JP2765032B2 - 揮発性有機液体水溶液の濃縮液の製造方法 - Google Patents

揮発性有機液体水溶液の濃縮液の製造方法

Info

Publication number
JP2765032B2
JP2765032B2 JP1092976A JP9297689A JP2765032B2 JP 2765032 B2 JP2765032 B2 JP 2765032B2 JP 1092976 A JP1092976 A JP 1092976A JP 9297689 A JP9297689 A JP 9297689A JP 2765032 B2 JP2765032 B2 JP 2765032B2
Authority
JP
Japan
Prior art keywords
organic liquid
volatile organic
carrier gas
aqueous solution
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1092976A
Other languages
English (en)
Other versions
JPH02273518A (ja
Inventor
能成 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE KK
Original Assignee
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE KK filed Critical TORE KK
Priority to JP1092976A priority Critical patent/JP2765032B2/ja
Publication of JPH02273518A publication Critical patent/JPH02273518A/ja
Application granted granted Critical
Publication of JP2765032B2 publication Critical patent/JP2765032B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明はキャリアガスを膜の2次側蒸気の捕集に使
用する揮発性有機液体優先透過型浸透気化膜および水優
先透過型蒸気透過膜とを利用して、比較的低濃度の揮発
性有機液体水溶液から揮発性有機液体濃縮液を製造する
新規な方法に関するものであり、アルコール発酵液から
のアルコールの濃縮・分離、特に連続発酵法等のアルコ
ール発酵液からのアルコールの濃縮・分離に好ましく用
いられる。
(従来の技術) 液体混合物の分離方法としては最もひろく実用化され
ている技術の一つは蒸留法である。また近年、逆浸透法
および浸透気化法(Pervaporation法)等の分離膜を使
用する方法が鋭意研究されている。
比較的低濃度の揮発性有機液体水溶液を濃縮する場
合、蒸留法は大量の水分を蒸発させて分離するため多大
な分離エネルギーが必要である。例えば、発酵法による
エタノールの製造では連続発酵法や固定化酵素法のよう
なバイオテクノロジーを駆使した新規な方法の発酵生産
性は著しく高い。にもかかわらず発酵液中のエタノール
濃度が従来の回分式発酵法より低濃度のため、蒸留法に
よる濃縮・分離のエネルギーが増大してむしろエタノー
ルの製造コストが不利になると云われている。また、化
学工業の製造プロセスでは、しばしば低濃度の揮発性有
機液体水溶液が生成するが、蒸留法等の従来技術で濃縮
・分離して回収するにはコストがかかりすぎて経済性が
失われるため、公害源や焼却処理等により資源の浪費の
原因となっている。
このため、低濃度溶液に対して、少量成分で有用な有
機液体成分を選択的に透過させる膜分離技術が分離に要
するエネルギーが原理的に最も少なくてすむ理想的分離
方法として期待されている。しかしこの場合、逆浸透法
は水を選択的に透過・分離する方法であり、大量成分で
ある水を透過させるためエネルギー的に有利とはいえ
ず、また濃度の上昇に伴う浸透圧の増大と操作圧力の限
界との関係で高濃度の濃縮液を得ることは困難である。
他方、浸透気化法は特定の成分を高い分離率で選択的に
透過・捕集しうる膜分離法として期待され精力的に研究
開発の努力が注がれている。水溶液を対象とする場合に
は水を優先的に透過させる浸透気化法で分離性能の著し
く高い浸透気化膜が開発され実用化の段階に付近きつつ
あり、高濃度液の脱水技術として注目されている。しか
し、有機液体水溶液から有機液体を選択的に透過させる
高性能の浸透気化膜の開発は現在まだ基礎的研究の段階
にあり、本技術を直ちに実用化とするのに十分な分離性
能の高い浸透気化膜はまだ開発されていない。しかし、
揮発性有機液体水溶液から有機液体を優先的に透過させ
る浸透気化膜として特開昭60−75306、61−277430、62
−201605、EP−0254758(A1)等に提案された分離膜が
比較的高い分離性能を有していて注目される。
この様な状況を背景にして、揮発性有機液体水溶液か
ら有機液体を優先的に透過させる浸透気化膜を用いた分
離方法の研究の例はまだ非常に少なく、アルコール水溶
液等に関して特開昭58−58108、59−216605、61−56085
等に提案されているような方法および学会等で、揮発性
有機液体優先透過型浸透気化膜の使用方法あるいは揮発
性有機液体優先透過型浸透気化膜と水優先透過型浸透気
化膜とを組合せて使用するという基本的概念に関する基
礎的定性的研究が提案されているという状況であり、具
体的に経済性を検討して工業的に有利であることを確か
めた例は非常に少ない。
(発明が解決しようとする課題) 本発明者らは、このような事情を鑑み、現実的に入手
の可能性のある分離性能の浸透気化膜を使用した、揮発
性有機液体優先透過型浸透気化膜と水優先透過型の蒸気
透過膜とを組合せて使用する工業的規模で経済的に有利
となる分離方法を提供しようとするものである。
(課題を解決するための手段) 本発明は、45%以下の低濃度の揮発性有機液体成分を
含有する水溶液から、該揮発性有機液体成分の1種以上
の成分を含む揮発性有機液体濃縮液を製造する方法に於
て、揮発性有機液体水溶液の原液を揮発性有機液体優先
透過型浸透気化膜からなる浸透気化装置の1次側に供給
し、2次側に不活性ガスからなるキャリアガスを流して
膜を透過する揮発性有機液体成分に富む蒸気を捕集し、
ひきつづいて揮発性有機液体成分を含有するキャリアガ
スを水優先透過型膜からなる蒸気透過型膜分離装置の1
次側に導入し、該蒸気透過型膜分離装置の2次側に乾燥
した不活性ガスを流して膜を通してキャリアガス中に含
まれる水分を除去し、しかる後、1次側のキャリアガス
を凝縮器に導入して冷却し、揮発性有機液体成分を凝縮
液として取り出すに際し、前記揮発性有機液体優先透過
型浸透気化置の2次側に供給するキャリアガスとして、
凝縮器で冷却し揮発性有機液体成分の大部分を凝縮液と
して捕集した後の、揮発性有機液体成分蒸気および水蒸
気の一部を含有する不活性ガスを繰返し還流して使用
し、かつ前記水優先透過型膜からなる蒸気透過型膜分離
装置の1次側から比較的高い温度で取り出される揮発性
有機液体成分を含有するキャリアガスを熱源とする熱交
換器で、凝縮器で冷却されたキャリアガスを予備加熱す
ることを特徴とする、揮発性有機液体水溶液の濃縮液の
製造方法に関する。
第1図は本願発明の低濃度揮発性有機液体水溶液の濃
縮液の製造方法を示すフローシートである。すなわち、
揮発性有機液体優先透過型浸透気化装置1の膜の1次側
に低濃度の原液を供給する。1次側供給液は熱交換器2a
により予備加熱したのち、浸透気化装置に付属する熱交
換器2bで加熱し所定温度に保持する。熱交換器2aの熱源
には該浸透気化装置の1次側出口から排出される揮発性
有機液体成分濃度の低下した通過液を利用し、回収する
ため原液生成工程へ還流する。膜の2次側には不活性ガ
スをキャリアガスとして流し、膜を透過する蒸気を捕集
する。揮発性有機液体蒸気を含有する不活性ガスは水優
先透過型蒸気透過装置3の1次側に導入する。水優先透
過型蒸気透過装置3の2次側には乾燥不活性ガスを流し
て、1次側のキャリアガス中の水分を除去する。水分を
除去された1次側の揮発性有機液体蒸気を含有する不活
性ガスは、熱交換器4で予備冷却する。
熱交換器4の熱源には凝縮器6を経て冷却された該ガ
スを使用する。凝縮器6でさらに冷却して揮発性有機液
体蒸気を凝縮液として捕集する。熱交換器4と凝縮器6
との間に熱交換器5を設置して冷水でさらに冷却しても
良い。不活性ガスと揮発性有機液体蒸気の一部はブロワ
ー7により前述の熱交換器4を経て、揮発性有機液体優
先透過型浸透気化装置1の膜の2次側に還流する。ブロ
ワーは揮発性有機液体優先透過型浸透気化置1の膜の2
次側の出口側に設置しても良いし、凝縮器の後に設置し
ても良い。前者の場合には、揮発性有機液体優先透過型
浸透気化装置1の膜の2次側が減圧側になり、膜の分離
性能上有利となる。後者の場合にはキャリアガスの加温
に於て有利になる。水優先透過型蒸気透過装置3の2次
側に供給するキャリアガスは、該蒸気透過装置3の2次
側の排出ガスにより熱交換器9で加熱して、該蒸気透過
装置3の2次側キャリアガス入口に導入する。該キャリ
アガスのブロワー10は該キャリアガスの導入口側または
排出口側いずれに設置してもよい。しかし、図1のよう
に該キャリアガスの排出口側に設置して蒸気透過装置3
の2次側が減圧されるようにする方法が、分離性能上好
ましい。
揮発性有機液体優先透過型浸透気化装置1に用いる膜
は、揮発性有機液体の水に対する分離係数αが5〜10
0程度の膜が使用でき、特に10〜50の範囲の膜が好まし
く使用できる。全透過速度は0.1kgm-2h-1以上であるこ
とが好ましい。現実的に入手できる膜としてはα=20
〜40、透過速度=0.3〜3kgm-2h-1の範囲の膜が特に好ま
しく使用できできる。このような揮発性有機液体優先透
過型浸透気化膜の例としては、ポリ(1−トリメチルシ
リルピロピン−1)、ポリ(1−トリメチルシリル−1
−プロピン)またはポリフェニルプロピンのジメチルシ
ロキサン鎖グラフトポリマの膜、またはフルオロアクリ
レートをグラフトしたポリスチレンの膜およびこれらの
複合膜等が使用できる。更に、ポリフッ化ビニリデン、
ポリフェニレンオキサイド、ポリプロピレン又はポリテ
トラフルオロエチレン等を主成分とする多孔性膜も使用
することができる。
上述のような分離膜を使用する場合、揮発性有機液体
優先透過型浸透気化装置1に供給する比較的低濃度の水
溶液としては、有機液体によって有利に濃縮できる濃度
範囲が異なるので、一律に濃度の規定をすることは困難
であるが、おおよそ1%以上45%以下の濃度の水溶液に
対して本発明を適用するのが有利である。特に好ましく
は3%以上35%以下の濃度の水溶液を対象とするのがよ
い。1%以下の水溶液からは、多くの揮発性有機液体に
対しては、水優先透過型浸透気化装置3で直接脱水して
濃縮できるほどに濃縮することが難しい。また、高濃度
の水溶液に対しては、該浸透気化装置1をあえて使用す
るまでもないことが多い。
水優先透過型蒸気透過装置3に使用される蒸気透過膜
には従来公知の水優先透過型浸透気化膜を使用すること
ができる。例えば、ポリビニルアルコール系膜、キトサ
ン系膜、アルギン酸系膜、ポリアクリロニトリル系膜、
ポリイミド系浸透気化膜、ポリアミド系浸透気化膜、ポ
リアミドイミド系浸透気化膜、多糖類系浸透気化膜およ
びこれらの複合膜等が好ましく使用できる。この様な水
優先透過型蒸気透過膜としては揮発性有機液体濃度が50
%〜95%の濃度範囲の水溶液に対して、50℃〜100℃で
水の揮発性有機液体に対する分離係数αH20が50以上よ
り好ましくは100以上、透過速度が0.05kgm-2h-1以上よ
り好ましくは0.1kgm-2h-1以上の性能を有する膜が好ま
しい。
分離性能が上述の様な範囲にある膜の揮発性有機液体
優先透過型浸透気化装置と水優先透過型蒸気透過装置と
を上手に組合せると、系の物質収支と熱収支とが好まし
い範囲にバランスする条件が存在するために本発明の方
法が有利となるのである。
この様な揮発性有機液体優先透過型浸透気化装置と水
優先透過型蒸気透過装置の形式に関しては特に制約はな
く、プレートアンドフレーム型の平膜モジュール、スパ
イラル型の膜モジュール、あるいは中空糸型膜モジュー
ル等いずれも好ましく採用することができる。
揮発性有機液体優先透過型浸透気化装置1および水優
先透過型蒸気透過装置3の2次側のキャリアガスの供給
に使用するブロワーには、いずれの形式のものも使用す
る事ができる。しかし、ブロワーの吸引側に浸透気化装
置または蒸気透過装置を設置する場合には、吸引側の減
圧度をより高くできる形式のものの方がより好ましい。
減圧度は760mmHg以下、好ましくは500〜700mmHgの範囲
に保持できる性能のものが特に良い。熱交換器および凝
縮器も形式上の制約は特にない。揮発性有機液体優先透
過型浸透気化装置1に付属する熱交換器は、該装置に組
込まれた形式のものでも、外部循環式のものでも良く、
あるいは両者を具備した構造の浸透気化装置であっても
良い。水優先透過型蒸気透過装置3の乾燥不活性ガスと
しては窒素ガス、空気、アルゴンガス等を使用すること
ができるが、通常は乾燥空気を使用するのが経済的であ
る。この場合、水の分離性能をより高くするためには水
優先透過型蒸気透過装置3に供給する空気中の相対湿度
が低いほどよいと考えられる。供給空気中の相対湿度は
ブロワーに供給する空気中の絶対湿度と熱交換器9で加
熱するので水優先透過型蒸気透過装置3に供給される空
気の温度で決まる。一般的に云えば、供給空気の相対湿
度は35%以下、より好ましくは20%以下がよい。例え
ば、30℃以下で相対湿度80%以下の空気を50℃以上に加
熱して水優先透過型蒸気透過装置3に供給するのが実際
的な態様である。
分離対象となる揮発性有機液体としては、水よりも非
揮発度が高い液体であれば本発明を適用できるが、低級
アルコール、低級アルコールの脂肪酸エステル、ケトン
類、エーテル類、ニトリル類、およびこれらの物質の混
合物等に好ましく適用できる。アルコール類特にエタノ
ールの低濃度水溶液に対してはより有利に適用すること
ができる。
アルコール発酵液、例えば、連続アルコール発酵法の
発酵液からアルコールを濃縮して取り出す方法として特
に好ましく適用出来る。菌体固定化法または酵素固定化
法による連続発酵法の場合には、発酵液から菌体をロ過
法または沈降法で除去する工程が省略できるので特に有
利に適用できる。またさらに、揮発性有機液体優先透過
型浸透気化装置の1次側から排出される低濃度の通過液
を回収して、発酵槽の原料供給液の補給液として再利用
することができるので、一層本有利な態様である。
原料液として揮発性有機液体優先透過型浸透気化装置
に供給する低濃度の揮発性有機液体水溶液としては、本
発明の趣旨から云えば約15%以下の揮発性有機液体水溶
液に適用するのがよい。さらに好ましくは0.1〜10%程
度の揮発性有機液体水溶液対して本発明を適用する場合
に本発明の効果を有利に発揮できる。
(発明の作用効果) 浸透気化法の場合には通常減圧された透過蒸気を冷却
して凝縮液として捕集する必要がある。このため、冷却
に要するエネルギーと真空ポンプの動力に使用されるエ
ネルギーが大きく、従来、低濃度の揮発性有機液体水溶
液からの有機液体の濃縮分離を工業的規模で経済的に有
利に行なうことは困難であった。しかし、本発明によれ
ば透過側を高い真空に保つ必要がない。またさらに、揮
発性有機液体成分に富む蒸気を冷却して凝縮させること
なく水優先透過型蒸気透過法により脱水するので、揮発
性有機液体優先透過型浸透気化装置で濃縮された成分蒸
気の凝縮に要するエネルギーを必要としない。さらに、
水優先透過型蒸気透過装置の2次側には乾燥した空気等
のキャリアガスを流通させるだけで、高い真空度を保持
することがなく、したがってまたより低温に冷却する凝
縮器を必要としない。揮発性有機液体優先透過型浸透気
化装置の供給液とキャリアガスの加熱に要した熱エネル
ギー、は熱交換をして有効に利用している。水優先透過
型蒸気透過装置で必要な熱エネルギーも有効に利用でき
る。さらに、水優先透過型蒸気透過装置から取り出され
た揮発性有機液体成分の濃縮された蒸気の冷却と凝縮に
ついても、蒸気の圧力が比較的高いので有利であり、循
環系で必要な熱エネルギーとして有効に利用している。
このため、本発明によれば、分離に要するエネルギーを
大幅に節減できる。
(実施例) 以下に実施例によって具体的に本願発明を説明する
が、本発明の適用の範囲が本実施例によって制約されな
いことはいうまでもない。
図1のフローで示した方法でエタノール5%の水溶液
を濃縮して、分離に要するエネルギーを見積もった。
揮発性有機液体優先透過型浸透気化装置1にはエタノ
ール濃度3〜15%の水溶液に対して60〜70℃の条件の平
均性能がαEtOH=30、透過速度=1.0kgm-2h-1の性能を
有するポリ(1−トリメチルシリル−1−プロピン)の
平膜を、フィルタ−プレス型のプレートアンドフレーム
式モジュールに組み込んで使用した。水優先透過型蒸気
透過法膜分離装置3にはエタノール60〜90%の濃度範囲
の水溶液に対して60℃で平均の分離係数αH20が100〜12
00、透過速度1.0〜0.35kgm-2h-1の性能を示すキトサン
を活性層とする複合中空糸の膜モジュールを使用した。
5%で25℃のエタノール水溶液を47.32kgh-1の割合で
揮発性有機液体優先透過型浸透気化装置1に供給した。
熱交換器2a通過後の供給液の温度は65℃で、エタノール
3%の回収液45.53kgh-1の温度は70℃から28℃に低下し
た。揮発性有機液体優先透過型浸透気化装置1の付属の
熱交換器2bの熱源として、供給液側を70℃に保つために
ゲージ圧0.8kgcm-2の水蒸気1.6kgh-1が必要であった。
該浸透気化装置1の2次側には70℃に加熱した窒素ガス
3.98kgh-1を該浸透気化装置1の2次側の出口側に設置
したブロワー7で循環した。窒素ガスの加熱には熱交換
器8で0.07kgh-1の水蒸気を要した。水優先透過型蒸気
透過法膜分離装置3の1次側に通過した蒸気を含んだ窒
素ガスは55℃であった。このガスを熱交換器4と5で予
備冷却してから凝縮器6で−5℃のブラインで冷却し、
蒸気を凝縮液として捕集した。凝縮液は約92%で、1.09
kgh-1抜出すことができた。凝縮器の冷凍機に必要なエ
ネルギーは150kcalh-1で、120WHの電力が必要であると
見積もられた。熱交換器4を通過した凝縮後の窒素ガス
の温度は40℃であった。窒素ガス循環用のブロワーの電
力は約22WHであった。水優先透過型蒸気透過法膜分離装
置3の2次側の乾燥不活性ガスには空気を熱交換器9で
50℃に加熱して使用した。熱源には該蒸気透過法膜分離
装置3の2次側の約60℃の排出空気を利用した。乾燥空
気量は7.5kgh-1で循環し、ブロワー10の所要電力は30WH
であった。
以上の結果から、5%の水溶液から92%に濃縮して取
り出すための分離エネルギーは、エタノール1kg当りの
蒸気の使用量が1.67kg、電力の使用量は172WHと見積も
られた。従来法の蒸留の場合には蒸気3.2kgを要すると
算定される。蒸気のコストを3円/kg、電気代を0.015円
/WHと仮定すると、本発明では7.59円/エタノール−kg
であり、従来の蒸留法では10.4円/エタノール−kgとな
る。すなわち、本発明によれば分離に要するエネルギー
コストを大幅に節減できる。
【図面の簡単な説明】
第1図は本発明のフローシートを示す図である。1は揮
発性有機液体優先透過型浸透気化装置を示す。3は水優
先透過型蒸気透過装置である。2a、2b、4、5、8、お
よび9はそれぞれ熱交換器である。6は凝縮器、7およ
び10はブロワーである。

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】45%以下の低濃度の揮発性有機液体成分を
    含有する水溶液から、該揮発性有機液体成分の1種以上
    の成分を含む揮発性有機液体濃縮液を製造する方法に於
    て、揮発性有機液体水溶液の原液を揮発性有機液体優先
    透過型浸透気化膜からなる浸透気化装置の1次側に供給
    し、2次側に不活性ガスからなるキャリアガスを流して
    膜を透過する揮発性有機液体成分に富む蒸気を捕集し、
    ひきつづいて揮発性有機液体成分を含有するキャリアガ
    スを水優先透過型膜からなる蒸気透過型膜分離装置の1
    次側に導入し、該蒸気透過型膜分離装置の2次側に乾燥
    した不活性ガスを流して膜を通してキャリアガス中に含
    まれる水分を除去し、しかる後、1次側のキャリアガス
    を凝縮器に導入して冷却し、揮発性有機液体成分を凝縮
    液として取り出すに際し、前記揮発性有機液体優先透過
    型浸透気化置の2次側に供給するキャリアガスとして、
    凝縮器で冷却し揮発性有機液体成分の大部分を凝縮液と
    して捕集した後の、揮発性有機液体成分蒸気および水蒸
    気の一部を含有する不活性ガスを繰返し還流して使用
    し、かつ前記水優先透過型膜からなる蒸気透過型膜分離
    装置の1次側から比較的高い温度で取り出される揮発性
    有機液体成分を含有するキャリアガスを熱源とする熱交
    換器で、凝縮器で冷却されたキャリアガスを予備加熱す
    ることを特徴とする、揮発性有機液体水溶液の濃縮液の
    製造方法。
  2. 【請求項2】揮発性有機液体成分蒸気および水蒸気の一
    部を含有する不活性ガスを繰返しキャリアガスとして使
    用するに際し、水優先透過型膜からなる蒸気透過型膜分
    離装置の1次側から水分を除去され昇温されて取り出さ
    れる揮発性有機液体成分を含有するキャリアガスを凝縮
    器で冷却されたキャリアガスで予備冷却したのち凝縮器
    で冷却して揮発性有機液体成分を捕集し、しかる後ブロ
    ワーに供給して加熱し揮発性有機液体優先透過型浸透気
    化置の2次側に供給することを特徴とする、請求項1記
    載の揮発性有機液体水溶液の濃縮液の製造方法。
  3. 【請求項3】蒸気透過型膜分離装置の2次側に乾燥した
    不活性ガスを流して膜を通してキャリアガス中に含まれ
    る水分を除去するに当り、不活性ガスとして空気を使用
    し、揮発性有機液体成分を含有するキャリアガスによっ
    て加熱され水分を含んだ蒸気透過型膜分離装置の2次側
    出口から排出される空気で熱交換器を介して加温して、
    該蒸気透過型膜分離装置の2次側に供給することを特徴
    とする、請求項1記載の揮発性有機液体水溶液の濃縮液
    の製造方法。
  4. 【請求項4】蒸気透過型膜分離装置の2次側に供給する
    乾燥空気が、相対湿度35%以下であることを特徴とす
    る、請求項3記載の揮発性有機液体水溶液の濃縮液の製
    造方法。
  5. 【請求項5】揮発性有機液体水溶液が、低級アルコー
    ル、低級アルコールの脂肪酸エステル、ケトン類、エー
    テル類、ニトリル類、およびこれらの物質の混合物等の
    低濃度の水溶液であることを特徴とする請求項1記載の
    揮発性有機液体水溶液の濃縮液の製造方法。
JP1092976A 1989-04-14 1989-04-14 揮発性有機液体水溶液の濃縮液の製造方法 Expired - Fee Related JP2765032B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092976A JP2765032B2 (ja) 1989-04-14 1989-04-14 揮発性有機液体水溶液の濃縮液の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092976A JP2765032B2 (ja) 1989-04-14 1989-04-14 揮発性有機液体水溶液の濃縮液の製造方法

Publications (2)

Publication Number Publication Date
JPH02273518A JPH02273518A (ja) 1990-11-08
JP2765032B2 true JP2765032B2 (ja) 1998-06-11

Family

ID=14069429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092976A Expired - Fee Related JP2765032B2 (ja) 1989-04-14 1989-04-14 揮発性有機液体水溶液の濃縮液の製造方法

Country Status (1)

Country Link
JP (1) JP2765032B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169327A (ja) * 1989-11-29 1991-07-23 Nitto Denko Corp 希薄溶液中の有価物回収方法
JPH04298222A (ja) * 1991-03-25 1992-10-22 Tsusho Sangyosho Kiso Sangyokyokucho 混合液体の膜分離方法
JPH0768134A (ja) * 1993-06-29 1995-03-14 Ube Ind Ltd 油中の水分除去法
BRPI0614461A2 (pt) 2005-08-04 2012-11-27 Saban Ventures Pty Ltd método para desinfetar ou esterilizar um artigo, ou parte do artigo
AU2008210270B8 (en) 2007-02-02 2012-04-26 Saban Ventures Pty Limited Membrane vapour concentrator
JP5148578B2 (ja) * 2007-03-15 2013-02-20 三菱重工業株式会社 脱水システム
JP5734684B2 (ja) * 2011-01-28 2015-06-17 宇部興産株式会社 含水溶剤の脱水濃縮方法
DE102011108909B4 (de) * 2011-07-29 2017-08-31 Major Bravo Limited Membrandestillationsvorrichtung
CA2867883C (en) * 2012-03-28 2020-06-02 Rasirc, Inc. Method of delivering a process gas from a multi-component solution
US10196685B2 (en) 2014-05-13 2019-02-05 Rasirc, Inc. Methods and systems for delivering process gases to critical process applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180204A (ja) * 1982-04-19 1983-10-21 Kuri Kagaku Sochi Kk 滲透蒸発膜を用いる分離法
JPS59216605A (ja) * 1983-05-24 1984-12-06 Kuri Kagaku Sochi Kk 滲透蒸発膜を用いる分離法
JPS62225207A (ja) * 1986-03-28 1987-10-03 Agency Of Ind Science & Technol 液体混合物の分離方法
JPS6362504A (ja) * 1986-09-02 1988-03-18 Mitsubishi Rayon Eng Co Ltd 有機成分含有水溶液中の有機成分の濃縮方法
JPH0761411B2 (ja) * 1986-12-06 1995-07-05 宇部興産株式会社 有機物水溶液の濃縮方法

Also Published As

Publication number Publication date
JPH02273518A (ja) 1990-11-08

Similar Documents

Publication Publication Date Title
Tomaszewska Membrane distillation-examples of applications in technology and environmental protection
US9283522B2 (en) Process for separating liquid mixtures
CN100567180C (zh) 高碱性、高盐、高有机物含量的环氧树脂废水的处理方法
JP2765032B2 (ja) 揮発性有機液体水溶液の濃縮液の製造方法
CN100427184C (zh) 一种膜法草甘膦母液的浓缩工艺
JPS63162003A (ja) 混合溶液の分離方法
CN103073146A (zh) 一种基于正渗透和膜蒸馏的废水处理方法及装置
CN104803448A (zh) 高盐度高有机物浓度废水的正渗透处理方法
JP5943924B2 (ja) 浸透圧駆動膜プロセス及びシステム、並びに引出溶質回収方法
WO2018126651A1 (zh) 一种蒸发结晶干燥一体化装置及蒸发结晶干燥方法
CN218435031U (zh) 金属表面处理液回收利用系统
EP0258884B1 (en) Method for separating and concentrating an organic component from an aqueous solution containing same
JP2780323B2 (ja) 揮発性有機液体水溶液の濃縮液製造方法
JP2676900B2 (ja) エタノール濃縮液の製造方法
CN106336058B (zh) 一种正渗透与多级闪蒸耦合的海水淡化系统
JP2014046300A (ja) 膜による溶液の脱水法
CN107162904A (zh) 一种采用zsm‑5型分子筛膜制备乙酸异戊酯的方法
US20240058759A1 (en) Multi-stage air gap membrane distillation system and process
US20240058760A1 (en) Multi-stage vacuum membrane distillation system and process
US20240058761A1 (en) Multi-stage permeate gap membrane distillation system and process
US20240058758A1 (en) Multi-stage direct contact membrane distillation system and process
US20240058757A1 (en) Multi-stage sweeping gas membrane distillation system and process
JPH0630793B2 (ja) 水循環システム
WO2014077739A2 (ru) Способ выделения и концентрирования органических веществ из жидких смесей и устройство для его осуществления
CN213375984U (zh) 一种利用余热制作纯水的膜蒸馏系统

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080403

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees