JPS6132807B2 - - Google Patents

Info

Publication number
JPS6132807B2
JPS6132807B2 JP15923081A JP15923081A JPS6132807B2 JP S6132807 B2 JPS6132807 B2 JP S6132807B2 JP 15923081 A JP15923081 A JP 15923081A JP 15923081 A JP15923081 A JP 15923081A JP S6132807 B2 JPS6132807 B2 JP S6132807B2
Authority
JP
Japan
Prior art keywords
conductive layer
lead
layer
metal
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15923081A
Other languages
Japanese (ja)
Other versions
JPS5860524A (en
Inventor
Koichi Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIKON SUPURAAGU KK
Original Assignee
NICHIKON SUPURAAGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIKON SUPURAAGU KK filed Critical NICHIKON SUPURAAGU KK
Priority to JP15923081A priority Critical patent/JPS5860524A/en
Publication of JPS5860524A publication Critical patent/JPS5860524A/en
Publication of JPS6132807B2 publication Critical patent/JPS6132807B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチツプ状固体電解コンデンサの製造方
法に関するものである。 従来、フエースボンデイングして印刷基板など
に取付けるチツプ状固体電解コンデンサは、トラ
ンスフアモールド成形により樹脂外装したものが
あつたが、寸法が大きく、高価となつていた。 またトランスフアモールド成形しない裸タイプ
としてコンデンサ素子の陽極体より引出した導出
リードにはんだ付け可能な金属端子を溶接したも
のがあつたが、寸法精度が悪く、機械的強度も低
く、印刷基板への取付けの自動化が困難であつ
た。 また上述の製品はいずれも導出リードに金属端
子を溶接する工程があり、構造が複雑で小形化し
難い欠点があつた。 本発明は上述の欠点を解消し、小形で、容易に
かつ安価に製造することができるチツプ状固体電
解コンデンサの製造方法を提供するものである。 以下本発明を第1図〜第4図に示す実施例によ
り説明する。 まず第1図に示すように導出リード1を有する
タンタル、アルミニウムなどの弁作用金属からな
る角柱状、円柱状などの複数個の陽極体2の導出
リード1を給電バー3に溶接して接続し、該陽極
体2の表面に誘電体皮膜4を形成し、該皮膜上に
二酸化マンガンのような半導体固体電解質層5、
カーボンおよび銀ペーストなどの陰極部導電層6
を順次形成する。次に導出リード1の導出部にエ
ポキシなどの補強用樹脂7を塗布して硬化させ、
エポキシ系樹脂を陽極用および陰極用取出電極部
の端部を選択的に残して、陽極体2を覆うように
塗布して樹脂層8を形成する。 なお樹脂層が陽極用電極部の端部まで被覆され
ている場合は、その部分をエアーブラスト、サン
ドブラストなどで除去してもよい。 さらに導出リード1に付着した樹脂層8および
異物などにアルミナの粉を吹き付けて、いわゆる
サンドブラスト法により、この付着物を除去する
とともに、該導出リード1の表面の誘電体酸化皮
膜4を除去しその表面に凹凸1aを形成する。但
し導出リード1の無電解メツキを施す部分に誘電
体酸化皮膜4が形成されていない場合は、サンド
ブラストして凹凸1aを形成しなくてもよい。 次に陽極体2の底部の樹脂層8を形成せず選択
的に残された陰極側電極部分に銀ペーストなどの
陰極部導電層9を塗布、硬化し、その上にさらに
銀ペーストなどに鉄、銅など陰極部導電層6に対
して異種の金属を含有した導電層を塗布、硬化す
る。この時導電層10は陽極側にも塗布、硬化す
る。通常市販されている固体電解コンデンサ用銀
ペーストは40〜60重量%の銀などの金属成分を含
有しているが、この場合銀などの金属成分の含有
量は、コンデンサの電気的特性を損なわない限り
30重量%以上が望ましく、これに銀などの陰極部
導電層6に対して同種金属または無電解メツキの
可能な異種金属をブチルセルソルブなどの溶剤と
共に混合させて塗布、硬化した後の導電層の同種
金属または異種金属の成分比は55重量%〜90重量
%の範囲がメツキ性および耐熱性に優れている。
そして異種金属には鉄、ニツケル、銅、錫、亜
鉛、鉛の他、金、銀、パラジウムなどの貴金属も
含む1種以上の混合物が適用できる。 次に給電バー3により導出リード線1を切り離
すために導出リード1に刻み目を入れる。そして
はんだ付け可能なニツケル、銅などの無電解メツ
キ処理を施して上記導電層10および導出リード
1の誘電体酸化皮膜を有しない金属上に無解メツ
キ層11を形成する。その後溶融はんだに接触さ
せてはんだ層12を形成し、エージング処理した
後導出リード1の刻み目より折り曲げて給電バー
3より切り離し完成する。 本発明のチツプ状固体電解コンデンサの製造方
法は以上のようにして行われる。 したがつて外部電極は溶接工程がなく、銀など
の導電層、はんだ付け可能な無電解メツキ層およ
びはんだ層の電解層を形成しているので、従来の
銀、はんだ層などの電極層に比し、高温における
銀のはんだ中への移行、すなわちはんだくわれを
防止し、また電極部を構成する導電層のうち、少
くとも一種の同種金属または無電解メツキの可能
な異種金属を含有したものは、無電解メツキがむ
らなく極めて均一に形成することができる効果が
ある。 表は定格315V、100μFのチツプ状固体電解コ
ンデンサについて導電層9は従来の銀ペーストを
用いて形成し、同種金属または異種金属を含有し
た導電層10の金属成分を種々変えてメツキ性お
よび耐熱性について試験した結果を示し、表中試
料番号4〜11は本発明品、試料番号1,2,3,
12,13は比較のための試料である。なお導電層は
銀が50重量%含有した樹脂硬化型導電材料に同種
金属として銀、または異種金属として鉄粉および
溶剤を混合してその混合割合を変えて作成した。
The present invention relates to a method for manufacturing a chip-shaped solid electrolytic capacitor. Conventionally, chip-shaped solid electrolytic capacitors that are face-bonded and attached to printed circuit boards, etc. have been covered with resin by transfer molding, but these have been large in size and expensive. In addition, there was a bare type that was not transfer molded and had a solderable metal terminal welded to the lead drawn out from the anode body of the capacitor element, but the dimensional accuracy was poor, the mechanical strength was low, and it was difficult to attach to the printed circuit board. It was difficult to automate the installation. In addition, all of the above-mentioned products require a step of welding a metal terminal to the lead-out lead, which has the disadvantage that the structure is complicated and it is difficult to miniaturize. The present invention eliminates the above-mentioned drawbacks and provides a method for manufacturing a chip-shaped solid electrolytic capacitor that is small, easy to manufacture, and can be manufactured at low cost. The present invention will be explained below with reference to embodiments shown in FIGS. 1 to 4. First, as shown in FIG. 1, the lead-out leads 1 of a plurality of prismatic, cylindrical, etc. anode bodies 2 made of valve metal such as tantalum or aluminum and having lead-out leads 1 are welded and connected to the power supply bar 3. , a dielectric film 4 is formed on the surface of the anode body 2, and a semiconductor solid electrolyte layer 5 such as manganese dioxide is formed on the film;
Cathode conductive layer 6 such as carbon and silver paste
are formed sequentially. Next, a reinforcing resin 7 such as epoxy is applied to the lead-out portion of the lead-out lead 1 and cured.
A resin layer 8 is formed by applying an epoxy resin to cover the anode body 2, leaving the ends of the anode and cathode extraction electrode parts selectively. Note that if the resin layer covers the end of the anode electrode part, that part may be removed by air blasting, sandblasting, or the like. Furthermore, alumina powder is sprayed onto the resin layer 8 and foreign matter adhering to the lead-out lead 1, and the deposits are removed by a so-called sandblasting method, and the dielectric oxide film 4 on the surface of the lead-out lead 1 is also removed. Irregularities 1a are formed on the surface. However, if the dielectric oxide film 4 is not formed on the portion of the lead-out lead 1 to be subjected to electroless plating, the unevenness 1a may not be formed by sandblasting. Next, a cathode conductive layer 9 made of silver paste or the like is applied and hardened to the cathode side electrode portion selectively left without forming the resin layer 8 at the bottom of the anode body 2, and on top of that, iron is further added to the silver paste or the like. Then, a conductive layer containing a different metal such as copper is applied to the cathode conductive layer 6 and cured. At this time, the conductive layer 10 is also applied to the anode side and hardened. Commercially available silver paste for solid electrolytic capacitors usually contains 40 to 60% by weight of metal components such as silver, but in this case, the content of metal components such as silver does not impair the electrical characteristics of the capacitor. as long as
The amount is preferably 30% by weight or more, and a metal of the same type or a different type of metal that can be electrolessly plated with the cathode conductive layer 6 such as silver is mixed together with a solvent such as butyl cellosolve, coated, and cured, then the conductive layer is formed. When the component ratio of the same kind of metal or different kind of metal is in the range of 55% to 90% by weight, the plating property and heat resistance are excellent.
The dissimilar metals may include a mixture of one or more metals including iron, nickel, copper, tin, zinc, and lead, as well as noble metals such as gold, silver, and palladium. Next, a notch is made in the lead-out lead 1 by the power supply bar 3 in order to separate the lead-out lead wire 1. Then, an electroless plating process is performed on solderable nickel, copper, or the like to form an unresolved plating layer 11 on the conductive layer 10 and the lead-out lead 1, which do not have a dielectric oxide film. Thereafter, a solder layer 12 is formed by contacting with molten solder, and after aging treatment, the lead-out lead 1 is bent from the notch and separated from the power supply bar 3 to complete the process. The method for manufacturing a chip-shaped solid electrolytic capacitor of the present invention is carried out as described above. Therefore, the external electrode does not require a welding process, and has a conductive layer such as silver, an electroless plating layer that can be soldered, and an electrolytic layer such as a solder layer, so it is less expensive than conventional electrode layers such as silver and solder layers. However, it prevents the migration of silver into the solder at high temperatures, that is, solder bulging, and the conductive layer constituting the electrode part contains at least one kind of similar metal or a dissimilar metal that can be electrolessly plated. This has the effect that electroless plating can be formed evenly and extremely uniformly. The table shows a chip-shaped solid electrolytic capacitor with a rating of 315 V and 100 μF. The conductive layer 9 is formed using conventional silver paste, and the metal components of the conductive layer 10 containing the same or different metals are varied to improve plating performance and heat resistance. In the table, sample numbers 4 to 11 are the products of the present invention, sample numbers 1, 2, 3,
12 and 13 are samples for comparison. The conductive layer was prepared by mixing a resin-curing conductive material containing 50% by weight of silver with silver as a similar metal, or iron powder and a solvent as dissimilar metals, and varying the mixing ratio.

【表】 表中のメツキ性および耐熱性において×印のも
のはメツキが殆ど付着せず、260℃1分間のはん
だ耐熱性試験(JIS C 5102準拠)で電極くわれ
を生ずる。そして△印のものは、メツキ付着安定
性に欠け、はんだ耐熱性試験で電極くわれが認め
られた。○印のものは、メツキ液を選択すること
によりメツキ付着が安定し、はんだ耐熱試験でも
実用上許容範囲内であつた。◎印のものはメツキ
厚みが均一でメツキ付着安定性も良好ではんだ耐
熱性試験で電極くわれが認められなかつた。 また表中の作業性において○印のものは導電層
材料の塗布作業が可能なもの、△印のものは塗布
がしにくいもの、×印は塗布が不可能なものを示
す。 表から明らかのように同種金属または異種金属
を含有した導電層の金属成分は55〜90重量%の範
囲が有効で55重量%未満では無電解メツキの付着
性が悪くなり、90重量%を越えると導電性が劣化
しコンデンサの等価直列抵抗も増加する。また上
述の導電層の異種金属の金属成分は試料番号7に
おいて、銀50重量%、鉄20重量%の場合と、銀40
重量%、鉄30重量%の場合とは、いずれも金属成
分が70重量%で同様な結果が得られ、他の試料番
号においても、金属成分の合計量が同じ場合には
同様な効果があることが確認された。 さらに上述の実施例において導電層9を2層に
することにより、コンデンサ素子に吸蔵した水分
の蒸発に伴うピンホールを防止し、またピンホー
ルを経緯してコンデンサ素子内部へのメツキ液の
進入も防止できることが確認された。 なお上述の実施例は電極層が銀ペーストを塗布
して構成し、異種金属が鉄を含有した場合につい
て述べたが、ニツケル、銅、錫や貴金属類などの
含有も同様な効果があり、銀ペーストの代りに
銅、錫などの有機溶剤性ペーストを用いたり、ス
パツタリングなどにより導電層を形成してもよ
い。 叙上のように本発明の製造方法により形成され
たチツプ状固体電解コンデンサは、小形で電極が
著しく強固に形成され、電気的特性ならびに生産
性の面においても極めて有利となり工業的ならび
に実用的価値の大なるものである。
[Table] Items marked with an x in the plating properties and heat resistance in the table have almost no plating adhesion, and electrode cracking occurs in the soldering heat resistance test at 260°C for 1 minute (according to JIS C 5102). Those marked with △ lacked plating adhesion stability, and electrode cracking was observed in the soldering heat resistance test. For those marked with ○, the plating adhesion was stabilized by selecting the plating liquid, and the soldering heat resistance test was within the practically acceptable range. Those marked with ◎ had uniform plating thickness, good plating adhesion stability, and no electrode cracks were observed in the soldering heat resistance test. Furthermore, in terms of workability in the table, those marked with ○ indicate those for which the conductive layer material can be coated, those marked with △ indicate those that are difficult to coat, and those marked with x indicate those that cannot be coated. As is clear from the table, a range of 55 to 90% by weight of the metal component of the conductive layer containing the same or different metals is effective.If it is less than 55% by weight, the adhesion of electroless plating will be poor, and if it exceeds 90% by weight. The conductivity deteriorates and the equivalent series resistance of the capacitor also increases. In addition, the metal components of the different metals in the conductive layer mentioned above were 50% by weight of silver and 20% by weight of iron, and 40% by weight of silver in sample number 7.
% by weight and 30% by weight of iron, similar results are obtained when the metal component is 70% by weight, and similar effects are obtained for other sample numbers when the total amount of metal components is the same. This was confirmed. Furthermore, by forming the conductive layer 9 into two layers in the above-described embodiment, pinholes caused by evaporation of moisture stored in the capacitor element can be prevented, and plating liquid can also be prevented from entering the inside of the capacitor element through the pinholes. It has been confirmed that this can be prevented. In the above embodiment, the electrode layer was constructed by applying silver paste, and the case was described in which the dissimilar metal contained iron, but the inclusion of nickel, copper, tin, precious metals, etc. has a similar effect; Instead of paste, an organic solvent paste such as copper or tin may be used, or the conductive layer may be formed by sputtering or the like. As mentioned above, the chip-shaped solid electrolytic capacitor formed by the manufacturing method of the present invention is small and has extremely strong electrodes, and is extremely advantageous in terms of electrical characteristics and productivity, and has industrial and practical value. It is a great thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例のチツプ状
固体電解コンデンサの製造過程の説明図である。 1:導出リード、2:陽極体、4:誘電体酸化
皮膜、5:固体電解質層、6,9:陰極部導電
層、8:樹脂層、10:陽極部および陰極部導電
層、11:無電解メツキ層、12:はんだ層。
1 to 4 are explanatory diagrams of the manufacturing process of a chip-shaped solid electrolytic capacitor according to an embodiment of the present invention. 1: Derivation lead, 2: Anode body, 4: Dielectric oxide film, 5: Solid electrolyte layer, 6, 9: Cathode part conductive layer, 8: Resin layer, 10: Anode part and cathode part conductive layer, 11: None Electrolytic plating layer, 12: solder layer.

Claims (1)

【特許請求の範囲】[Claims] 1 導出リード1を有する弁作用金属からなる陽
極体2表面に誘電体酸化被膜4を形成し、該被膜
上に固体電解質層5、陰極部導電層6を形成し、
陽極用および陰極用取出電極部の端部を選択的に
残して他の陽極体の部分を覆うように樹脂層8を
形成し、この選別的に残された部分に陽極部導電
層および上記陰極部導電層6に対して同種または
異種金属が含有されている少なくとも一層の陰極
部導電層9,10を形成し、該導電層9,10上
および導出リード1の金属上に無電解メツキ層1
1を形成し、はんだ付けすることを特徴とするチ
ツプ状固体電解コンデンサの製造方法。
1. A dielectric oxide film 4 is formed on the surface of an anode body 2 made of a valve metal having a lead-out lead 1, and a solid electrolyte layer 5 and a cathode conductive layer 6 are formed on the film,
A resin layer 8 is formed to selectively leave the ends of the anode and cathode extraction electrode parts and cover other parts of the anode body, and the anode conductive layer and the cathode are formed on the selectively left parts. At least one cathode conductive layer 9 , 10 containing the same or different metal is formed with respect to the conductive layer 6 , and an electroless plating layer 1 is formed on the conductive layer 9 , 10 and on the metal of the lead-out lead 1 .
1. A method for manufacturing a chip-shaped solid electrolytic capacitor, the method comprising forming a chip-shaped solid electrolytic capacitor and soldering the capacitor.
JP15923081A 1981-10-05 1981-10-05 Chip-shaped solid electrolytic condenser Granted JPS5860524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15923081A JPS5860524A (en) 1981-10-05 1981-10-05 Chip-shaped solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15923081A JPS5860524A (en) 1981-10-05 1981-10-05 Chip-shaped solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS5860524A JPS5860524A (en) 1983-04-11
JPS6132807B2 true JPS6132807B2 (en) 1986-07-29

Family

ID=15689177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15923081A Granted JPS5860524A (en) 1981-10-05 1981-10-05 Chip-shaped solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS5860524A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031219A (en) * 1983-07-29 1985-02-18 ニチコンスプラ−グ株式会社 Chip-shaped solid electrolytic condenser
JPS6031220A (en) * 1983-07-29 1985-02-18 ニチコンスプラ−グ株式会社 Method of producing chip-shaped solid electrolytic condenser
JP2748548B2 (en) * 1989-05-15 1998-05-06 日本電気株式会社 Chip type solid electrolytic capacitor
JPH0373511A (en) * 1989-08-14 1991-03-28 Nec Corp Chip-type solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS5860524A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
US4090288A (en) Solid electrolyte capacitor with metal loaded resin end caps
US8974654B1 (en) Multilayer ceramic capacitor with terminal formed by electroless plating
JPH10284343A (en) Chip type electronic component
JPS6132808B2 (en)
JPS6132807B2 (en)
JPH0126528B2 (en)
JPS6032348B2 (en) Manufacturing method for electronic components
JPH0126527B2 (en)
JP4710204B2 (en) Method for forming end face electrode of electronic component
JP3168584B2 (en) Solid electrolytic capacitors
JPH04329616A (en) Laminated type electronic component
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
KR100620514B1 (en) Tab terminal for electronic component
JP2641010B2 (en) Chip electronic components
JPS6131609B2 (en)
JPS6038862B2 (en) solid electrolytic capacitor
JPH0878278A (en) Production of electronic device
JPS5961116A (en) Method of producing chip type solid electrolytic condenser
JPS6118854B2 (en)
JPS5885518A (en) Chip-shaped condenser and method of producing same
JPS6017902Y2 (en) solid electrolytic capacitor
JPS6028131Y2 (en) electronic components
JPH0151003B2 (en)
JPH09246101A (en) Chip solid electrolytic capacitor
JPH0126526B2 (en)