JPS62195111A - Chip-type laminated porcelain capacitor - Google Patents

Chip-type laminated porcelain capacitor

Info

Publication number
JPS62195111A
JPS62195111A JP3809986A JP3809986A JPS62195111A JP S62195111 A JPS62195111 A JP S62195111A JP 3809986 A JP3809986 A JP 3809986A JP 3809986 A JP3809986 A JP 3809986A JP S62195111 A JPS62195111 A JP S62195111A
Authority
JP
Japan
Prior art keywords
solder
chip
metal
external electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3809986A
Other languages
Japanese (ja)
Other versions
JPH0722064B2 (en
Inventor
信儀 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61038099A priority Critical patent/JPH0722064B2/en
Publication of JPS62195111A publication Critical patent/JPS62195111A/en
Publication of JPH0722064B2 publication Critical patent/JPH0722064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は、外部電極が耐ハンダ性に優れ、かつ安価に製
造し得るチップ型積層磁器コンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a chip-type multilayer ceramic capacitor whose external electrodes have excellent solder resistance and which can be manufactured at low cost.

(背景技術) 市販のチップ型積層磁器コンデンサは誘電体表面に内部
電極を形成したものを複数枚積層して一体焼成し、この
側面に形成する外部接続用電極(外部電極)に前記内部
電極を交互に並列に接続するような構造としており、回
路基板に直接ハンダ付けして使用される。近時このよう
な超小型で実装時、回路基板へ直接ハンダ付けされるチ
ップ型積層コンデンサは、ハンダ付は実装時のハンダ熱
が外部電極に大きく影響を与えることから、この外部電
極の耐ハンダ性およびハンダぬれ性の向上が要求される
(Background Art) Commercially available chip-type multilayer ceramic capacitors have internal electrodes formed on the surface of a dielectric material, which are laminated and fired together, and the internal electrodes are attached to external connection electrodes (external electrodes) formed on the side surfaces of the multilayer ceramic capacitors. It has a structure in which they are connected alternately in parallel, and is used by directly soldering to a circuit board. Nowadays, chip-type multilayer capacitors, which are ultra-small and are soldered directly to a circuit board when mounted, have a high resistance to soldering of the external electrodes because the soldering heat during mounting has a large effect on the external electrodes. Improvement in solderability and solderability is required.

また、最近に至り、安価な積N磁器コンデンサを得るこ
とを目的として、従来から内部電極として使用されてい
た貴金属であるパラジウムあるいは銀パラジウムに代わ
り、卑金属であるニッケル(旧)を使用すること案出さ
れている。そこで外部電極としてニッケルになじみの良
い金属が要求されている。
In addition, recently, with the aim of obtaining inexpensive N-product ceramic capacitors, it has been proposed to use nickel (old), a base metal, in place of palladium, a noble metal, or silver palladium, which has traditionally been used for internal electrodes. It's being served. Therefore, a metal that is compatible with nickel is required for the external electrode.

(発明が解決しようとする問題点) 上述の要求に対し、外部電極として銀または銀パラジウ
ムを適用することが考えられるが、このような貴金属を
使用することはコンデンサのトータルコストを高くする
のみならず、内部電極午な、□じみが悪いために内部電
極と外部電極との接続が   ゛不充分となり、コンデ
ンサの静電容量低下及び誘電損失(tanδ)増大を招
く。一方、この外部電極に内部電極のニッケル(旧)と
なじみがよく、電極同士の接合性のよい金属としてニッ
ケルまなは内部電極と合金化しやすい銅、鉄、コバルト
などを選択することも考えられる。しかしながら、ニッ
ケル(Ni)または内部電極と合金化しゃすい」1記の
金属の単体を使用した場合、たとえば、ニッケル(Ni
)またはコバル) (Co)を単体で用いる場合、ニッ
ケル(Ni)またはコハル) (Co)は磁性を有する
た 、め、これをガラス成分と混合した際、金属粉末同
士が引き付は合い、凝集するといった問題が生じる。そ
の結果、焼付けられた外部電極の緻密性が低下して外部
電極強度が劣化するとともに、誘電体への固着強度が弱
くなる。一方、例えば銅(Cu)単体で用いる場合、銅
(Cu)はガラスとのぬれ性が悪いのでこれをガラス粉
末に混合して非酸化性雰囲気中で焼成すると、銅(Cu
)とガラスとが分離する状態となる。その結果、焼(=
t tJられた外部電極の緻密性が低下して、外部電極
強度が劣化するとともに、誘電体への固着強度が弱くな
る。
(Problems to be Solved by the Invention) In order to meet the above requirements, it is conceivable to use silver or silver palladium as the external electrode, but using such a noble metal would only increase the total cost of the capacitor. First, due to the poor quality of the internal electrodes, the connection between the internal and external electrodes becomes insufficient, resulting in a decrease in capacitance and an increase in dielectric loss (tan δ) of the capacitor. On the other hand, it is also conceivable to select for this external electrode a metal that is compatible with the nickel (old) of the internal electrode and has good bonding properties between the electrodes, such as copper, iron, or cobalt, which is easily alloyed with nickel or the internal electrode. However, when using nickel (Ni) or a simple substance of the metal described in 1.
) or cobal) (Co) is used alone, nickel (Ni) or cobal) (Co) is magnetic, so when it is mixed with a glass component, the metal powders attract each other and agglomerate. The problem arises that As a result, the density of the baked external electrode decreases, the strength of the external electrode deteriorates, and the strength of adhesion to the dielectric becomes weak. On the other hand, when copper (Cu) is used alone, copper (Cu) has poor wettability with glass, so if it is mixed with glass powder and fired in a non-oxidizing atmosphere, copper (Cu)
) and the glass become separated. As a result, grilled (=
The density of the external electrode that has been subjected to t tJ decreases, the strength of the external electrode deteriorates, and the strength of adhesion to the dielectric becomes weak.

一方、耐ハンダ性およびハンダぬれ性に対しては、耐ハ
ンダ性に優れたパラジウムを多く含む、例えば、銀パラ
ジウム外部電極の表面にさらに耐ハンダ性の良1.)ニ
ッケルのメッキ膜を設けることが提案されているが、耐
ハンダ性は、メッキ膜の厚みに大きく依存し、その厚み
が薄いと実装時に容易に溶融ハンダに食われるという欠
点を有している。
On the other hand, with regard to solder resistance and solder wettability, for example, silver-palladium external electrodes containing a large amount of palladium, which has excellent solder resistance, may be further coated with a layer of 1. ) It has been proposed to provide a nickel plating film, but the solder resistance largely depends on the thickness of the plating film, and if it is thin, it has the disadvantage that it is easily eaten away by molten solder during mounting. .

(発明の目的) 本発明は上記欠点を解決することを目的とするもので、
特に内部電極であるニッケルとなじみが良く、耐ハンダ
性および長期的にハンダぬれ性に優れた外部電極を有し
、安価に製造し得るチップ型積層磁器コンデンサを提供
するにある。
(Object of the invention) The present invention aims to solve the above-mentioned drawbacks.
It is an object of the present invention to provide a chip type multilayer ceramic capacitor which has an external electrode which is particularly compatible with nickel which is an internal electrode, has excellent solder resistance and long-term solder wettability, and which can be manufactured at a low cost.

(問題点を解決するための手段) 即ち、本発明はニッケルを内部電極とするコンデンサに
おいて外部電極をNi、Coのいずれか1種と銅を含む
金属成分とガラス成分の焼結体から成る第1層膜と、該
膜上に錫、ハンダ、ニッケルまたは金から選ばれる金属
のメッキ膜で構成された第2層膜の積層構造とすること
によって上記目的が達成される。
(Means for Solving the Problems) That is, the present invention provides a capacitor having an internal electrode made of nickel, in which the external electrode is made of a sintered body of a metal component containing one of Ni or Co, and a glass component. The above object is achieved by forming a laminated structure of a single-layer film and a second-layer film formed of a metal plating film selected from tin, solder, nickel, or gold on the film.

以下、本発明を詳述する。The present invention will be explained in detail below.

第1図は本発明に適応する積層型磁器コンデンサの構造
例を示す断面図である。本発明の磁器コンデンサは内部
電極1が形成された誘電体2を積層、焼成した後、その
側面に外部電極3を形成して成り、外部電極3は、焼結
体から成る第1層膜4と、メッキ膜である第2層膜5に
より構成される。なお第1層膜4の焼結体は金属成分と
ガラス成分とから成り、いわゆるペーストを焼付ること
により形成されるものである。
FIG. 1 is a sectional view showing a structural example of a multilayer ceramic capacitor adapted to the present invention. The ceramic capacitor of the present invention is constructed by laminating and firing a dielectric material 2 on which an internal electrode 1 is formed, and then forming an external electrode 3 on the side surface thereof. and a second layer film 5 which is a plating film. The sintered body of the first layer film 4 is made of a metal component and a glass component, and is formed by baking a so-called paste.

本発明によれば外部電極の第1層膜の金属成分がガラス
成分とぬれ性のよい金属と、非磁性でガラス成分への分
散性のよい金属とから成ることが重要である。前者の金
属としてはNi、Coが好ましく、後者の金属としては
Cuが好ましい。
According to the present invention, it is important that the metal component of the first layer film of the external electrode consists of a metal that has good wettability with the glass component and a metal that is nonmagnetic and has good dispersibility in the glass component. The former metal is preferably Ni or Co, and the latter metal is preferably Cu.

これらの金属成分は各々、単独で用いた場合、例えばN
i、Coのみでは前述したようにこれらの金属が磁性を
有するために金属粒子相互が引付は合い、ガラス成分が
分離された状態となってペーストの混合が不均一となる
。その結果、焼付けられた外部電極2の緻密性が低下し
て外部電極強度が劣化するとともに、誘電体3への同線
強度が弱くなる。
When each of these metal components is used alone, for example, N
If only i, Co is used, as described above, since these metals have magnetic properties, the metal particles will be attracted to each other, and the glass component will be separated, resulting in non-uniform mixing of the paste. As a result, the density of the baked external electrode 2 is reduced, the strength of the external electrode is deteriorated, and the in-line strength to the dielectric 3 is weakened.

一方、銅を単独で用いた場合も、ガラスとのぬれ性が悪
いために銅とガラス成分とが分離し、電極の強度および
誘電体への固着強度が弱くなる。
On the other hand, even when copper is used alone, the copper and glass components separate due to poor wettability with glass, resulting in weakening of the strength of the electrode and the strength of its adhesion to the dielectric.

上記のような見地から、Ni、CoとCuとの量比は9
5:5乃至5;95、好ましくは90:lO乃至10:
90に設定される。
From the above point of view, the quantitative ratio of Ni, Co and Cu is 9.
5:5 to 5;95, preferably 90:1O to 10:
Set to 90.

焼結体中のガラス成分としては、ホウケイ酸鉛、ホウケ
イ酸ビスマス、ホウケイ酸亜鉛等が知られているが、中
性又は弱還元性雰囲気での焼成を行う場合にはホウケイ
酸亜鉛が望ましい。
Lead borosilicate, bismuth borosilicate, zinc borosilicate, etc. are known as glass components in the sintered body, but zinc borosilicate is preferable when firing in a neutral or weakly reducing atmosphere.

本発明における第2層膜は、第1層膜に含有さ〜6一 れる金属成分が酸化され易いことに起因する経時的性能
低下、および最外層として回路基板への実装の際のハン
ダぬれ性を改善するものであって、メッキ法によって設
けられる。ハンダぬれ性に優れた金属としては、錫、ハ
ンダ(Sn−Pb)が好ましい。
The second layer film in the present invention has the following characteristics: performance deterioration over time due to easy oxidation of metal components contained in the first layer film, and solder wettability when mounted on a circuit board as the outermost layer. It is provided by a plating method. As the metal with excellent solder wettability, tin and solder (Sn--Pb) are preferred.

本発明のニッケルを内部電極とするチップ型積層磁器コ
ンデンサは、外部電極の上述の構成によって、回路基板
に溶融ハンダ等によって実装する場合、外部電極の第2
層膜によるハンダぬれ性の改善によって電気的、機械的
にも確実に実装することが可能となり、しかも、第2層
膜に溶融ハンダによる食われが生しても第1層膜におけ
る焼結体中の金属成分は、ハンダに対し、熔解速度が小
さいため、優れた耐ハンダ性が確保される。なお、耐ハ
ンダ性は電極の厚みに大きく起因するが、第1層膜が焼
結体として設けられることからその膜厚を容易に大きく
することができ、それにより、耐ハンダ性を確実に付与
することができる。
The chip-type multilayer ceramic capacitor of the present invention having nickel as an internal electrode has the above-described configuration of the external electrode, and when mounted on a circuit board with molten solder or the like, the second
The improved solder wettability of the layered film enables reliable electrical and mechanical mounting, and even if the second layer is eaten away by molten solder, the sintered body in the first layer remains intact. Since the metal component inside has a lower melting rate than solder, excellent solder resistance is ensured. Note that solder resistance largely depends on the thickness of the electrode, but since the first layer film is provided as a sintered body, the film thickness can be easily increased, thereby ensuring solder resistance. can do.

上述のことから本発明における外部電極の厚みは、第1
層膜を厚みが最も薄くなるチップの角部でIO乃至40
μm、第2層膜を1乃至3μ「に設定することが望まし
い。
From the above, the thickness of the external electrode in the present invention is the first
The thickness of the layer is IO to 40 at the corner of the chip where the thickness is the thinnest.
It is desirable to set the second layer film to 1 to 3 μm.

本発明の磁器コンデンサの製造にあたっては公知の手段
を用いることができる。まず、ペーストの調製では、ガ
ラス成分としてその組成成分を所定量配合して溶融後、
急冷、粉砕してガラス粉末を得、このガラス粉末に対し
金属成分としてCoおよびNiまたはCoの粉末を(ガ
ラス成分;金属成分)体積比が10j90乃至25ニア
5となる割合で、また有機ヒビクル(有機バインダー溶
液)を添加し、3本ロール等の混合手段にて混合すると
ともに有機溶剤によってその粘度を調整することによっ
てペーストが得られる。
Known means can be used to manufacture the ceramic capacitor of the present invention. First, in preparing the paste, a predetermined amount of the glass component is blended and melted.
A glass powder is obtained by rapid cooling and pulverization, and Co and Ni or Co powder are added as metal components to the glass powder at a volume ratio of 10j90 to 25Nia5, and an organic vehicle ( A paste is obtained by adding an organic binder solution (organic binder solution) and mixing with a mixing means such as a three-roller, and adjusting the viscosity with an organic solvent.

このペーストの調製に当たり、金属成分は、各々粉末と
して添加する他、予め、合金化した粉末を添加すること
も、分散性において有利である。
In preparing this paste, in addition to adding each metal component as a powder, it is also advantageous in terms of dispersibility to add alloyed powder in advance.

得られたペーストをニッケルを内部電極とする積層磁器
コンデンサの端部に塗布し、乾燥後、酸化防止のため窒
素雰囲気中で焼成し、焼付を行う。
The obtained paste is applied to the end of a multilayer ceramic capacitor with nickel as an internal electrode, and after drying, baking is performed in a nitrogen atmosphere to prevent oxidation.

なお、この窒素雰囲気中での焼成に際し、誘電体自体が
還元される可能性があるため、誘電体としては例えば、
特願昭60−35049号、特開昭54−159657
号、同55−67567号、同55−67568号、同
57−71866号、特願昭60−35049号等に記
載の非還元性誘電体組成物を用いると良い。
Note that during firing in this nitrogen atmosphere, there is a possibility that the dielectric itself may be reduced, so for example, as a dielectric,
Patent Application No. 60-35049, JP 54-159657
It is preferable to use the non-reducible dielectric compositions described in Japanese Patent No. 55-67567, No. 55-67568, No. 57-71866, and Japanese Patent Application No. 60-35049.

次に第2層膜の形成は、周知のメッキ法、例えば電解メ
ッキ、無電解メッキ等によって行うことができるが特に
製品が小さく生産性の点から回転バレルメッキが望まし
い。
Next, the second layer film can be formed by a well-known plating method such as electrolytic plating or electroless plating, but rotary barrel plating is particularly preferred from the viewpoint of small size and productivity.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例) 〔試料の作成〕 化学純度99.5″A以上、平均粒径1.08mの第1
表組成の金属成分と有機ヒビクルとホウケイ酸亜鉛ガラ
ス粉末とを70 : 25 : 5の重量割合で秤量し
、3本ロールミルにより混合し、混合後のペーストに有
機溶剤を添加してペーストの粘度を調整し、外部電極焼
付用ペーストを得た。
(Example) [Preparation of sample] First sample with chemical purity of 99.5″A or higher and average particle size of 1.08 m.
The metal components, organic vehicle, and zinc borosilicate glass powder in the table composition were weighed at a weight ratio of 70:25:5, mixed using a three-roll mill, and an organic solvent was added to the mixed paste to adjust the viscosity of the paste. After adjustment, a paste for baking external electrodes was obtained.

また、特願昭60−35049号に記載のニッケル内部
電極の積層磁器コンデンサ(外形寸法3.18mmX1
゜57mmX0.75m+nL)を製作し、評価用試料
チップとした。
In addition, a multilayer ceramic capacitor with nickel internal electrodes (external dimensions 3.18 mm x 1
゜57 mm x 0.75 m + nL) was manufactured and used as a sample chip for evaluation.

このチップに対し、その両端に前述のペーストを塗布し
、150℃で乾燥後、窒素雰囲気中で850℃で10分
間保持し、外部電極焼成膜(第1層膜)を形成した。焼
成膜の厚みは平面部で約80μm、角部で約20μmで
あった。
The above-mentioned paste was applied to both ends of this chip, dried at 150°C, and held at 850°C for 10 minutes in a nitrogen atmosphere to form an external electrode fired film (first layer film). The thickness of the fired film was approximately 80 μm at the flat surface and approximately 20 μm at the corners.

次に、この第1層膜の表面に電解スズ(Sn)メッキ又
は電解ハンダ(Sn−Pb)メッキを約2μmの膜厚で
設けた。なおハンダの組成は90Sn−10Pbであっ
た。
Next, electrolytic tin (Sn) plating or electrolytic solder (Sn--Pb) plating was provided on the surface of this first layer film to a thickness of about 2 μm. The composition of the solder was 90Sn-10Pb.

(特性の測定) 得られた各試料について25℃において同波数IKHz
および入力電圧IVrn+sにて静電容量および誘電損
失(tanδ)を測定した。また、直流電圧50Vを1
分間充電後の絶縁抵抗(IR)を測定した。
(Measurement of characteristics) The same wave number IKHz at 25°C for each sample obtained.
And the capacitance and dielectric loss (tan δ) were measured at an input voltage IVrn+s. In addition, the DC voltage of 50V is 1
Insulation resistance (IR) was measured after charging for minutes.

ハンダぬれ性の評価は各試料作成後、1日および90日
間自然放置後の試料を230℃のハンダ融液に4秒間浸
漬し、ハンダぬれの状態を10倍実体顕徽鏡で観察した
。外部電極の90%以上がハンダで覆われている場合を
良とした。
The solder wettability was evaluated by immersing each sample for 4 seconds in a solder melt at 230° C. after preparing each sample, leaving it for 1 day and 90 days, and observing the state of solder wetting using a 10x stereoscopic microscope. A case where 90% or more of the external electrode was covered with solder was considered good.

また、耐ハンダ性の評価は、試料作成後、1日自然放置
後270℃のハンダ融液に3秒、30秒、1分および2
分間浸漬し、電気的特性および外観を評価した。外観の
観察は10倍実体顕微鏡により行い、外部電極の1部又
は全部の剥離がない場合、良とした。
In addition, the evaluation of solder resistance was conducted after preparing the sample, leaving it for 1 day, and then soaking it in a solder melt at 270°C for 3 seconds, 30 seconds, 1 minute, and 2 seconds.
It was immersed for a minute and the electrical properties and appearance were evaluated. The appearance was observed using a 10x stereoscopic microscope, and if there was no peeling of part or all of the external electrodes, it was judged as good.

さらに、外部電極固着力試験として、銅配線ガラスエポ
キシ基板にハンダ付けし、基板の裏より押し、破壊時の
力の強さを測定した。
Furthermore, as an external electrode adhesion test, the copper wiring was soldered to a glass epoxy board, pressed from the back of the board, and the strength of the force at breakage was measured.

結果は第1表に示した。The results are shown in Table 1.

第1表から明らかなように、第1層膜のみで第2層膜を
設けなかったlkl、4.7はいずれも電気特性、耐ハ
ンダ性には問題はないが、長期的ハンダぬれ性において
、不十分で90日で劣化が見られた。
As is clear from Table 1, there are no problems with electrical properties and solder resistance in both LKL and 4.7, which have only the first layer film and no second layer film, but they have poor long-term solder wettability. , and deterioration was observed after 90 days.

また、第1層膜の金属成分を1種にて行った阻10.1
1.12は電気的特性、ハンダぬれ性、耐ハンダ性とも
問題はないが、固着強度が低いものであり、中には外部
電極にクラックが生じているものもあった。
In addition, 10.1 in which the metal component of the first layer film was made of one type
No. 1.12 had no problems with electrical properties, solder wettability, and solder resistance, but had low adhesion strength, and some had cracks in the external electrodes.

これに対し、本発明の試料1に2.3.5.6.8.9
はいずれも優れた電気特性、ハンダぬれ性、耐ハンダ性
固着力を示した。
In contrast, sample 1 of the present invention has 2.3.5.6.8.9
All exhibited excellent electrical properties, solder wettability, and solder resistance.

(発明の効果) 以上述べたように、本発明のチップ型積層磁器コンデン
サは、ニッケルを内部電極とするものでその外部電極と
して第1層膜として、Niまたは/およびCoとCuを
金属成分とする焼結体により構成し、この層膜上に第2
層膜としてSnまたはSn”Pbのメッキ膜を設けるこ
とにより、内部電極とのなじみ、密着性を向上させると
ともに外部電極自体の基板実装時の耐ハンダ性、ハンダ
ぬれ性を改善し、且つ長期に亘り、ハンダぬれ性を維持
することができる。
(Effects of the Invention) As described above, the chip type multilayer ceramic capacitor of the present invention has nickel as the internal electrode, and the first layer film as the external electrode, and Ni or/and Co and Cu as the metal components. A second layer is formed on the sintered body.
By providing a Sn or Sn''Pb plating film as a layer, it improves compatibility and adhesion with the internal electrodes, improves the solder resistance and solder wettability of the external electrodes themselves when mounted on the board, and provides long-term performance. Solder wettability can be maintained throughout.

また、使用する成分自体、安価なものであることからコ
ンデンサとして安価なものを提供することができる。
Further, since the components used are themselves inexpensive, it is possible to provide an inexpensive capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適応する積層型磁器コンデンサの構造
例を示す断面図である。 1・・・内部電極 2・・・誘電体 3・・・外部電極 4・・・第1層膜 5・・・第2層膜
FIG. 1 is a sectional view showing a structural example of a multilayer ceramic capacitor adapted to the present invention. 1... Internal electrode 2... Dielectric 3... External electrode 4... First layer film 5... Second layer film

Claims (1)

【特許請求の範囲】[Claims]  ニッケルから成る内部電極が形成された複数の誘電体
を積層して焼成し、その側面に外部電極を形成したチッ
プ型積層磁器コンデンサにおいて、前記外部電極がNi
、Coの少なくともいずれか1種および銅を含む金属成
分とガラス成分から成る焼結体で構成された第1層膜と
、該第1層膜上に積層され、錫あるいはハンダから選ば
れる金属のメッキ膜で構成された第2層膜とを具備した
ことを特徴とするチップ型積層磁器コンデンサ。
In a chip type multilayer ceramic capacitor in which a plurality of dielectrics each having an internal electrode made of nickel are laminated and fired, and an external electrode is formed on the side surface of the dielectric, the external electrode is made of nickel.
, Co, and a sintered body consisting of a metal component containing copper and a glass component, and a metal selected from tin or solder laminated on the first layer film. A chip-type multilayer ceramic capacitor characterized by comprising a second layer film composed of a plating film.
JP61038099A 1986-02-21 1986-02-21 Chip type laminated porcelain capacitors Expired - Lifetime JPH0722064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038099A JPH0722064B2 (en) 1986-02-21 1986-02-21 Chip type laminated porcelain capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038099A JPH0722064B2 (en) 1986-02-21 1986-02-21 Chip type laminated porcelain capacitors

Publications (2)

Publication Number Publication Date
JPS62195111A true JPS62195111A (en) 1987-08-27
JPH0722064B2 JPH0722064B2 (en) 1995-03-08

Family

ID=12516026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038099A Expired - Lifetime JPH0722064B2 (en) 1986-02-21 1986-02-21 Chip type laminated porcelain capacitors

Country Status (1)

Country Link
JP (1) JPH0722064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285313A (en) * 1990-03-31 1991-12-16 Tdk Corp Chip capacitor and manufacture thereof
JP2011129688A (en) * 2009-12-17 2011-06-30 Tdk Corp Electronic component and terminal electrode
JP2012004189A (en) * 2010-06-14 2012-01-05 Namics Corp Multilayer ceramic capacitor
KR20180028237A (en) * 2016-09-08 2018-03-16 삼성전기주식회사 Multilayer ceramic electronic component and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105318A (en) * 1978-11-16 1980-08-12 Union Carbide Corp Ceramic capacitor having terminal calcined
JPS5874030A (en) * 1981-10-28 1983-05-04 ティーディーケイ株式会社 Electronic part, conductive film composition and method of producing same
JPS58186928A (en) * 1982-04-23 1983-11-01 株式会社村田製作所 Ceramic laminated condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105318A (en) * 1978-11-16 1980-08-12 Union Carbide Corp Ceramic capacitor having terminal calcined
JPS5874030A (en) * 1981-10-28 1983-05-04 ティーディーケイ株式会社 Electronic part, conductive film composition and method of producing same
JPS58186928A (en) * 1982-04-23 1983-11-01 株式会社村田製作所 Ceramic laminated condenser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285313A (en) * 1990-03-31 1991-12-16 Tdk Corp Chip capacitor and manufacture thereof
JP2011129688A (en) * 2009-12-17 2011-06-30 Tdk Corp Electronic component and terminal electrode
JP2012004189A (en) * 2010-06-14 2012-01-05 Namics Corp Multilayer ceramic capacitor
KR20180028237A (en) * 2016-09-08 2018-03-16 삼성전기주식회사 Multilayer ceramic electronic component and manufacturing method thereof
US10347427B2 (en) 2016-09-08 2019-07-09 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component including external electrodes having extended band portions on one surface of body of multilayer ceramic electronic component
US10804037B2 (en) 2016-09-08 2020-10-13 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing multilayer ceramic electronic component

Also Published As

Publication number Publication date
JPH0722064B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
CN109994317B (en) Multilayer capacitor and method for manufacturing the same
US5781402A (en) Conducting thick film composition, thick film electrode, ceramic electronic component and laminated ceramic capacitor
US6314637B1 (en) Method of producing a chip resistor
US4701827A (en) Multilayer ceramic capacitor
US7285232B2 (en) Conductive paste and ceramic electronic component
JPH10284343A (en) Chip type electronic component
JPH05251210A (en) Conductive chip type ceramic element and manufacturing method thereof
JP3297531B2 (en) Conductive paste
JPS62195111A (en) Chip-type laminated porcelain capacitor
JPH0616461B2 (en) Chip type porcelain capacitor
JP3855792B2 (en) Multilayer ceramic electronic components
JPS58178903A (en) Conductive paste
JP2973558B2 (en) Conductive paste for chip-type electronic components
JP3257036B2 (en) Conductive paste for chip-type electronic components
JPH09190950A (en) Outer electrode of electronic part
JPH10163067A (en) External electrode of chip electronic component
JP4560874B2 (en) Ceramic electronic components
JP2631010B2 (en) Thick film copper paste
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
EP1035552B1 (en) Microchip-type electronic part
JP3376717B2 (en) Conductive composition for external electrode of electronic component and ceramic electronic component formed using the same
JP2002252124A (en) Chip-type electronic component and its manufacturing method
JPH06349316A (en) Conductive paste
JP3123310B2 (en) Conductive paste for chip-type electronic components
JP2001023438A (en) Conductive paste and ceramic electronic component

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term