS5783022A (en) 1980-11-11 1980-11-11 Solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS5783022A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161315A (en) * 1982-03-18 1983-09-24 日本電気ホームエレクトロニクス株式会社 Electronic part
JPS63245918A (en) * 1986-11-21 1988-10-13 松尾電機株式会社 Solid electrolytic capacitor
JPS63296332A (en) * 1987-05-28 1988-12-02 Hitachi Condenser Co Ltd Solid-state electrolytic capacitor
JP2504182B2 (en) * 1989-04-24 1996-06-05 日本電気株式会社 Solid electrolytic capacitor
JP4368349B2 (en) 2002-12-13 2009-11-18 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP4553770B2 (en) * 2005-03-29 2010-09-29 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP5934478B2 (en) * 2011-07-13 2016-06-15 サン電子工業株式会社 Solid electrolytic capacitor
JP6309041B2 (en) * 2016-05-09 2018-04-11 サン電子工業株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS5783022A (en) 1982-05-24

Similar Documents

Publication Publication Date Title
JPS6016041B2 (en) Paste for forming thick film conductors
US20060022173A1 (en) Conductive paste
JPWO2008035727A1 (en) Multilayer ceramic capacitor
JPWO2006022258A1 (en) Multilayer ceramic capacitor and its equivalent series resistance adjustment method
US4130854A (en) Borate treated nickel pigment for metallizing ceramics
JPS6355807A (en) Conducting paste
JPH0213808B2 (en)
JPS58178903A (en) Conductive paste
US4168519A (en) Capacitor with tin-zinc electrodes
JPS5853965A (en) Electrically-conductive coating compound for solid electrolysis condenser
JPH11135377A (en) Solid electrolytic capacitor and its manufacture
JP3318299B2 (en) Pb-free low-temperature firing type conductive paint
JPH0440803B2 (en)
JPS60192319A (en) Solid electrolytic condenser
JPS63119105A (en) Conducting paste
JPH0370361B2 (en)
JPS6048091B2 (en) solid electrolytic capacitor
JPS62195111A (en) Chip-type laminated porcelain capacitor
JPH07105719A (en) Conductive paste and resistor element
JP3939634B2 (en) Conductive paste for ohmic electrode formation
JPH07105721A (en) Manufacture of conductive paste
JPH06349316A (en) Conductive paste
JPH02264417A (en) Solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JP3360337B2 (en) Conductive paste